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WEAK SOLUTIONS OF A QUASI-LINEAR DEGENERATE

ELLIPTIC SYSTEM WITH DISCONTINUOUS

COEFFICIENTS

YOSHIAKI IKEDA

§*1. Introduction

We shall discuss regularities and related topics on weak solutions of

the system of the following quasi-linear elliptic differential equations (a

combination of almost single equations)

- d i v Aj(x, u, Fu3) + Bj(x9 u, Fuj) = 0

0* = 1, 2, , m) u = (uu •• ,un),

in a bounded domain Ω in Rn (n ^ 2), where A3 = (Aίj9 , Anj) are given

vector functions of (x, u, FUJ), B3 are scalar functions of the same variables,

and Fuj = (dUjjdxu , dUjldxn) denote the gradients of the u3 — Uj(x)

(j = 1, , m). We assume that there exists some a ^ 2 such that each

Aj and B3 satisfy the inequalities

ξ-Aj(x, u, ς) ^ a,(x)\ξ\' - Σ c«(*)|u,| - //*) ,
i l

£ b}(x)\ξI-1

- 1 + Σ ^(x)!^!-1 +

(1.2)

for any ξ e i?n. The functions aj9 bjf cij9 , hό and dj9 call them the

coefficients of the structure (1.2), are all assumed to be non-negative and

measurable.

Moreover we assume that

aj1 e L\Ω) for any t > 1,

a3 <ά0, j = 1, 2, , m,
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106 YOSHIAKI IKEDA

aj9 ap)-, bp)-, cijy dij9 fJf gj e L^\Ω),

where

(1.3) ^ + 1 < ^ and (2 ̂ ) a < p .
p t n

The class of Partial Differential Equations (1.1) that we are going to

discuss involves many interesting equations whose solutions are known

([7> 10]). The purpose of this paper is to establish a systematic approach

to the investigation of the solution, which may be weak solutions, of

general equations in the class in question. Namely we shall discuss the

topics 1) maximum principle 2) local boundedness 3) Holder continuity

4) Harnack type inequality for the solutions.

We shall prove, under very general assumptions described above, the

following theorems.

THEOREM A. Let u = (uu , um) be a weak solution of (1.1) such

that u = M on the boundary 3Ω of Ω with M = (Ml9 , Mm) e Rm, then

it holds that

m r/r \i/« /r \i/p /r \α/(«

sup I Uj I < C g {(j Q IM* \adx) + (j Q fr/adxj + (j Q g?«dx)
-i)p

+
where C is a positive constant depending only on n, p, t, a and the coeffi-

cients of the structure (1.2).

THEOREM B. Let u = (uu , um) be a weak solution of (1.1) and

I(x09 p) an open ball with radius p and center at x. If I(x0. 2p0) c Ω, then

TO r / Γ _ \(P-α)/«P

S U p I Uj I 2^ O ^_j < 1 ̂ Oo I \Ui\

I(xo,p) z = i l \ J I(xo,2po)

where

gfadx)
po) /

α/(α-l)p
f i r Ύ\ i Λ T i i l l Ύ\ / Λ. J \

κ% —

/ ( α - l ) p

We then proceed to prove the Holder continuity for the weak solutions

of (1.1) under the additional assumption that άμ'1 are bounded.

THEOREM C. The weak solutions of (1.1) are locally Holder contiunous

in Ω.
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ELLIPTIC SYSTEM 107

If a solution is constant on dΩ, then it is globally Holder continuous

in Ω.

The Harnack type inequality can be proved under additional assu-

mptions on the coefficients that are prescribed in Section 6.

We now briefly summarise the contents of each sections. Section 2

is devoted to state some lemmas which will often be used later. We shall

prove the maximum principle (Theorem A) and the theorems on local

boundedness (Theorem B) in Section 3 and Section 4, respectively. By

using these results we shall prove in Section 5 the Holder continuity

(Theorem C). The Harnack type inequality for positive weak solutions

will be obtained in Section 6. In the proofs of these results the techniques

in Moser [4] and Stampacchia [8, 9] are often used.

We now pause to give some historical notes on the development of

the works in this line.

J. Moser [4] and G. Stampacchia [8] first proved all these properties

for linear elliptic equations of the form

- Σ (aijWUzX, = Σ (/*)*,
ί , j = l ΐ = l

Then, G. Stampacchia [9] extended these results for the strictly elliptic

equations of the form

(1.4) - Σ (atj(x)uXi + dίU)Xj + Σ (bt(x)uxt + c(x)u) = £ (/*)*,,

which are still linear.

While, J. Serrin [7] and N.S. Trudinger [10] proved the same results

for weak solutions of a quasi-linear elliptic equations. These results are

particular cases of our theorems, where m — 1 and a — a^ = constant in

(1.1).

Another developments were made by M.K.V. Murthy and G. Stam-

pacchia [5] and N.S. Trudinger [11] for the linear elliptic equations (1.4)

in the case where the coefficients may be degenerated. F. Mandras

[1, 2, 3] considered the same problem in the case of a linear degenerate

elliptic system.

Our results are actually viewed as a generalization of the above works,

and our assumptions seems to be very general in order to prove the

maximum principle, local boundedness and Holder continuity.
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The author is grateful to Professor Tadato Matsuzawa for his many

valuable suggestions to the author during the preparation of this paper.

§ 2. Preliminaries

In this section we shall state and prove several lemmas related to

the imbedding theorems.

First of all, we shall define some function spaces; let m(x) be a non-

negative measurable function in Ω and m~ι e L\Ω) with a > 1 + 1/t, t > 1.

The space HUa(m, Ω) and Hl>a(m, Ω) are the completions of C°°(Ω) and

C^(Ω) with the norm

\v\\aHi.«{m,t» = f m\Fυ\adx+ f \υ\*dx,
J Ω J Ω

respectively. The Sobolev spaces appear as particular cases: Hha(l, Ω)

= Hι>*(Ω) and #J'«(1, Ω) = Hl>*(Ω).

Throughout this paper, we denote by \\f\\p the Lp(β)-norm.

LEMMA 2.1 ([6]). Let n>2. If v e Hl*p(Ω) (1 < p\ then

Here 1/p* = 1/p — 1/τι if p < n, and p* mαj 6e taken to be any positive

number if p ^> n. The constant c0 depends on n and p*. (If p < n, c0

depends only on n.)

LEMMA 2.2. Lei τι ^ 2. If υ e H\"(m9 Ω), then v e La\Ω) and the follow-

ing inequality holds

-1!!, ί m\Fv\adx.
J Ω

Here I/a" = (l/α)(l + 1/ί) - \\n if (l/αr)(l + 1/ί) > 1/Λ, α̂ irf «# may be taken

to be any positive number > 1 if (lja)(l + 1/ί) ^ 1/τz. T7ιe constant c0 is ί/ie

same as m Lemma 2.1.

Proo/. Let (l/ar)(l + 1/0 > 1/n. Then putting 1/p - (l/a)(l + 1/0, we

have 1/p* = 1/α*. Since veH\v(Ω), by Lemma 2.1 and Holder's inequality,

we have

IMlΓt ^ Co||Fu||; ^ col|w"Ίlί ί m|Fu|edx.
J Ω

Next let l/α:(l + 1/0 ^ l/^ Then for any positive number a* > 1, we
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ELLIPTIC SYSTEM 109

take β satisfying the equality 1/α* = (1//3)(1 + Ijt) - \\n. Since 1 < β < a,

using Lemma 2.1 and Holder's inequality, we see

£C(\ \Fv\at/it+1)dx) < CWm-'wA m\Fv\adx. Q.E.D.

The following lemma is easily obtained by using Holder's inequality.

LEMMA 2.3. Lei r and s be such that 1 <ί r <L s. If υ e LS(Ω), then

for any p with

A + iL = 1 ( , μ > 0, λ + μ = 1),
s r p

we have

LEMMA 2.4. If veH^a(m,Ω), then v e Lap/(p-a\Ω) for any p > 0 with

a\n > Ijt + alp. Moreover, for any positive number ε, there exists a con-

stant K depending only on n, p, t, a, ε and {{m'1^ satisfying the following

inequality

\\v\\a

ap/ip-a) £ ε [ m\Vv\adx + K [ \ v \ a d x .

Here we may take

K = (coiim-1^)-', r = - ί ^ - with λ = - / ( - - A ) < i .
λ p/ \a a*J

Proof. Let r and s be real numbers ^ 1. For λ = λ(r, s) such that

0 < λ < 1 and λ/s + (1 — ^)/r = (p — a)/(ap). We have by Lemma 2.3 and

Young's inequality

for any εf > 0.

If (l/α)(l + 1/t) > 1/n, we set s = a* and r = a to obtain 0 < Λ =

(l/p)/(l/tf - 1/α*) < 1. while, if (l/α)(l + 1/ί) ^ 1/n, we take such 5 that

1/α - 1/p > 1/s to obtain 0 < λ = (l/p)/(l/α - 1/s) < 1. With these choices

of s and r Lemma 2.2 implies

||ί;||s
α < Collm"1 L I mlFu αdx.* I m\Fv\

J Ω
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110 YOSHIAKI IKEDA

Putting ε' = εllra"1^ we obtain the desired conclusion. Q.E.D.

LEMMA 2.5 ([10]). Let A be a bounded open convex set in Rn and let
υ e Hlp(A) (Kp< ή). Then

meas A

where vA = —
meas

n and p.

1 Γ
υdx and where K is a constant depending only on

as A J A

LEMMA 2.6. Let v e Hha(m, Ω), oc\n > \jt + a/p and assume that

1 ί
is I(o) J I

υdx = 0
meas I(p)

for an open ball I(p) c Ω. Then

ίp-n Γ \v\"pκp-«)dxYP a)/P ^ C(p-n/t\\m-1\\t)pa-n { m\Fv\adx,
\ J UP) I J Up)

where C is a constant depending on n, p, t, a and a*.

Proof. If (l/a)(l + ljt) > l/n, Lemma 2.5 and Holder's inequality imply

(p~n f \υ\
\ J UP)

\ υ \ d x \ ^ p

UP) 1 \J Πp)

1^) [ m\Fv\adx,
J UP)

where — (an/a*) + njt = a — n.

If (1»(1 + 1/0 ^ n/1, we choose such β that (p - a)/(ap) > (1//3)(1 + 1/0
— Ijn > 0. Then, a > β and a* > ap/(p — a). Thus, we see

α \«/i8# /Γ

|u|^dx) ^ C(y \ (ί + l ) / ί

|Γϋ|βί/<ί + V x Ί [meas
UP) )

J KP)

Therefore we have by Holder's inequality

( Λ \P/(P-«) / C \a/β^

p-n[ \vfP/(P-°)dx) ^ Cp-"ή\ \vfdx)
J UP) I \J UP) I

m\Vυ\°dx. Q.E.D.
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LEMMA 2.7. ([5]). Let G(x) be a uniformly Lipshitz function on R1 such

that G(0) = 0. If v(x) e H\a(m9 Ω)9 then G{v(x)) again belongs to H^a(m, Ω).

Further, if the derivative G/ of G is continuous except a finite number of

points in R\ then we have G(v)Xi = Gf{v)vx. in the sense of distribution.

§3. Global estimates

In this section we shall prove the maximum principle for weak solu-

tions of the system (1.1).

DEFINITION. Let

TO Til

ίΓ'«(α, Ω)=U H^(άp Ω) and Hϊβ(d, Ω) = Π Hl'a(aj9 Ω).
1 13=1

We say that u = (ul9 , um) is a weak solution of the system (1.1), if

u e Hha(ά, Ω) and if the equation

(3.1) Σ ί ψΦrAfa u> FUJ) + ΦJBJ(X> u9 Fuj)}dx = 0
J=1J Q

holds for any Φ = (Φl9 , Φm) e C0°°(β) X X Cχ(Ω).

By Lemma 2.4, if ueH^a(a9Ω)9 then u is locally in La*np-l)φ) X •

X Lp/(p-β)(β) for any p > 0 with a/n> a/p + 1/t and 2 < : # < p . Thus,

from the assumption on the coefficients of the structure (1.2), we see that

for any Φ e Hha(ά, Ω) with compact support in Ω

Σ ί {|<M;(*> a, ^ ) l + IΦAi*, u> Vu5)\}dx < oo .

Therefore it follows that if u is a weak solution of (1.1), then (3.1)

holds not only for Φ e C^(Ω) X X C£(Ω)9 but in fact for any Φ e Hla(a, Q)

with compact support in Ω.

For a function u = (uί9 , z θ belonging to HUa(ά, Ω), we shall simply

say u = 0 on the boundary d£? of β if uj9 j = 1, 2, , m, belong to the

space Hl>a(άJ9 Ω). Similarly, u = M ΐor M = (Mlβ , Λfm) e J ? m o n a bound-

ary 9β of Ω9 if z/j - Mj e Hl>a(aj9 Ω)9 j = 1, 2, , m.

THEOREM 3.1. Let u = (^, , um) be a weak solution of (1.1) such

that u = 0 on dΩ. Then there exists a constant C depending only on n, p,

t9 a and the coefficients of the structure (1.2) such that

m m

(3.2) supKI^Σ
Ω %--
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Proof. Without loss of generality, we may assume that meas Ω = 1.

For, if meas Ω Φ 1, then we can introduce new variable xf — x (meas Ω)ι/n

y

so that u satisfies the system of the form (1.1) in a domain Ωf with

meas Ωf = 1.

Now we put Kj = H/jllp/α + ||^||p/(αα"1} + ε for any positive number ε and
ΰj = I i^l + Kj, and define the functions

Gj(Uj) = I J

a _a_
 J

a _a + i ~
[£"-q aUj KajQ a+ LOT \Uj\ ^ ίj Kj ,

j = 1, 2, , m, where q ^ 1 is any fixed number and i3 are constants

greater than κ3.

Next, we define Φβ — Gj sign (u3), j = 1, , m. It is clear that Φ —

(Φu , Φm) e Hl'a(d, Ω). Thus, we have

Σ {^j ^j + ΦjBj}dx = 0 .
.7=1 J β

If we put

{ (aq — a + l ) ίZ" g ~ α f o r \u3\ ^ Sj — Kj,

flaq-a -poτ» I 7/ I *"> ^ *-

then we see

| Γ ^ | = \Vΰj\ and G7 ^ Wfi^

Therefore, by (1.2), we have

/-q q\ .7=1 J fl 7=1 J β I ί=l

m

+ G, Σ ^iW"-1 + Hjfj + GjgΛdx,

and

Gjbj\VUj\a-1 < —Hjaj\Fΰj\a + 2a-ιba

ja
ιraΰa

Ί

q.

Moreover, since G ; ^ ΰ ; ? - ί + 1 , iJ^ ^ (aq — a + l)ΰf~a, Uf'^'UΓ1 ^

ΪZJ? + ΰaiQ and U)q~aUtt

i <L ΰ"/ + ZZ"9, we have

771 771 <">

χij Σ CίjUί 4~ G ; Σ dτjUi* ^2 (<^^ — ^ ~

We also have
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H,f, + G,g, ̂ (aq-a + 1)U>- + - ^
\ ft - K j

since κ3 <̂  ΰj.

Therefore, it follows from (3.3) that

m ί* mi*

(3.4) Σ H^ψΏtfdx £ C(aq - α + 1) Σ B,{x)W*dx,
.7=1 J β j = l j β

where

B,(x) = 6«αJ~« + Σ (c,, + c,, + rf,, + djτ) + - ^ + - ^ - e Lβ^(fl)

and C is a constant depending only on or.

The right-hand side of (3.4) is independent of ί3 ^ 0 (j = 1, , m).

Since iJ^ are non-decreasing functions and since lim Hs = (aq — a + ϊ)ύ"q,

the monotone convergence theorem proves that

Σ σ / S J - Ί ^ D ' ^ ^ C Σ Bj(x)u?dx.
j = lJΩ J=1JΩ

Since |F(ϊZ^)| = gϊZJ'^FΐZjl, putting ι;; = ΰq

j9 we have

Σ o^F^I dx ^ Cg*Σ B^v'dx.
j = lj Ω j=lJΩ

By Holder's inequality we have

ί B^tηdx ^ IIBjIUII^Hίp/ίp-α) ^ l l^ IUdi^ - ^ILP/(P-«) + C ) -
J Ω

Since ^ — a) e Hl'a(a3, Ω) and i^ — Λ:" ̂  uJ? by Lemma 2.4, we have

K - 4 I U P - « ) ^ 2-1C-1gr-βll-B*llpΛ ί ajlFvtfdx + Cq^Wvjt,
J Ω

and since Λ:̂  ̂  v3 and meas fl = 1, it follows that tcf fg | |^| |α Thus we

have

(3.5) Σ σ,IFι>,l-dx :£ Q T Σ IIMi.

where C is a constant depending only on 72, p, t, a and || JB -̂̂ ,̂ (j = 1,

• , m).

By Lemma 2.2 and (3.5) we see the inequalities
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which prove

IS'

^ Cq«

Σ δj
.7=1

(3.6)

Thus, putting r = α*/α and q = rs, s = 0, 1, 2, , we have

j = ι

Now, let s tend to infinity to have

sup
Ω

,11.,

Note that Wfjl/c" + gJic'^Wp/a S 1 for any ε > 0. Therefore letting ε tend

to zero, we have (3.2). Q.E.D.

THEOREM 3.2. Let u = (uί9 , um) be a weak solution of (1.1) such

that u - M on dΩ for M = (Λf,, , MTO) e Λm. T/ιe^ iί

(3.7)

where C is a constant depending only on n, p t, a and the coefficients of

the structure (1.2).

Proof. Consider U = u - M - (u, - Mu , um - Mm). Then U = 0

on 5β. Since ι/ is a weak solution of (1.1), we must have

-div As(x, U, FUj) + Bj(x, U, FU^O j = 1, 2, . . ., m,

where

Aj(x, U, FU3) = Aj(xy U+M, PUj) and B,{x, U, PU,) = B/JC, ?7 + M, Ft/,).

In view of (1.2)
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jix, U, ξ) ^ α,|f |- - Σ ctJ\Uj + M,\* - f3,
l

\B3(x, U, ξ)\ £ 6^1?I dt]\Ut

j = 1,2, - , m, for any ξ e Rn. From these, we immediately have the

following;

There exist positive constants λ and μ depending only on a such that

for any ξ e Rn

x, U, ξ) > aj\ξ|« - Σ λctJ\Ut\* - F,,
ί = l

where

77?

Σ Γ'dtj e

Therefore we can apply (3.6) to obtain

for ϊ/j = I [7J + | | F J I ^ + IIGJJ//;-1) + ε. Since constant C does not depend

on HFX^ + I I G J I I ^ - ^ + e, we obtain (3.7), by letting ε tend to zero.

Q.E.D.

In the particular case where m = 1, more sharp results can be obtained.

THEOREM 3.3. Let u be a weak solution of (1.1) where m — 1 and let

u <L M on dΩ. Then it holds that

sup u £ (1 + C)M+ + C{\\u\\a + \\f\\l% +
Ω

where M+ = max(0, M) and C is a constant depending only on n,p,t,a

and the coefficients of the structure (1.2).

§ 4. Local boundedness

In this section, we shall derive the local estimates both in the interior

and near the boundary of Ω for the weak solutions of (1.1).

Let I(x0, p) = I(p) be an open ball with center at x0, radius p and let

Ω(xo,p) = ΩΓlI(xo,p). We set
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Bs = Bjix) = a, + a'fiY' + bpy + Σ {ds + c]t + dtJ + d}i
i l

for positive constants κjβ Moreover we put p = (p/^)7 = p/(p — a),

HP) Up)

and

ζ = ζ(x, P\ p) =

in lip')

0 outside of I(p)

for 0 < p' < p.

We obtain the following lemma by the same argument as in the proof

of Lemma 2.2, using Holder's inequality

LEMMA 4.1. Let v e Hu"(aj9 Ω). Then for any a with 1 + \\t < a < p,

and for any p0 with 0 < p' < p ^ ρ0

(pόn ί \υ\°*dxYa* £ CopΓ^Qto) ί a3\Vυ\«ζ«dx
\ J I(P') I J Iiv)

+ pΌ(p-pf)-'(pr\ \υ\°pdx) ,
\ J Kp) /

where ζ = ζ(x, p', p).

THEOREM 4.1, Let u = (uly , um) be a weak solution of (1.1),

I(xo,2po)(zΩ. Then it holds that

(4.1)

where

sup \
I(xo,po)

J I(xo,ϊpo)

<*/(a-l)p

1(2,90)

+ (
\J/(2/oo)

and C is a constant depending only on n, p, t, a, aj(2p0) and Bj(2pQ) (j = 1,

Proof. Put iCj = Kj + ε for a positive number ε and put U} = \Uj,\ + fCj
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0" = 1, , m). Define Φ, by Φ, = sign {us)G^a{x9 p', p) for 0 < p' < p ̂  2p0,

where

γ-.aq-a + l ^aq-a+1 foγ, \-II \<* 0 *-
j ~ j ' J ' — J ~ j '

^ - % - A:;?-«+1 for | ^ | ^ ^ - ^ ,

j = 1,2, >-,m, q ^ l , £j> κs.

Then we have

m f

Σ {FΦ, ̂ ( * , «, Fw,) + Φjβ/x, u, Fu})}dx = 0.

Put

ί(αg - α + l)ΰ;« - for | u, \ £ I, - K, ,
TT

J ~~ \βf~a for \uό\ ̂  £j - Kj.

Since FΦj - HjζΨuj + aG3ζ
a~Ψζ, we have, by (1.2),

J = l J I(p)

£ Σ UGjζ»-1|Fζ|(αί|Fΰ,r1 + Σ ^ " Γ 1 + h,)
j = lJI(p) I ί = l

( m \ m

bΛruA'-1 + Σ dijΰr1 + gή + H^Σ^βt + H
It follows by Young's inequality that

+
and

Gjζ
a~ψζ\hj £ Gjζ-^Pζlhjiή-πy1

^ ιc-:aha/{a-1)aψ1-a)Ufζa + aβajq\Pζ\a.

Put Vj = ΰq

3. By the same argument as in Theorem 3.1, we see that

Σ ί aj\Pυj\aζadx ̂  Cqa(p - p'Ya Σ ί B^Vjdx
(4.2)

^ Cgα(/o — p')~aρ%Σ Bj(2po)\Pon vfdx) .

This result, Lemma 4.1 and (4.2) imply

( Λ \ a/a* / Γ \ 1/P

pό"\ vfdx) ^ Cq"(p - P')-apΌUn \ vfdx) ,
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where Cis a constant depending only on n,p, t, a, a\ aj(2p0) and 2f=1 Bj(2ρ0).

N o w p u t r = a\a\ qs = (r/p)s a n d ps = p0 + 2~sp0 (s = 0 , 1 , 2, •)•

Then

( Γ / m \aqs + ip \l/aqs + 1p

pr (Σ ΰλ dx)

( Γ / m \a/qsr \l/aqs + ip

Pi* ( Σ Uj) dx)

£ C^^^2's^/rS+lp(pon [ if] ΰX^
\ JI(PS) \i=i /

( Λ / m \aβ \ 1/ap

Pon (ΣΛUΛ dx) .
J 7(2,00) \j = l ) )

from which, letting s tend to infinity and e tend to zero, we have the

desired inequality (4.1). Q.E.D.

THEOREM 4.2. Let u — (uu , um) be a weak solution of (1.1) and

x0 e dΩ. Suppose that for some positive number p0, u = M on dΩ Π I(xOy 2pQ),

M = (Ml9 , Mm) e Rm. Then

sup \Uj\ < p;θ CΣ f(ί lu^dxY" + |Mt| + K], j = 1, , m,

where

+ \J ^(^0,2/JO)

TTiβ constant C depends only on n, p, t, a, \\ajι\\t and \\Bj\\p/a (j = 1, , m)7

while θ depends on n, p, t and a.

Proof. L e t U = u — M = (u{ — Mu , um — Mm). T h e n C/ is a w e a k

solution of a system of the form (1.1) such that U = 0 on dΩf)I(x0, 2^0).

Therefore the same method of the proof of Theorem 4.1 can be applied

to prove the assertion. Q.E.D.

§ 5. Holder continuity

In this section we shall prove that weak solutions of (1.1) are Holder

continuous in Ω under the assumption

(5.1) djaj'eL-φ), j = 1,2, . . . , m .

First we shall state some lemmas.
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LEMMA 5.1 ([9]). Let I(x09 pQ) c Ω and υ be an Hhl(I(x0, ρ0))-function.

Put

A(k0, p0) = {xe I(xOy po)\v^ k0}.

Suppose that there are two constants k0 and θ (0 <I θ < 1) such that

meas A(kQ, ρ0) < θ meas I(x09 p0)

holds. Then for any h and k with h > k > k09 there exists a positive con-

stant C depending only on θ and n such that the following inequality hold:

(5.2) (A - k) [meas A(h, Po)] <» - w ^ C f | Fv(t) | dt.

This lemma immediately implies the following

LEMMA 5.2. Under the same hypothesis of Lemma 5.1, we have

(h - h)« [meas A(h, po)]a(n-ί)/n ^ coPr(pon f m^dxY
\ J /(/»o) /

X m|Fi; | adx [meas A(k, p0) — meas A(A, ^o)]"" 1 " 0 7 0

Jil(*,/>o)

/or veHίa(m, p).

LEMMA 5.3 ([8]). Let φ(h, p) be a non-negative function on the strip

(h^ko^O)χ(O<p< i?0) such that

(i) for every fixed p, φ(h, p) is non-increasing on h

(ii) for every fixed A, (A, p) is non-decreasing in p and that there exist

positive constant C, a, β, ΐ (β > 1) with

φ(h, p) S C[φ(k, R)Y(h - k)-(R - pY*

for A > k ^ k0, p < R <. Ro. Then we have

φ(k0 + d,RQ- σR0) = 0

for any σ with 0 < σ < 1 and for

d = C^iσ-'Roy^lφiko, R0)Yβ-1)/a^a+β)/{β~1)a.

Remark. Lemma 5.3 is valid not only for k0 >̂ 0, but also kQ < 0.

From now on, we fix j and use simplified notations:

M(p) = Mjip) = sup Uj, m(p) = mjip) = inf Uj,
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THEOREM 5.1. Let u = (μu , um) be a weak solution of (1.1) and

I(R) = I(x09 R) c Ω for 0 < 4p0 < R. Then under the assumption (5.1) there

exist positive constants K and λ such that for any p with 0 < p < ρ0

(5.4) ωjQd^Kμ* (j = 1, 2, . , m),

which means the local Holder continuity of Uj in Ω.

Proof. We put Fό{x) = ΣΓ-iC«|w,|β + /„ G/x) = Σ ^ i ^ l ^ r 1 + ft and

Uil"-1 + hj. Then from (1.2), we have

(5.5)

j = I, 2, , m, for any f e i2w. Moreover, since u = (MJ, , wm) is bounded

in I(R), Fj9 G,,H)«*-*Wj*-* eL*'\I(R)).

We define the functions

φ. = (uj — k)+ζa, for any choice of k,

where ζ = ζ(x, p', p) with p0 < p' < ^ ̂  2̂ 0 and ( ^ — k)+ = max ( ^ — A, 0).

Then Φ = (Φl9 , ΦOT) e ΐίj'α(α, fl) and hence the following equality holds:

f {FΦj.Aj + ΦjBWx^O.
J Ω

Now we put v = (MJ — k)+. Then Fz^ = Fi; on the set A(£, /?) =

{x e I(p) I Uj ^ }̂ and Φ̂  = 0 outside of A(k, p). Thus, in the set A(k, p),

we have, by (5.5),

f a0\Fv\%adx £ C f {djV'lFζl* + Bό(x)vaζa + Tj(x)}dx,
jA(k,p) JA(k,p)

where Bά(x) = b«aΎra + Gjf Tά(x) = (F ; + G3 + Ha/^-^dψι-a))ζa e D

and where C is a constant depending only on a and sup dflj1.

( r \«/p / Γ \ 1 / f

p-" dv'adx\ , α.do) = Lo~M αj'dx) and
j/(io) / \ J I(p) J

Λ(p) = dj(p)aj(p). Then by (5.1), J ^ ) is bounded.
By the same argument as in Lemma 2.4, we obtain

f Bό(x)υaζ«dx £ | |BJp / β{e(T a,\Fv\%adx
JA(k,P) I VJ^KA:,/))

+ [meas A(k, p)Yμ [ va\Fζ\adx + K ί uαζftdx)) .
jA(k,p) J A(k,p) />

https://doi.org/10.1017/S0027763000020869 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020869


ELLIPTIC SYSTEM 121

Note that υ £ M(4pQ) - k0 in I(2p0) for k0 £ M(4pQ).

Take ε = 2~1\\Bj\\-/

1

a to have

(5 6) ί a

for any k0 <L M(4/oo), where T* = || Γ/x)!!^ and C is a constant depending

only on a and H-B^/α.

Let ko<k<h. Then by Lemma 4.1 with p = 1, (5.6) and Holder's

inequality, we have

(h — k)a meas A(£, ^0 ^ (uj — k)%adx

^ ( f W'dxY**[meas A(A, p)]""-1"
\JAVCP) I

Yfajip) f α, I Γi; |«ζαdx + ( 2 ^ ) ^ f ι;-1 Fζ |«
J A(.k,p) JA(k,P)

X

- ko)« + Pζ-™T'}

X [meas A(k, p)]β

for any a with 2 ^ a < p, where β = 1 + α/ft — 1/ί — ajp > 1. Thus, by

Lemma 5.3, we see that meas A(k0 + d, p0) = 0, where

d - C^ιpr{Vt+alv){M(4pQ) -ko + piT}[meas A(k0, 2po)]^«,

where 0 = 1 — (ft/αtf) and Co is a constant depending only on n,p, ί, α, {{αj1^

and supo<i2 A0(R). It is noted that Co is independent of p0.

Hence we have

(5.7) M(^o) ^ k0 + C0[pόn meas A(^o, 2po)]w*{M(4po) - k0 + P

Θ

OT}

for any k0 ^

It is easily verified that (5.7) remains valid even when — u5 is taken

instead of u5. In this case,

M(p0) = sup (— Uj) and A(A, p) = {xe I(p) \ uά <L k }.
KPO)

Now we can assume that the inequality

(5.8) meas A(k, 2p0) < θ0 meas 7(2^) (0 £ θ0 < 1)

holds for some θ0 and for k = %(M(4p0) + ρθ

0T). In fact, in case (5.8) is
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not valid, we may take u) = — u3 instead of u3. We can therefore use

Lemma 5.2 and (5.6) with the choices pr — 2pQ and p = 3p0. We have, then

(5 9) (k ky{p°
£ C{M(4p0) -k + pθ

oT}a{pon [meas A(k, SPo) - meas A(h9

for k < h ^ M(4p0),

Put Λ/po) = M(Vo) + p T - 2-<' + 1>{ω(4p0) + P

Θ

QT} for s = 0, 1, 2,

We fix a natural number N such that

for a constant Cλ with C2r3nωn ^ C1? where Γ = l/(α — 1 — 1/t) and ωn is a

volume of unit ball in Rn. First we consider it in the case when p0 is a

number such that hs(p0) < M(4p0) when s ^ N. Then the inequality (5.9)

is valid for h = hs(pQ) and k = h8^{p0). Since

hs(po) - Λ.-^α) - 2 - ^ X 4 ^ ) + p'T},

M(4^0) + p T - hUpo) - 2 -

(5.9) induces

^ C2^0~
n [meas Aζh^po), 3p0) — meas A(ha(ρQ), 3ρ0)].

Summing up each side of (5.10) for s = 1, 2, , N we have

iV[|θo"n meas A(hN(p0), 2po)]δ < C%p*n meas A(ho(po), 3p0) £ C,.

Thus we obtain

Co|>o-n meas A(hN(Po), 2pdγw £ (C0CJNyw £ 1 ,

from which we get

M(p0) < M(4p0) + plT - 2^N^{ω(4p0) + pθ

0T}

if we take k0 = hN(p0) in (5.7). Namely we obtain

(5.11) ω(p0) < (1 - 2-^ + 1>){ω(4/90) + p'T},

since m(|O0) ^ M(p0). Finally we consider it in the case when p0 is a number

such that hNo(p0) 2> M(4̂ o0) for some iV0 with JY0 < N. It then follows that

M(p0) ^ M ( 4 ^ ^ M(4^0) + p'T - 2~^^{ω(4Po) + p'T},
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and we have the inequality (5.11). Thus (5.11) is valid for any p0 with

0 < ρQ < 1, and hence we have the inequality (5.4) using Lemma 5.4 below.

Q.E.D.

LEMMA 5.4 ([9]). If there exist an η with 0 < η < 1 and H > 0, θ > 0

such that

ω(ρ) <̂  ηω(4p) + ρθH for any 0 < p < 1

then

ω(p) ̂  Kpλ

holds for some positive number K and λ.

Our next attention is focused on the behavior of u near the boundary

dΩ of Ω. Namely, we shall now investigate the Holder continuity of the

weak solutions of (1.1) near dΩ.

DEFINITION ([9]). A bounded open set Ω of Rn is said to be Hι

0(Ω)-

admissible if for any p < p0 and x0 e 3Ω, and for any v(x) e Cί(Ω(x0, p)) such

that v(x) = 0 on dΩΓϊl(x0, p), there exists a positive constant satisfying β

LEMMA 5.5 ([9]). Let v e Hhί(Ω(x0, R)) with xoedΩ and let Ω be H\(Ω)-

admissίble. If v = 0 on 3Ω f] I(x0, R), then the formula (5.2) is valid for

h > k > 0.

THEOREM 5.2. Let u = (uu , um) be a weak solution of (1.1). For

some R > 0, £/ Ω(x0, i?), x0 e 5β, is H\{Ωyadmissible and if u = M on

dΩf)I(x0, i?), (M = (Mu , Mm) e JR), ί/ien, under ί/ie assumption (5.1) ẑ

(j = y? 2, - - fm) are Holder continuous in Ω Π /(x0, ^)

Proo/. We may assume that u5 = Q on 3Ω f] I(x0, i?). (If Uj Φ 0, we

subtract the constant from Uj.) The proof is obtained in parallel with

that of Theorem 5.1, where we note that

4-[M(4p0) + m(Ap0) + p'T] ^ 0

may be assumed. Q.E.D.

In what follows, we shall assume that dΩ is Lipshitz continuous.

Obviously Ω is i7ί(β)-admissible.
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If u — (uu , um) is a weak solution of (1.1) and if Uj — Wj e Hlia(dj9 Ω)

for a Lipshitz continuous function w3, j — 1, 2, , m, then U — (uλ — wu

•• , w m - w;m) e Hl'a(ά, Ω) and C7 is a weak solution of the system

-div Aj(x, U, FUj) + Bj(x, U,FUj) = 0 j = 1, . • •, m,

/x, 17, Ft/,) = Aj(x, U+w, V{U, + w,))

where

and

Bj(x, U, FUj) = Bj(x, U+w, F(Uj + w3)), (w = (wu

Moreover, we have for any ξ e Rn

Ux, U, ξ) ^ cflj\ξ\" - Σ Ci}\ Utf - Fj,

\Ajix, U,ξ)\£ c2aj\ξr1 + Σ Etj\ U^ + Hj,
ί l

where c0, cλ and c2 are some constants with 0 < c0 < 1, 1 < cx and 1 < c2,

and

f i = c^idj + a})\Vw3\
a + Σ fe fj + \wj\hj,

Hi, = cJcίjlFwjl*-1 + Σeίj\wi\«-1) + hj.
\ ι = j /

(Here c3, , c8 are positive constants depending only on a.)

It is clear that Ci3, Dυ, Eft*-1^1-*, F3, Gjy Ha/^-^a)ni'a) e Lp/a(Ω). By

applying Theorem 5.27 we therefore have the following

THEOREM 5.3. Let u = (uu , um) be a weak solution of (1.1) and let

Wj (j = 1, , m) be Lipshitz continuous functions on Ω. If dΩ is Liphistz

continuous, and if Uj — wό e iίj'α(α j5 Ω) (j = ίy , m), then under the con-

dition (5.1) Uj are uniformly Holder continuous on Ω.

§ 6. Harnack type inequality

In this section we shall prove the Harnack type inequality for posi-

tive weak solutions of the following system:
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(6.1) -div A3(x, u, Fuj) + Bj(x, u, Fu3) = 0 (j = 1, 2, , m),

under some restrictions on the coefficients. Here each A3 and B3 satisfy

the following three conditions (I)—(III):
(I) For any ξ e Rn it holds that

(6.2)

ξ-Ajix, u, ξ) ^ ^σ/x)|f |-

\B,{x, u,ξ)\£ b}(x)\ξI-1

\Aj(x, u, ξ)\ ^ α/*)

*)!^!"-1 - f,{x),
iφj

with some 0 < ^ < 1. The functions α;, bj9 cij9 , h3 and α7 are non-

negative and measurable. We assume that

α;1 e D(Ω) for any t > 1.

where

(6.3) and
P n

^ ) α < p .

(II) There exists another system of functions A}(x, Uj, Fu}) (j = 1,

, m) such that

(6.4)
A^x, u}, ξ) ^ α/x)|f |« - c3(x)\u3\

\Ajix, u,, ξ)\ ^ a,(x)\ξI""1 + e/*)|a,

and efc-Vάy11-*, fj, hy^-^άyv-") e Lp/a(Ω) with the inequalities (6.3).

(Ill) We assume that for any non-negative function Φ} e C^(Ω) (1 ^

,/' ^ m) and for u > 0 it holds that

(6.5)
f {FΦ^^Ca:, u, Puj) + ΦjB}(x, u, fUj)}dx

J Ω

£ f {FΦ, Jχx ; u}, Pu,) + ( P ^ I Γ M ^ I - 1 + d}w}-
1 + g,))dx

J Ω

with a suitable choice of ^ and g3 in Lp/a(Ω).

It is noted that the system (6.1) under the condition (I)—(III) involves

general degenerate quasi-linear equations when in = 1.

Throughout this section we consider a positive weak solution
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u = (uu , um) of (β.l) under the condition (I)-(III), and we assume that

I(4p0) c Ω for some positive number p0 < 1.

Put

ΰj = Uj + κ3 + ε (ε > 0), Cj = cj + (f3

dj = dj + gj/κaj-\ ejj = e j 7 + ^-/Λ:;-1, e,

Then from (6.2) and (6.4) it follows that

f^tc", dJ3 = dj5 + g

ej + ΛJ/Λ J - 1 , jf = 1, , m.

jix, u, ξ) > λjaj\ξ\a - CjWj -

(6.6)

TO,

where d i ; = cf?i, e^ = e u (i Φ j), and that

R",

We then put p = (p/a)' = p/(p — a),

(B5(x) - a, + a3a\~a + δ.α1/" + c, + dj +

B,(*) = S,(x) + Σ (cti + c7ί + 5,, + djt

I l

and

κ f α7^x)V\ B,{p) = (^^ f B^

- f B'/'dx)'".

THEOREM β.l. Lei ^ = (uu , z/m) 6e α positive weak solution of (6.1).

m TO / Γ \l/αp

(6.8) sup w, ̂  Σ sup ΰ ( ^ C Σ /Oo"" ΰί'ώ:) ,
Kpo) ι = l I(po) i = l \ j/(2|oo) /

where C is a constant depending only on n, p, t, a, a^p) and Bj(ρ).

Proof. Young's inequality with the help of (6.2) proves that the con-

dition (1.2) is naturally satisfied by the system (6.1). Therefore, from

Theorem 4.1, we have (6.8). Q.E.D.
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LEMMA 6.1. For any positive number q0 > 0,

(6.9) inf ΰj > c(Po
n [ ΰjqodxY/q°,

Upo) \ J IWPO) )

where C is a constant depending only on n, p, t, a, aj(2p0) and Bj(2p0).

Proof. Take q < 0 and p', p such that p0 ^ ρ/ ^ 2ρ0. Put

Φj = U«q-a + Xa(x, p', p) and Φt = 0 for i φ j .

Then, by (6.5), we have

0 ^ f {VΦ3 -Ajix, uj9 FUj) + ΦjφjlFΰjr1 + dfi*-ι)}dx.
J UP)

Thus we see

— (aq — a + 1) Utjq~aζΨUj'AJdx
J UP)

^ f {aUγ-" + %"-ι\Vζ\\Άj\ + ΰj'-'*X'φ^PU^'1 + djΰ'-ydx ,
J Up)

from which, we have, by using (6.7),

(6.10) f a,\Vv3\*ζ*dx £ C(p - p'YapnM\a(p»n ί vfdxY",
J UP) \ J UP) )

where vό = U) and C is a constant depending only on ny p, t, a, and Bj(2ρ0).

Another inequalities established in Lemma 4.1 are

* f iVj fdx)a/a* < U» f iv£\<*
J UP') J \ J UP)

(6.11) ^co(2Poy-«aβPa)\ ajlPvjlX-dx
J Up)

+ (2pά'(p - P') - 4(2po) ~» ί I v, \*dx
\ JΠP) J

By combining (6.10) and (6.11), we have

- f Wax)""'(6.12)
^ Cαχ2/Oo)( l0 - p')-ap"o\q\"Un \

\ J UP)

Put r = of I a, qs - (rlp)s(-q0) and ^ = p0 + ^ 2 ' , s = 0, 1, 2, - • •. With

these notations the inequality (6.12) means that
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(Pόn f s;« +*dxY/r = (Pon f uγ>rdx)>/r

\ J Kps + i) / \ J Kps + i) /

n~n I 77 α < 2 s ^/7τl
J I(ps) I

that is,

( PQ I Z/j (X5C j

J /(/>s + i) /
/ Γ \l/«qsP

^ u i gβ i i po \ Uj ax \

( r \ -Ci/Qo)ΣT=oί(P/r)ί / C \-1/aqQP

\π \ \ I n~n Ώ~aqopdx\
P J \ J I(2Po) }

<Γ C*\ n~n I Ti~a^°Prly\
\ J/(2Joo) /

Letting s tend to infinity we have (6.9) for q0 = qjap. Q.E.D.

LEMMA 6.2. Set k = (meas I(3/)0))~
1 ΰjdx, and let ύs — ΰjk'1 and

J I(3po)

Vj = log ύj. Then, it follows that

(6.13) (pon f 3 IVj\apdx\/aP ^ Co ( = 1, 2, , m),

where Co is a constant depending only on n, p, t, a, aj(4p0) and Bj(4p0),

Proof We put Φ} = ύ)~aζa(x, Sp0, 4p0) and Φ, = 0 (i Φ j). Then by

(6.5), we see
0 = ί {FΦJΆJ + ΦjBj}dx

J KVo)

^ I { F Φ r ^ + ΦjibjlFΰjl"-1 + dβy^dx.

Since FΦj = (1 - a)ύjaζΨύj + au)-aζ°-ψζ, it follows that

(6.14) J / ( V o )

J Z(4po)

Remind the condition (6.7) to have

a\Vζ\"aλk'-'ί
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and

With these estimate (6.14) becomes

f a,\Pv,\'dx ^ Cpϊ'+'

Since (meas I(3ρ0)) ~1 ι̂ <ix = 0, by Lemma 2.6, we finally have
J I&PO)

ίpon f I ̂  f'dsY'* ^ CaJ(3p0)Pr
a f α, I ί7 ,̂- |α^x

Q.E.D.

LEMMA 6.3. Put υ3 = log ύj. Then for a sufficiently small pQ > 0,

(6.15) p^n [ epolvί]dx <: C,

where C is a constant depending only on n9 p, t, a, aj(3p0) and Bj(3p0).

Proof. Take q ^ 1 arbitrarily. Put

— α: and Φt = 0

where ζ = ζ(x, p', p) with 2pQ <ί p' <C p <Ξ> Sp0. Then, we see

0 ^ f {FΦJ AJ + ΦjibjlFΰjl-1 + dprι)}dx.
J Up)

The exact form of FΦj is given by

FΦj = {(1 - ^ ( l i . r — 1

+ (aq - a + l ) | ^ | β β - β sign v^ΰ

a(\v,

While, the next inequality comes from Young's inequality

(aq- a
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Thus we see that

+ (aq - a + l)|uί|
II?-α sign u,

l r - . + I + \ « ( a q _ « + 1)"Γ~°+1) < 0 .
L 1 /

Therefore, by the structure (6.7), we have

α Jί(p) \ l 1a —

(6.17) ^ C f (|^r-Λ+1 + \-?—<.aq - a +
J/(/>) \ Lα — 1

X

+ Wj-Q-ibjlFUjr1 + dβyydx

By an obvious equality ΰj"\Fΰj\ = |Fϋj| we can see the right-hand side
of (6.17)

= C ί (Wr-"1 + \-^—{aq - α
J/c/o \ Lor — 1 +

JΠP) \ la — 1

X ( ^ ̂ ^ α, IF^ | ζ« + I Fζ |'B,(x

Then, we have by (6.17), using (6.16) again,

f α>,r-|Fu,|«C dx

^ (aq _ α + i)-iC f (\Vjr

Here we have used the fact that

- a
a —

a —

Put Vj = uj. Then, by an obvious equality IFl^l* = qa\Vj\aq~a, we have

f α, IV Vj \ ζ'dx £C\ (\V3\« + (rqYq) \ Vζ \ B,(x)dx
J UP) J HP)

I
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where C is a constant depending only on n, p, t, a and Bj(3p0), and ϊ

depends on a.

This results and Lemma 4.1 guarantee the following

* £ C(p - rt-

where C depends only on n, p, t, a, aj(3p0) and Bj(3p0).

Putting qs = ( φ ) s (r - cfja) and ps == 2p0 + 2-p0, s = 0, 1, , the

above inequality proves

P^ \Vj\« +*dx)
J I(PS + I) '

^ Cy^2s/aqsUp^n [ \Vj\aQspdx\/aQsP + Tq]
IV Jl(ps) / J

< c\(pon f i^ r^rfx)1/^ + ± rqλ ,

that is, for any positive number q >̂ 1

( V f \v^dx\/q £ C ίίpr f |ιMβί<**Y/βP + g) ^ C{C0 + q] ,

from which we have (6.15). Q.E.D.

LEMMA 6.4. Let u = (uly , z/m) 6β a positive solution of (6.1). Then

(6.18) inf ΰ ; ^ d ,
/(2/>o)

where Cλ is a positive constant depending only on n, p, t, a, α/3p0) and

Proof. Put Vj = log{min(l, ΰ )̂} and take Φ; = ϊ/J"α|ι; j|
αQ"α+1ζα with

q ^ 1, where ζ = ζ(x, ^^ ô) with 2p0 ^ / < p ^ 3̂ 0- Then, we have

FΦ, - ((1 - α )M β β - β + 1 - (αg - α + 1 ) 1 ^ 1 ^ - ^ - ^ ^ .

Thus, by (6.5) and the structure (6.7),

J/(|θ)

^ f {αΰrβi^r-β + i:

X^bjlFΰ^-1 + d

!**-"1 + (aq - a
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Since I^Γ""'1 £ \v}\'" + (l/(αg - a + 1)) and | ^ | «-« ̂ Vjf" + 1/q hold,

we have

f a,\P(ϋf)\'ζ"dx <
J I(p)

where C is a constant depending only on n, p, t, a, α/3p0) and Bj(3p0). From

which we have

sup i^ i ^ C{CO + r}
I(2po)

in a similar manner to the case of Theorem 4.1, that is, (6.18) holds.
Q.E.D.

We are now ready to state the Harnack theorem.

THEOREM 6.2. Let u = (ul9 -,um) be a positive weak solution of (6,1)

under the condition (I)-(ΠI). Then

m in

(6.9) Σ S UP w ^ C Σ (inf u3 + κά),

where C is a positive constant depending only on n, p, t, a, a^ip,) and B^ip,)
( j - 1,2, . . . , m ) .

Proo/. From (6.15), we have

ίpon ί ύfdx\/PQ £ c(pΓ f ΰ ^xVί//7°.

Combining this inequality with (6.9), we obtain

(pόn\ Ufdx) <CinΐUj, 7 = 1,2, . - - , / n .

Hence Theorem 6.2 can be proved if we show

(6.20) t sup U} £ C t U" f OOf

In fact this is true as is shown below. Put Φ3 = ΰf-a+%a with q > 0,

qΦ(a- l)/α, where ζ - ζ(x, ô7, p) with p0 ̂  / < p ^ 2̂ 0.

In case 0 < q < (a - 1)1 a, Φt {i φ j) is defined to be 0, and

0 £ f {ΓΦJ.AJ + ΦjibjlΓΰjr1 + ^ S J - 1 ) } ^
J I(p)

is shown by (6.5). Since FΦj = (aq - a + ϊϊny-'ζΨUj + aua

J

Q-a + 1ζ"-ψζ, by

https://doi.org/10.1017/S0027763000020869 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020869


ELLIPTIC SYSTEM 133

(6.7), we have

-(aq - a + ΐ)[ aβf-^Vΰ^dx

J UP)

J Kp)

+ πγ-'+VibjlPUj]-1 + dfi"-1) + \aq - a + l\cjΰajq}dx.

Put Vj = Z/?. Then, by the same argument as before, we have

ί α,IPvj\aζadx ^Cq[ \Vζ\*B,{x)\qdx.

J UP) J Kp)

Therefore,

m Γ f Λ / m \ ap \ ί/p

Σ α.lFi .l'ζ d* ̂  C4(p - ^0-pSίp.-" ( Σ ^ ) d*) ,
j = lJI(p) \ J Kp) \J=1 J /

where Cq is a constant depending only on n, p, q, t, a, α/2^0) and Bj(2pQ)

(j = 1,2, -. ,m).
In case (a — 1)1 a < q, we define Φ; = ΰajq~a+1ζa (j = 1, 2, , m) to have

Since VΦό = (aq — a + ΐ)ΰ"q~aζaPuj + αϊ/f " α + 1 ζ α " 1 Fζ,

m Γ _
(α:g — # + 1) Σ ^J α J^

Q"α |Fι/ J |
αζααx

TO Γ f / TO

^ Σ {αΰJ'-'^C-ΊFζlίδ.lFSίl-1 + Σ δ««i-1

j = ljl(p) I \ i = l

+ (aq - a + l)ζ a(c ; ίZ^ + Σ c^ ZZΓ^

is proved by using the condition (6.6). By Lemma 6.4, ΰf~a ̂  C!Ϊ/^~α+1

is true. Noting aq\(a — 1) I> 1, we see, by using Young's inequality,

IZ"~1ί/^9~α+1 ^ ϊZ"ς + ϊ/y? and ua

i~
luajCi~a ^ Cϊι(ulq + ι/"v .

Thus, putting ι̂  = ΰ) (j = 1, 2, , m), we have

TO/* TO / Λ / TO \ •

j=ljl(p) J=l\ J Kp) \i = l /

m \ap \l/p

Σ) )̂
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where Cq is a constant depending only on n, p, q, t, a, α/2^) and Bj(2p0)

(j = 1,2, '-,m).

We have therefore obtained (6.21) for any q > 0 with q Φ (a — ί)/a.

Let g0 be a sufficiently small number such that 0 < aqop <£ p 0 and

tfo(Φ)' Φiμ— l)/α, s = 0, 1, 2, . Then, (6.20) is obtained in a similar

manner to the case of Theorem 4.1, which was to be proved. Q.E.D.

To close this section we give an illustrative example.

Take a vector function

C/x, u) - (t clMa-1)ya sign J ^ _ , . . ., Σ cΐjuri)Va sign - ^

Let ^?i(x, Wj, ί7^^) = (A1Jf , An;) and a scalar function Bj(x, u, VUj) be

given and satisfy the following inequalities

ξ'Aj(x, Uj, ξ) > aj\ξ\a - CJIUJI" - fj,

\Aj(x, uj9 ξ)\ ^ α,|f Γ 1 + βjluj]*-1 + hj9 ξe Rn

j = 1, , m. Here aj9 6 i? , hj and άj are non-negative measurable func-

tions in Ω, a~ι e L\Ω) for any t > 1, α7 ^ dJ? and άj, d" a)~a, b3a}~a, cj9 di3,

I j) §j) \Pij) ® j > @j & j j i^i & j ^ -^ \"*/> a n d c^j θ / Ϊ ' V"̂ /*

Define ^4;(x, w, F^j) = ^4;(x, wi? Fz/;) + Cj(x, ύ) and

m m

B/x, M, FM,) - £/x, M, F^) + Σ G J ^ Γ 1 + Σ c^M^-1)a/α ,
ι = l

for some choices of functions, d^, c^ 6 Lp/a(Ω).

We assume that for any £ (ί Φ j)

Σ 1-̂ - + c^ ^ 0 and di3 + dυ £ 0 .

Then, the system

-div ^.(x, M, Fu3) + Bj(x, u, Fiij) = 0 (j = 1, 2, , m)

satisfies the condition (I)—(III).
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