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WEAK SOLUTIONS OF A QUASI-LINEAR DEGENERATE
ELLIPTIC SYSTEM WITH DISCONTINUOUS
COEFFICIENTS

YOSHIAKI IKEDA

§.1. Introduction

We shall discuss regularities and related topics on weak solutions of
the system of the following quasi-linear elliptic differential equations (a
combination of almost single equations)

-"diV Aj(x, u, Vu]) + Bj(x7 u, Vu]) = O

1.1 G=1,2,---,m) u= (U, -, Uy,

in a bounded domain £ in R" (n = 2), where 4, = (A4,,, - - -, A,;) are given
vector functions of (x, u, F'u;), B, are scalar functions of the same variables,
and Fu, = (Ou,/ox,, - - -, 0u,/ox,) denote the gradients of the u; = u,x)
(G=1,.--,m). We assume that there exists some « = 2 such that each
A; and B; satisfy the inequalities

§ A w8 Z o @IEF — 3 cuml — i),
(1.2) | By(x, u, &) < by(x)|&]" + ZZZ di ()| w7 + g4(%)
[Aj(x, u, §)| é dj(x)ifia—l + 7:27:'1ei](:’c)luila_l + h](x) ’

for any &€ R". The functions g, b,, ¢, ---, h; and @;, call them the
coefficients of the structure (1.2), are all assumed to be non-negative and

measurable.
Moreover we assume that
a;te Li() for any t > 1,

ajgdp j:1’2a"'9m,
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dj’ d;a}_a’ b;a;—a’ Cijs di]" fj’ gj € Lp/a(‘Q)’
eg]((a-l)d}/(l-ﬂ)’ h;/(ﬂ—l)d}/(lﬂx) e Lp/ﬂ(Q)
where
(13) 212 and @) a<p.
D t n
The class of Partial Differential Equations (1.1) that we are going to
discuss involves many interesting equations whose solutions are known
({7, 10]). The purpose of this paper is to establish a systematic approach
to the investigation of the solution, which may be weak solutions, of
general equations in the class in question. Namely we shall discuss the
topics 1) maximum principle 2) local boundedness 3) Hélder continuity
4) Harnack type inequality for the solutions.
We shall prove, under very general assumptions described above, the
following theorems.

THEOREM A. Let u=(u, - --,u,) be a weak solution of (1.1) such
that u = M on the boundary 92 of 2 with M = (M, ---, M,)c R™, then
it holds that

a5 05 ([ )+ (] eae) (L))

where C is a positive constant depending only on n, p, t, « and the coeffi-
cients of the structure (1.2).

TuEOREM B. Let u = (u, - -,u,) be a weak solution of (1.1) and
I(x,, p) an open ball with radius p and center at x. If I(x, 2p,) C 2, then

m (p—a)/ap
1=1% 0:200

I(xo,p)

1/p a/(a=-1)p
o= ([ preas)” ([ aveas)
I(2p0) I(2p0)

/(a=1)
+ (J (hz_x/(a—l)al_/(l—zx))p/adx>'x a-1)p
T L .
I(2p0)

where

We then proceed to prove the Holder continuity for the weak solutions
of (1.1) under the additional assumption that d,a;' are bounded.

THEOREM C. The weak solutions of (1.1) are locally Holder contiunous
in £.
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If a solution is constant on 02, then it is globally Hélder continuous
in £.

The Harnack type inequality can be proved under additional assu-
mptions on the coefficients that are prescribed in Section 6.

We now briefly summarise the contents of each sections. Section 2
is devoted to state some lemmas which will often be used later. We shall
prove the maximum principle (Theorem A) and the theorems on local
boundedness (Theorem B) in Section 3 and Section 4, respectively. By
using these results we shall prove in Section 5 the Holder continuity
(Theorem C). The Harnack type inequality for positive weak solutions
will be obtained in Section 6. In the proofs of these results the techniques
in Moser [4] and Stampacchia [8, 9] are often used.

We now pause to give some historical notes on the development of
the works in this line.

J. Moser [4] and G. Stampacchia [8] first proved all these properties
for linear elliptic equations of the form

~ 3 @@, = 33 (P

1,7=1

Then, G. Stampacchia [9] extended these results for the strictly elliptic
equations of the form

WD =3 (@, + du),, + 3 G, + @) = 2 (P,
which are still linear.

While, J. Serrin [7] and N.S. Trudinger [10] proved the same results
for weak solutions of a quasi-linear elliptic equations. These results are
particular cases of our theorems, where m = 1 and a = a; = constant in
(1.1).

Another developments were made by M.K.V. Murthy and G. Stam-
pacchia [5] and N.S. Trudinger [11] for the linear elliptic equations (1.4)
in the case where the coefficients may be degenerated. F. Mandras
[1, 2, 3] considered the same problem in the case of a linear degenerate
elliptic system.

Our results are actually viewed as a generalization of the above works,
and our assumptions seems to be very general in order to prove the
maximum principle, local boundedness and Holder continuity.
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The author is grateful to Professor Tadato Matsuzawa for his many
valuable suggestions to the author during the preparation of this paper.

§2. Preliminaries

In this section we shall state and prove several lemmas related to
the imbedding theorems.

First of all, we shall define some function spaces; let m(x) be a non-
negative measurable function in £ and m~'e LY(Q) with « > 1 + 1/, ¢t > 1.
The space H"“*(m, 2) and Hy<(m, 2) are the completions of C=(2) and
Cy(2) with the norm

[Vl oner = | miPoids + | jopds,

respectively. The Sobolev spaces appear as particular cases: H"%(1, 2)
= H"*(2) and Hy*(1, Q) = Hy«(0).
Throughout this paper, we denote by |f|, the L*(£2)-norm.

Lemma 2.1 ([6]). Let n=2. If ve Hy?(Q) (1 < p), then
[Vl < collPull, .

Here 1/p* = 1/p — 1/n if p <n, and p* may be taken to be any positive
number if p = n. The constant ¢, depends on n and p*. If p<n, ¢,
depends only on n.)

LEMmA 2.2. Letn > 2. Ifve Hy(m, Q), then ve L*(2) and the follow-
ing inequality holds

-4

vlite < cofm=l j _mIPvfds.

Here 1/t = (1ja)1 + 1/t) — 1/n if (Ua)(1 + 1/f) > 1/n, and o may be taken
to be any positive number >1 if (1/a)(1 + 1/t) < 1/n. The constant ¢, is the
same as in Lemma 2.1.

Proof. Let (1/a)(1 + 1/t) > 1/n. Then putting 1/p = (1/a)(1 + 1/t), we
have 1/p* = 1/a*. Since ve H:?(2), by Lemma 2.1 and Hoélder’s inequality,
we have

Wl £ ol < e m=l, | mIPvlds.
Q

Next let 1/a(1 4+ 1/t) < 1/n. Then for any positive number «f > 1, we
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take p satisfying the equality 1/a* = (1/8)(1 + 1/t) — 1/n. Since 1 < g < a,
using Lemma 2.1 and Hoélder’s inequality, we see

lolie, < cy/® (j ‘Vvl,szm“)dx)a(tﬂ)/ﬂc
2
< ¢([ ipopreax)"" < Clme), [ mivords.  QED.
’ 2

The following lemma is easily obtained by using Holder’s inequality.

LEMMA 2.3. Lel r and s be such that 1 <r <s. If vel¥(9), then
for any p with

i+ﬁ:

(29#>0’1+[4‘:1)’
S r

SR

we have
vll, < [olvl.
Lemma 2.4. If ve Hy*(m, 2), then ve L*/®-(0Q) for any p >0 with
aln > 1/t + a/p. Moreover, for any positive number e, there exists a con-

stant K depending only on n, p, t, o, ¢ and ||m~"|, satisfying the following
inequality

[Vlis- < ¢ | miPvFds + K | jorde.
Here we may take

K= (lm o7 r=""2 with 1=1 (i _ L) <1
A P a o

Proof. Let r and s be real numbers > 1. For 1 = A(r, s) such that
0<2<1land /s + A — D/r = (p — )/(ap). We have by Lemma 2.3 and
Young’s inequality

[Vlan -0 = [0IFI0IF < 2/ 0] + (1 — DK |[f;, K’ =~

for any ¢ > 0.

If (QJa)A + 1/5) > 1/n, we set s =o' and r =« to obtain 0< 2 =
A/p)|A)a — 1ja*)y < 1. while, if (1/a)1 + 1/t) < 1/n, we take such s that
1/a — 1/p > 1/s to obtain 0 < 2 = (1/p)/(1/a — 1/s) < 1. With these choices
of s and r Lemma 2.2 implies

ol < collm“{'tj m|Fvlds.
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Putting ¢ = ¢||m~'||, we obtain the desired conclusion. Q.E.D.

LemMma 2.5 ([10]). Let A be a bounded open convex set in R" and let
ve H'7(A) A <p <n). Then

{I v — v, lp*dx}l/p* - K (dlamA)" {f |Vv|de}l/p,
4 4

meas A

where v, = — 1_ j vdx and where K is a constant depending only on
A

meas A
n and p.

LevmmA 2.6. Let ve H"*(m, 2), «/n > 1/t + «/p and assume that

_ 1 J vdx =0
meas I(p) Jiw

for an open ball I(p) C 2. Then

(p-a)/
(p-"jl( )|Ulap/(p—a)dx> p-a)/p < C(p;n/z“mq“l)pa;nj“ )m[Vv|"dx,
‘ o

where C is a constant depending on n, p, t, « and o.
Proof. If (1/a)(1 + 1/t) > 1/n, Lemma 2.5 and Hélder’s inequality imply
(p—w j Iv|az»/<p—n>dx>(z7~a)/p < p~n(p‘a)/p(J‘ |U|u”dx>u/au [meas I(p>](p—a)/v—a/n"
1(p) - 1(p)
g Cp—an/aﬁp7z/z(p~n/c|lm—lu[)I leU]“dx,
(o)

where —(an/a®) + n/t = « — n.
If (1/a)(1 + 1/t) < n/1, we choose such g that (p — @)/(ap) > (1/B)(1 + 1/t)
— 1/n> 0. Then, « > 8 and o > ap/(p — «). Thus, we see

a/ B a(t+1)/8t
(J lv|”*dx) < C(J |Vv|'9‘/<‘*‘)dx)
I(p) )

C(J‘ {Vv!at/(L+ I)dx>([+ R [meas I(p)](l—ﬁ/a)a(LJr 1y/8t
I(p)

IA

IA

Cp”“‘ﬁ/“)““”)/mHmJHzJ m|Pulrdx .
I(p)

Therefore we have by Holder’s inequality

—a . a ﬂl%
<p—nj ]vl“p/“"“)dx)p/(p ) < Cp-a/ﬁ’<f Ivlﬂ“dx> !
I(p) I(p)

§Cp"""(p'"“[{m”’“t)f m|Pufrdx.  QE.D.
I(p)
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Lemma 2.7. ([5]). Let G(x) be a uniformly Lipshitz function on R' such
that G(0) = 0. If v(x) e Hy*(m, 2), then G(v(x)) again belongs to Hy*(m, Q).
Further, if the derivative G’ of G is continuous except a finite number of
points in R, then we have G(v),, = G'(v)v,, in the sense of distribution.

§3. Global estimates

In this section we shall prove the maximum principle for weak solu-
tions of the system (1.1).

DeriniTION. Let

Ho(g,0) = [] H"@, 9 and Hya Q) = [| Hi*(@, ).
J=1 7=1
We say that u = (u, -+, u,) is a weak solution of the system (1.1), if
ue H (g, Q) and if the equation

(3.1) Z AP A, u, Ti) + OB (x, w, Pu}dx = 0

holds for any @ = (@,, - - -, ,) € C3(2) X - - - X CF(£).

By Lemma 2.4, if uwe H"*(a, 2), then u is locally in Lep/@=-D(Q) x ...
w Lr/#-a(Q) for any p >0 with a/n>afp + 1/t and 2 < a <p. Thus,
from the assumption on the coefficients of the structure (1.2), we see that
for any @ ¢ H«(d, 2) with compact support in

s j (10,4,(x, u, Pu,)| -+ |0,B,(x, u, Pu,)[jdx < oo .
7=1J 2

Therefore it follows that if u is a weak solution of (1.1), then (3.1)
holds not only for @ € C3(2) X - - - X C(£), but in fact for any @ € H"*(@, Q)
with compact support in £.

For a function u = (u,, - - -, it,,) belonging to H"*(d, 2), we shall simply
say u =0 on the boundary 92 of Q if u;,j=12,..-,m, belong to the
space Hy*(@,, Q). Similarly, u = M for M = (M,. ---,M,)e R™ on a bound-
ary 02 of @, if u;, — M,e Hy«@;, 2), j =1,2,---, m.

TaeoreM 3.1. Let u = (u, - -, u,) be a weak solution of (L.1) such
that u = 0 on 89. Then there exists a constant C depending only on n,p,
t, a and the coefficients of the structure (1.2) such that

B2 suplul = 5 suplul < €3 (udll + IR + 1805
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Proof. Withcut loss of generality, we may assume that meas 2 = 1.
For, if meas 2 # 1, then we can introduce new variable ¥’ = x (meas 2)"",
so that u satisfies the system of the form (1.1) in a domain £’ with
meas 2’ = 1.

Now we put &, = ||f; |2 + |lg; |l + e for any positive number ¢ and
4, = |u,;| + «;, and define the functions

G(u) e for [u;| < ¢; — &y,
J uj = agq - a3j ag-a
65w, — Kt for |u;| = ¢, — x;,
j=1,2 -.--,m, where ¢ =1 is any fixed number and ¢, are constants

greater than «;.
Next, we define @; = G;sign(u;),j =1, ---,m. It is clear that @ =
@, ---,0,) e Hy«d, 2). Thus, we have

ij (Fd,. 4, + &,B)dx = 0.
=1 e

If we put

(ag — a + Dag=  for [u,| < 4, — &,

451 for |u,| = ¢, —«;,

Hu) = {
then we see
Ve, = Hlu,, Vu;| =Fa,] and G, <@iH V"

Therefore, by (1.2), we have

m

illjﬂ Hia,[Vu,rdx < iﬁjg {Gjb]lVﬁjia_l + H; ?ﬁ:icwaf

(3.3) .
+ G, > dyat + Hf, + G].gj}dx,

and
Gb;|[Fa,| ' < —;—HJ%IVUJ I+ 2*'bjaimugt

Moreover, since G; < @3 **', H; < (aq — a + Dust-e, gio-orig;' <
u5* + ui and @3¢ euf < u? + u?, we have

H, 3 egui + G, Y dyui < (aq — a + 1)2 (c., + d, )@ + a29).

We also have
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Hf, +Gg < (q—a+ DL + & )ay

J J
since «; < U;.
Therefore, it follows from (3.3) that

(3.4) S j Hya,|Pa,lrdx < Clag — a + 1) 3 [ B(oueeds,
1=1J 2 1=1J 2

where

B(®) = bjal + 31 (e + o+ dy + i) + L0 4 B e L)

J J

and C is a constant depending only on «.
The right-hand side of (3.4) is independent of £, >0 (j =1, ---, m).

Since H; are non-decreasing functions and since lim H; = (aq — a + 1)u3?,
2j—o0
the monotone convergence theorem proves that

3 f a,(@i-'|Fa,)rdx < C ZJ B,(x)ustda .
i=1Je 7=1J 92
Since [F(a?%)| = qui~'|Vu,|, putting v; = a% we have
ij a;|Vu;l*dx < Cg* i B(x)vidx .
j=1Ja 7=1d 0
By Holder’s inequality we have
L Bix)vidx < || Bjllpall Vsllinio-o = 1 Billoa(lvy — €8lap-o + £59) .
Since v; — k4 e Hy(a;, 2) and v, — £j < v;, by Lemma 2.4, we have
1v; — kY ap/m-0 = 27°C7'q || By Jg a,|\Pv;lrdx + Cq|jv;lz,

and since t? < v, and meas 2 = 1, it follows that #* < |[v,[z. Thus we
have

(3.5) > [ airordx < Cov 3 vk,
J=1J ¢ J=
where C is a constant depending ounly on n, p, ¢ « and |B;1,,., (j =1,

-, m).

By Lemma 2.2 and (3.5) we see the inequalities
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S, < 5 du = wtll + o)
= 3 ([ alrvfds+ o)
= Cgv znj vl

which prove

mo aqat/a 1/a%q g (L0 mo\ae 1/aq
(I, (Gm) ™ a)™" = cveaen(], (G as)™
2 \j= 7=

Thus, putting r = o*/a and ¢ =r*, s =10,1,2, - .., we have

m s Jrs | m
_ . A _
> u; < CWartprsie)\ S g,
j=1 ars+1 =1 ars
m
(3.6) < QW@ SR P pr(Egeo 8/r0) .Zlaf
]: «

< C 1Tl

Now, let s tend to infinity to have

sgpi i, = Ci!lﬂj\la,

=1

Note that ||f;/k5 + g,/k57"|l,e < 1 for any e > 0. Therefore letting ¢ tend
to zero, we have (3.2). Q.E.D.

THEOREM 3.2. Let u = (u,, -, u,) be a weak solution of (1.1) such
that u = M on 32 for M = (M,, --., M,)e R". Then it holds

’

(3.7) sup |u;] = C 24 (luslle + Ifillys + gl ™ + 1M,
where C is a constant depending only on n,pt, « and the coefficients of

the structure (1.2).

Proof. Consider U=v—M = (u, — M, ---,u, — M,). Then U=0
on ¢f2. Since u is a weak solution of (1.1), we must have

—divd,(x, U, FU) + B,(x, UFU) =0 j=1,2 ---,m,
where
Ayx, U, VU)) = A(x, U + M, FU,) and éj(x, U, VU) = Byx, U+ M,7U)).
In view of (1.2)
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A% U9 Z aléf — S |Uy + MiF — £,
|B,(x, U, O < bylel + 35d,,|U + MiF ' + g,

j=12,....,m, for any £€ R". From these, we immediately have the
following;

There exist positive constants 2 and y depending only on « such that
for any £€e R

A U9z alel — 5 2e,|UF — F,
By(x, U, &1 < blel + 3 ud |UF + G,
where
Fo=f+ z’"j iMec,, G, =g, + i pMi=d,; e L) .
Therefore we can apply (3.6) to obtain
sup U, < sup (Zi Uf) < CZ1 1Tl

for U, = |U,| + | F,|l4s + || Gs|[%¢~" + e. Since constant C does not depend
on [[F, |\« + |G|~ + ¢, we obtain (3.7), by letting ¢ tend to zero.
Q.E.D.

In the particular case where m = 1, more sharp results can be obtained.

THEOREM 3.3. Let u be a weak solution of (1.1) where m = 1 and let
u< M on 02. Then it holds that

sup u A+ OM: + Cllull. + I flls + gl ),

where M* = max (0, M) and C is a constant depending only on n,p,t, «
and the coefficients of the structure (1.2).

§4. Local boundedness

In this section, we shall derive the local estimates both in the interior
and near the boundary of 2 for the weak solutions of (1.1).

Let I(x,, p) = I(p) be an open ball with center at x,, radius p and let
(xy, p) = 2N 1(x,, p). We set
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B, = By(x) = @; + aiay™* + bjai™* + i};l{c“- + ¢+ dy; + dy,
+ (e:]/(a—l) + e;{(a—l))d;/(l—n)} + K;a(fj + h;/(l—wd;/(l—a)) + ,C;—ag]
for positive censtants £;. Moreover we put p = (p/a) = p/(p — @),

a/p

a(0) = (p-" .[I(p) a(®)”" dx)m ’ Bye) = (p‘” fl(p) By dx) ’

and
1 in I(p")
C=0Uxp,p) = Z:I;’f”' for o < (x| < p
0 outside of I(p)
for 0 < p’ < p.

We obtain the following lemma by the same argument as in the proof
of Lemma 2.2, using Holder’s inequality

LemmA 4.1. Let ve H"*(a;, 2). Then for any « with 1 + 1/t < a < p,
and for any p, with 0 <p' < p < p,

a/a¥
(o [, wias)™ <epiaten | alrorcds
I(p") I(p)
1/p
+ oio — p’)“‘(po‘ " L( )lvl"ﬁdx> )

where { = {(x, p/, p).

THEOREM 4.1. Let u = (u, ---,u,) be a weak solution of (1.1), and
I(xy, 2p)C Q. Then it holds that

m 1/ap
“n sup |u;| < C Y] {<()0~”J‘ [uz-|“5dx) 7 X po_n/aﬁKi} ,
T=1 I(x0,2p0)

I(x0,p0)

where

1/p a/{a=1)p
I(2p0) I(2p0)

a/(a=1)p
+ <J (hf“‘"‘)d%““))f’/"dx) .
I(2p0)

and C is a constant depending only on n,p,t, «, a,(20,) and B,(2p,) (j =1,
-, m)

Proof. Put r, = K, + ¢ for a positive number ¢ and put &, = |u,| + &,
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(j=1,---,m). Define @, by @, = sign (u;,)G,{*(x, ¢’, p) for 0 < o’ < p < 2p,,

where
—aq — 1 agq — 1
G — G(u) = |8 —ET for |u,| < ¢, — «,,
7 J(uj) - gaq—a ag—-a+1 f l > Z
i Uy — K or |u;| = ¢; — «x;,

j=132, e, qgl’ gj>’cl'
Then we have

S [ e, Az, u, Vuy) + 0,B,(x, u, Vu))dx = 0.

=i
Put
{(“q —a+ Duj for |uy| < 4, — &y,

H. =
S VL for |u,| = ¢4, — «;.

Since Vd, = H{Vu, + aG,t*'V{, we have, by (1.2),
3 f Hia,|7a,l ¢ dx
7=1J I(p)

- m
= jZ=:1JI(p)
+ G(brale + B dgur + &) + Hie Beuur + HE,jdx.

(G Pe@Pa = + Sjesa + h)

It follows by Young’s inequality that
Go-rgla e, < Hia ra e + 4 asai-ase pepe
7 sV Uy = BVl 1Ay U I,
G L PCle s~ < egj @y -~uiiCc + a;u Vel

and
G VL by < GLe ' |PE | hyeyeas™!
é K;“h“/(“'l)d}/(l"a)a?qca + dja'}qqua .

Put v; = z% By the same argument as in Theorem 3.1, we see that

ij a,|7v, it dx < Cqp — o)~ 3, j B,(x)vidx
(4 2) J=1J I(p) 7=1J I(p)
' m B 1/5
= Cq*(p — p') 0§ ]Z.l Bj(2.oo)(po‘" II( )v‘}”dx) .

This result, Lemma 4.1 and (4.2) imply

a/ak _ 1/p
13

»)
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where Cis a constant depending only on n, p, ¢, @, o*, a;(2p,) and > ™, B,(2,).
Now put r = a/a*, q, = (r[p)* and p, = p, + 270, (s = 0,1,2, --.).
Then

mo\ads+1p 1/aqs+1D
o " 2.4 dx
I(ps+1) \7=1
mo \e/qsr 1/agqs+1D
S| (e
I(ps+1) \y=1

) N s1m m aqsr 1/aqsp
§ Cas+1B Qs+ 1)/ p(pgnj (Z L_tj> dx)
I(ps)

i=1

X o - L ©  oh/mE moo ap 1/ap
é C /a Zimo (B/MHQ (1/a TR0 k(B/MHF) po*ﬂ Z a, dx .
I(2p0)

j=1

from which, letting s tend to infinity and ¢ tend to zero, we have the
desired inequality (4.1). Q.E.D.

THEOREM 4.2. Let u = (u,, ---, u,) be a weak solution of (1.1) and
x,€082. Suppose that for some positive number p,, u = M on 32 I(x, 2p,),
M=WIM,  --,M,)eR". Then

m N 1/ap X
sup |u,| < o’ C 3 {(L(% 2p)(ui(“”dx) + M|+ K} =1 m,

Q(x0,p0)
1/p af(a=-1)p
K, = j frdx) + J gV=dx
2(z0,2p0) 2(z0,2p0)

=+ (f (h:/(tx-l)d}/(l'aw/adx)a/(a—l)p .
2(x0,2p0)

where

The constant C depends only on n, p, t, o, |a;'|, and | B,|l,. (G =1, - -+, m),
while 6 depends on n, p, t and «.

Proof. LetU=u—-M=(u, — M, ---,u, — M,). Then Uis a weak
solution of a system of the form (1.1) such that U =0 on 42N I(x,, 2p,).
Therefore the same method of the proof of Theorem 4.1 can be applied
to prove the assertion. Q.E.D.

§5. Holder continuity

In this section we shall prove that weak solutions of (1.1) are Holder
continuous in £ under the assumption

(5.1) Ga;teL~(Q), j=1,2 -, m

First we shall state some lemmas.
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Lemma 5.1 ([9]). Let I(x,, p)) C 2 and v be an H“'(I(x,, p,))-function.
Put

A(ky, o) = {x € I(%, po) |V = ko} -
Suppose that there are two constants k, and 6 (0 < 6 < 1) such that
meas A(k,, p,) < 6 meas I(x,, p,)
holds. Then for any h and k with h > k > k,, there exists a positive con-
stant C depending only on 6 and n such that the following inequality hold:

(.2) (h — k) [meas A(h, p)]"-/" < cj \Pu(h)|dt .

[A(k,00) = A(hyp0)]

This lemma immediately implies the following

LEmmMA 5.2. Under the same hypothesis of Lemma 5.1, we have

(h — y [meas ACh, o)l < coi(p5* [ medx)”

I(p0)

(5.3
X I m|Pv|*dx [meas A(k, p,) — meas A(h, py)]*~'~*/»
A(k, po)

for ve H"*(m, p).

LemMma 5.3 ([8]). Let ¢(h, p) be a non-negative function on the strip
(h=k=0)X (0L p<R,) such that

(i) for every fixed p, #(h, p) is non-increasing on h

(i) for every fixed h, (h, p) is non-decreasing in p and that there exist
positive constant C, a, 8,7 (8 > 1) with

#(h, p) < Clg(k, R))*(h — k)=(R — p)"
for h>k=k, p<RZR, Then we have
#(ky + d, R, — aR)) = 0
for any ¢ with 0 < ¢ <1 and for
d = C(g By Y[k, RY)-/esies 21000,

Remark. Lemma 5.3 is valid not only for k, = 0, but also %, < 0.

From now on, we fix j and use simplified notations:
M(p) = M,(p) = supu;, mlp) = m,(p) =infu,,
I(p) I(p)
w(p) = o,(0) = M(p) — myp).
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THEOREM b5.1. Let u = (u, ---,u,) be a weak solution of (1.1) and
I(R) = I(x,, R) € Q for 0 <4p, < R. Then under the assumption (5.1) there
exist positive constants K and 2 such that for any p with 0 < p < p,

(54) wj(p) S— pr (J = 1’ 2) Sty m);

which means the local Holder continuity of u, in 2.

Proof. We put Fy(x) = 2™, ci;|u.l* + f;, Gi(x) = >orm,dyy|u, ! + g;and
H, =3%m" ¢e;lul"+ h; Then from (1.2), we have

S'Aj(x’ u, ‘E) Z ajléla - Fj:
(55) |Bj(x’ u; E)] é bjlgla—l + Gj,

|4,(x, u, &)| < @, + Hj,
j=12, ..., m,for any & € R*. Moreover, since u = (u,, - - -, &,) is bounded
in I(R), F;, G;, Hy==2@/ - e L*/*(I(R)).

We define the functions
{@j = (u; — k)*¢*, for any choice of &,
0, =0 (@+)),

where { = {(x, p/, p) with p, < p’ < p < 2p, and (v; — k)" = max (u¢; — k&, 0).
Then @ = (@, ---,?,) € Hy*(a, 2) and hence the following equality holds:

j (F®,- A, + 0,B)dx = 0.

2

Now we put v = (u; — k)*. Then Fu, =Fv on the set A(k, p) =
{xeI(p)|u, = k} and @, = 0 outside of A(k, p). Thus, in the set A(%, p),
we have, by (5.5),

j a,|Pvltedx < Cf (@ IPEl + Byxwes + T @))dx,
Ak, p) A(k,p)

where B,(x) = bja ™ + G;, Ty(x) = (F; + G, + HY Y@y -)¢* e L**(I(R))
and where C is a constant depending only on « and sup d;aj".

@, 1
We now put 4,(p) = (p‘”f dg”“dx) /p, a;(p) = (p'"j a;‘dx) " and
I(p) I(p)
Ap) = a,(p)a,(p). Then by (5.1), A(p) is bounded.
By the same argument as in Lemma 2.4, we obtain

L(k’p) B,(x)vedx < HBj[Ip/a{e(LmP)ajlpv‘nc,,dx

+ [meas Ak, o))" f o, VI KLM) U“C"dx)} .
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Note that v < M(4p,) — ky in I(2p,) for k, < M(4p,).
Take e = 27'|| B,||;/, to have

JaJIV vlrgrdx < Clo — ')~ *{[2o)"?a(0) + (205" /**/?

-+ (zpo)“”"/”](M(‘lpo) - ko)a + PSTH}[meas A(k, P)])l_a/p

for any k, < M(4p,), where T* = || Ty(x)|,,« and C is a constant depending
only on a« and || B,/

Let kg <<k <h. Then by Lemma 4.1 with p = 1, (5.6) and Hélder’s
inequality, we have

(5.6)

(h — k)" meas A(k, o) < f (u, — kyced

Alk,p)

a, a”
= (J (vC)““dx) ! [meas A(k, p)]=/"- 1
A(k,p)

< (Corrafo) [, alrvrcds + @ | virceds)

X [meas A(k, p)]a/n~1/t
< Clo — o))+ {(Ap) + lla;"|)(M(4p)) — ko)* + p§~ 2T}
X [meas A(k, p)]?

for any a with 2 < « <p, where 8 =1+ a/n — 1/t — a/p > 1. Thus, by
Lemma 5.3, we see that meas A(k, + d, p,) = 0, where

d = Copq' oy P {M(4p,) — ko + 05T Hmeas A(k,, 20,)]° 2/,

where 0 = 1 — (n/at) and C, is a constant depending only on n, p, t, «, ||a}'],
and sup,., 4,(R). It is noted that C, is independent of p,.
Hence we have

BT Mo < ky + Cloi™ meas Ak, 2017~/ M(4p) — ky + piT}

for any k, < M(4p,).
It is easily verified that (5.7) remains valid even when —u; is taken
instead of u;. In this case,

M(p)) = §}11)>(—uj) and Ak, p) = {xe l(o)|u; <k}

Now we can assume that the inequality
(6.8 meas A(k, 2p,) < 6, meas I(20,) (0 Z6,<1)
holds for some 6, and for k2 = {(M(4p,) + piT). In fact, in case (5.8) is
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not valid, we may take uj; = —u, instead of u;, We can therefore use
Lemma 5.2 and (5.6) with the choices p’ = 2p, and p = 3p,. We have, then

(h — R){p; " meas A(h, 2p,)}* """
< C{M(4p) — k + piT}"{p;" [meas A(k, 3p,) — meas A(h, 3p))]" '~
for k < h < M(4p).

Put ho) = M(4p,) + piT — 27 P{w(4p,) + p{T} for s=0,1,2,----.
We fix a natural number N such that

(5.9

(C,C,/N)@#-D/e < % (5 = an — 1>/ n(“ —1- %))

for a constant C, with C2'3"w, < C,, where 7 = 1/(0 — 1 — 1/t) and 0, is a
volume of unit ball in R". First we consider it in the case when p, is a
number such that A,(o,) < M(4p,) when s < N. Then the inequality (5.9)
is valid for A = h,(p,) and k = h,_,(p,). Since

hs(Po) - hs-l(po) = 2_(8“){0)(4‘00) + PgT} ’
M(4p)) + 00T — h,_(0) = 27 *{w(4p,) + o{T},

(5.9) induces

(5.10) los " meas A(h,(oo), 20,))°
< C2p;" [meas A(h,-(0,), 3p,) — meas A(h,(po), 300)] -
Summing up each side of (6.10) for s = 1,2, ..., N we have
Nlp; " meas A(hy(oo), 200’ < C2p; " meas A(h(oo), 3p,) < C, .
Thus we obtain

Colps ™ meas A(hy(po), 200)]°~"* < (C,C,/N)#-D < —;— ,

from which we get

M(p)) = M(4p) + 00T — 27 *P{w(4p)) + o0 T}
if we take k, = hy(p,) in (5.7). Namely we obtain
(6.11) o(p) = (1 — 2-¥*No(4p,) + i T},

since m(p,) < M(p,). Finally we consider it in the case when p, is a number
such that hy(o) = M(4p,) for some N, with N, < N. It then follows that

M(Po) = M(4Po) = M(4Po) + PgT - 2"‘“*”{60(490) + PgT} ’
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and we have the inequality (5.11). Thus (5.11) is valid for any p, with
0 < p, < 1, and hence we have the inequality (5.4) using Lemma 5.4 below.
Q.E.D.

LemmA 5.4 ([9]). If there exist an 7 with 0 <y <1 and H> 0,60 >0
such that

o(p) = no(dp) + p’H  for any 0 < p <1
then
o(p) < Kp'

holds for some positive number K and A.

Our next attention is focused on the behavior of v near the boundary
02 of £2. Namely, we shall now investigate the Hoélder continuity of the
weak solutions of (1.1) near 9%.

DerFINITION ([9]). A bounded open set £ of R" is said to be HY%)-
admissible if for any p < p, and x, €92, and for any v(x) € C'(2(x,, p)) such
that v(x) = 0 on 92N 1(x, p), there exists a positive constant satisfying B
vl g,

2(x0,p) |x —_ tln—l-

v < 5 |

LemMA 5.5 ([9]). Let ve H"'(2(x,, R)) with x,c02 and let 2 be HQ)-
admissible. If v =0 on 32 N I(x, R), then the formula (5.2) is valid for
h>k>0.

THEOREM 5.2. Let u = (u,, ---,u,) be a weak solution of (1.1). For
some R >0, if 2(x,, R), x,€02, is Hy2)-admissible and if u= M on
02N I(x, R), (M = (M, ---,M,) e R), then, under the assumption (5.1) u,
(G=1J,2, -, m) are Holder continuous in 2N I(x,, R).

Proof. We may assume that u; =0 on 32 N I(x,, R). If u, #0, we
subtract the constant from u;.) The proof is obtained in parallel with
that of Theorem 5.1, where we note that

3 (Mp) + midp) + piT) 2 0

may be assumed. Q.E.D.

In what follows, we shall assume that 92 is Lipshitz continuous.
Obviously 2 is Hj(£2)-admissible.
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Ifu=(u,---,u,)is a weak solution of (1.1) and if v, — w, € Hy*(@,, 2)
for a Lipshitz continuous function w,, j = 1,2, -+, m, then U = (u, — w,,
U, — wy,) € Hy*(a, Q) and U is a weak solution of the system

—divd,(x, U, FU) + B(x, U,FU) =0 j=1---,m,
where

;fj(x, U, VUJ) = Ajx, U+ w, V(Uj + wa))
and
Byx, U,7U) = By(x, U+ w, F(U, + w,), W= (w, -, w,).

Moreover, we have for any £ € R
¢4(x, U,9) 2 a,lél — 3 C|UF — F,,
1By(x, U, )| < ebyl¢ + 3 Do U + Gy,
A, U, 0| < edilel™ + 5 By U~ + Hj,

where ¢, ¢; and c, are some constants with 0 <c¢, < 1,1<¢, and 1< ¢,

and
Ci; =cfcy; +ey), Dy =cd,; E;=ce;,
Fiy = of(@ + a)lPw,f + 3 e + elwir) + £, + (b,
G, = c,(bjwwj]a-l +3 dij1wl|«-l>gj,
Hy = a(a|rw + Seglwir) + by
(Here c,, - - -, c; are positive constants depending only on «.)

It is clear that C,;, D,;,, Eg“-a@y"-2, F,, G,, Hy 1§/~ e L»«(2). By
applying Theorem 5.2, we therefore have the following

THEOREM 5.3. Let u = (u,, - --, u,) be a weak solution of (1.1) and let
w; (j =1, ---, m) be Lipshitz continuous functions on . If 32 is Liphistz

continuous, and if u, — w; e Hy*(a,, 2) (j =i, ---, m), then under the con-
dition (5.1) u; are uniformly Hélder continuous on Q.

§6. Harnack type inequality

In this section we shall prove the Harnack type inequality for posi-
tive weak solutions of the following system:
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(6'1) —div Aj(x, u, Vu]) + Bj(x) u, Vuj) =0 (j = 17 2, STy m)’

under some restrictions on the coeflicients. Here each 4, and B, satisfy
the following three conditions (I)-(III):
(I For any &e R it holds that

§-A,(x, u, §) = ,a,(0)[E" — c,(0)|uyl — ij] ey — fix),

(62) IBJ(x’ u, ‘S)l g bj(x)léla—l + é dij(x)‘ui]a‘l + g](x) )
A1, O] S @ @IEF + 2 en@ ™ + A,

with some 0 < 2; <1. The functions a;, b, ¢;;, -+-,h; and @, are non-
negative and measurable. We assume that

a;te L(Q) for any t > 1.

a;, = a,,
d]’ dj(l}_”, bfa;_a’ CJ" Cijs dij’ e%(a_l)dy“_a), f]’ gj: h?/(a_l)d}/(l_a) € Lp/a(‘Q) ?
where
o 1 «
(6.3) - + " <= and @2L)a<p.
p n

(II) There exists another system of functions A,(x, u;, Fu,) (j =1,
..+, m) such that

(64) {5‘21(3‘3 Ujy E) g aj(x)‘fla - Cj(x)luj ]a bt 7J(JC) ,

le(x, u, &) = ax)|&pt + ej(x)lujla_l + E](x), ¢eR"

and ey Dgyt-a f, pu/e-bglt- e LY/«(Q) with the inequalities (6.3).
(III) We assume that for any non-negative function @,¢ Cy(2) (1 <
7 < m) and for u > 0 it holds that

f 70, A(x, u, Fu) + 0,B(x, u, Fu,)}dx
(6.5)
< j 70, A,(x, u,, Pu,) + O,b,| P, + dus~t + g,))dx
2

with a suitable choice of d, and g, in L?/#(Q2).

It is noted that the system (6.1) under the condition (I)-(III) involves
general degenerate quasi-linear equations when m = 1.

Throughout this section we consider a positive weak solution

https://doi.org/10.1017/50027763000020869 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020869

126 YOSHIAKI IKEDA

u = (U, -+, u,) of (6.1) under the condition (I)-(III), and we assume that
I(4p,) C 2 for some positive number p, < 1.
Put

k= f; + e+ gy + &l + 1R, + R)™ @)= |,

Uy =u; +x, +e> 0), ¢, =¢; + (f] + f]-)//f;, C—lu = d]‘j + gj/'cg_l7

aj = d]' + g}/'{;—la é]’j =€ + hj/'cj_lf é] =€ + E]/K;“I,]‘ = 17 s, M.
Then from (6.2) and (6.4) it follows that

g'Aj(x’ u, 5) = Z]aﬂ{::“ - EJL_‘(} - ; Ci]ﬁ?"‘ )
i%j

(6.6) |By(x, 0, &) < b6+ D1 dour,
A O S a e+ N, fekRr,

where d,; = d,,, &;; = e,; (i # j), and that

. _. X > « __ @ g«
(67) {S AJ(xa Uj, S) = a]|§| c;us,

A, w, O = @le1 " +eus™,  EeR".
We then put p = (p/a)’ = p/(p — «),
By(x) = @, + @,ai™ + ba; "+ ¢; + d; + ey hay-,
{B‘J(x) = By(x) + i (cij + € + diyy + dj + (@70 + &5l )@y ),

and

a/p

1/t
(af(P) = <P_n sz a;‘dx) » Bip) = <p'" fup) B§/“dx> ,
) =l ~ a/p
[ Bi(o) = (p‘"fw Bi”“dx) :

TueoreM 6.1. Let u = (u,, ---, u,) be a positive weak solution of (6.1).
Then

m m ~ 1/ap
(6.8) sup@, < Ssupa, < €33 (o [, avdx)”,
1= i=1 1(2p0)

I(po) 1 I(po)

where C is a constant depending only on n, p, t, «, a,(p) and Ej(p).

Proof. Young’s inequality with the help of (6.2) proves that the con-
dition (1.2) is naturally satisfied by the system (6.1). Therefore, from
Theorem 4.1, we have (6.8). Q.E.D.

https://doi.org/10.1017/50027763000020869 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020869

ELLIPTIC SYSTEM 127

LemMma 6.1. For any positive number q, > 0,

(6.9) inf 7, > C(po_"j a;«odx>‘”“°,
I(2p0)

I(p0)

where C is a constant depending only on n, p, t, «, a,(2p,) and B,(2p,).
Proof. Take g < 0 and p’, p such that p, < p’ < 2p,. Put
O, = us" " '¢(x,0p’,p) and &, =0 for i+

Then, by (6.5), we have
0< f 70, A(x, u, Fu) + O,b,|Fa, 1" + d,a:-))dx.
I(p)
Thus we see
—(aq — a« + l)j us¢Vu,-A,dx
1(p)
< | fowse e e PLA + g o, P+ da ),
from which, we have, by using (6.7),
1/p
6100 [ alfvftde= Co— o) pilal(o [, vrdx)”,
I(p) I(p)

where v, = #¢ and Cis a constant depending only on n, p, ¢, «, and B,(2p,).
Another inequalities established in Lemma 4.1 are

a/nrgt a/ak
<(2Po)_" f v ‘a#dx> = <Po—" J Iij]“”dx>
I(p") I(p)
(6.11) < co(zpo)«—naj(zpo)f a,|Pv, [t dx
I(p)
\p
+ @o)o — o) (@0 [ Judx)”.
By combining (6.10) and (6.11), we have

" afak
(o [ Io.pdx)
I(p")

(6.12) "
< Ca,(20)(0 — p’)'“pé’lfﬂ"(p& g L oY l“ﬁdx>

Put r = C(*/(X, q; = (r/ﬁ)s(—%) and Os = Po + Po/2s, § = 07 1, 2’ ---. With
these notations the inequality (6.12) means that
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_ N 1/r _ 1/r
p(’)-" u'}‘ls—updx —_ Po—n J‘ u;’ls"‘dx
I(ps+1) I(ps+1)

15
§ C2(s+1)alqs’a(p0—nJ‘ ﬁ;qsﬁdx> /D ’

I(ps)

that is,

1 +1D
o _“‘13+1Pd /aqs+1D
Lo Uj; X
I(ps+1)

_ 1/aqsp
z C’l/QQ.tIqu/alIs(‘oo—"J ﬁ;{h;ﬂdx>
I(ps)

—(1/aq0) TP o (5/7) 1 r - (1/q0) T L(B/T)? o _"'UQDI.’d -1/aqyp
=C = | g0l — 00 Uj x
p I(2p0)

= ~ —1/aqyp
= Clp:" u; rdy .
I(2p0)

Letting s tend to infinity we have (6.9) for q, = q,/ap. Q.E.D.

LEMMA 6.2. Set k — (meas 1(3,;0))41[ u,dx, and let @, = uk-' and
I(3po)
v, = log @i;. Then, it follows that

1/ap
(6.13) (,;O—"j |vj|aﬁdx) ‘20 (=12 -,m),
IB3p0)

where C, is a constant depending only on n,p, i, «, a;,(4p,) and B;(4p,).

Proof. We put @; = @y °¢%(x, 3p,, 4p) and @, =0 (i #j). Then by
(6.5), we see

0= j vy 70,24, + 0B )
< L“m 70, 4, + 0,b,|Fa,l + d,z5-)dx.
Since V®; = (1 — a)i;CVa; + ad} ¢~V it follows that
f a;oc i, A,dx
oo

(6.14) )
<[ e A 4w ra e + da ).
(4p0)
Remind the condition (6.7) to have
(¢ — Daj¢Va; A, = (@ — De*(a;|Pv;|* — ¢,)¢°,
4

aa e el ) < {(* ] Datroke + (2 4) sare

+ ae?/(a-l)di/(i—a)ca + alVClad]}ka—l
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and
(b, el + djag)

< {(* Natrot + (1) e + e

a —
With these estimate (6.14) becomes

J a,|7v,["dx < Coi**"B,(4py) .
I(3po)

Since (meas I(3p,))" Im v,dx = 0, by Lemma 2.6, we finally have
£0)

o \UB
(o[ Iwlax)” < Caspoei [, alFv,pde
I(3p0) I(3p0)
= Ca,(4p0)B;(4p,) - Q.E.D.
LEmma 6.3. Put v, = log it;. Then for a sufficiently small p, > 0,

(6.15) o7 J erivildy < C,
I(2p0)

where C is a constant depending only on n,p,t, «, a;(3p,) and B,(3p,).
Proof. Take q > 1 arbitrarily. Put

0, = a(jurre+ [0 )@ —a+ D] e and 0,0
‘T (i # ),
where { = {(x, o/, p) with 2p, < p’ < p < 3p,. Then, we see
0= [ {ro,-4,+ 00,75 + dgg)dx.
I(p)

The exact form of FQ,; is given by
V@j — {(1 _ a)(‘vj]aq—a+l _+_ l:_ai(aq —w + 1)]aq—a+l

a pu—

+ (eq — a + )|v;[*7~* sign vj>}ﬁ;“'§“l7a,

ag-a+1

el [0 e —a D] Jaere.
a pa—

While, the next inequality comes from Young’s inequality

(aq — a + D)|v,|e=
= <q..;._1,,><1vj]aq_a+1 4 [ —ci 1(cvq . 1)]aq—n+1) .

X

(6.16)
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Thus we see that

@ = a@(joroe+ |

ag-a+1
@ l-(aeq— a + 1)] >

o —

+ (aq — a + D)|v,|*=sign v,
§ —MX(|vjlaq—a+l '+' [_a—_(aq . + 1)']aq—a+l) < O.
a a—1

Therefore, by the structure (6.7), we have

€D (o + [ S g = a+ D" afo s

I(p)

(6.17) < CLm (,vj R [a ¢ (ag—a+ 1)])

X {aegoeas+ ey G VL@ Pa, I + gu;)
+ @y L0\ Va1 4 dyag)ldx
By an obvious equality u;°|Fu;| = |Fv,| we can see the right-hand side
of (6.17)
¢ (|vj|«q-a+1 [ 4 gt 1)]‘"’"“ ){adlev,-[““C““lVCI
1(0) a—1

+ b;[Pu, ¢ + €8t + dig + el ! |PLfidx
CJ (’Uj]aq—a+l + [WC(__(aq — o+ 1)]aq—m+ )
I(p) a—1

1 (¢ — 17 ara R
X (g5 @V apo, e+ 1PEFB@)dx

IA

Then, we have by (6.17), using (6.16) again,

[ aslosoipo peeda
I(p)
ag-a+1
< (eq — a + 1)7'C f ( v, + [Jf__. (aq — o + 1)] ‘ )IVC[“Bj(x)dx.
2(p) a—1
Here we have used the fact that
o ag-a+1
ot S o+ | @a—a+ ]
a—1
Put V, = v?. Then, by an obvious equality | V,|* = q*|v,;|**"%, we have

|, alrvicaz=c| v+ oo B@ds

1/p
= Clo — oo {(o [, Vi) + (o).
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where C is a constant depending only on n,p, {, « and B,(3p,), and 7
depends on «.
This results and Lemma 4.1 guarantee the following

1/p

afa¥ =

where C depends only on n, p, ¢, @, a,(3p,) and B,(3p,).
Putting g, = (r/p)* (r = o*/a) and p, = 2p, + 270, s =0, 1, ---, the
above inequality proves

N 1/aqs+1P
p‘;nJ‘ Ivj]atIsHde
I(ps+1)

1/aqsp
é Cl/al{sz.@/aq:{<p0—n j;( > [vj Ia(Isfldx) o + qu}
Ps
é C{<po—nf lv]_ ]anT?dx>1/ﬂ'l1sP -+ i: qu} y
I(ps) £=0

that is, for any positive number ¢ > 1

Y L\ V/aB
<‘00_n qu >|vjlqu) q =¢ {<p0_n L(a )|vj|‘”’dx> + q} < C{C + g},
from which we have (6.15). QED.

Lemma 6.4. Let u= (u, -, u,) be a positive solution of (6.1). Then

(6.18) inf 7, > C,,

I1(2p0)

where C, is a positive constant depending only on n,p,t, «, a,(3p,) and
B,(30,).

Proof. Put v, = log{min (1, &,)} and take @, = @} *|v,|****'{* with
q <1, where £ = {(x, ¢, p) With 2p, < p’ < p < 3p,. Then, we have

Vo, = (1 — o)y, " — (g — a + D|v; [~ )a;CVa,
+ aa?-alvjlaqva»rlca-llVCL
Thus, by (6.5) and the structure (6.7),
(aq — a + 1)f a,|v, [P, [cdx
I(p)

= [ty e e @ e+ eas )
+ @y o, (b, P a4 s
+ (= DI, + (aq — e+ Do, ;e g
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Since |v; ] %! < v, + (1/(eg — a + 1)) and [v; " < [v, " + 1/q hold,
we have

<c 2ol (07" |v\“‘”’dx>l/ﬁ+ >}
[, alrepreds < Cato — o) oi{ (o Lm ]. o)

where C is a constant depending only on 7, p, ¢, «, a;(3p,) and B;(3p,). From
which we have

sup |v;| = C{C, + 7}

I(2p0)

in a similar manner to the case of Theorem 4.1, that is, (6.18) holds.
Q.E.D.

We are now ready to state the Harnack theorem.

THEOREM 6.2. Let u = (u,, - - -, u,) be a positive weak solution of (6.1)
under the condition (I)~(I1I). Then

(6.9) ST sup u; < €O (inf u, + £,)

1 I(po) Jj=1 I(po)

where C is a positive constant depending only on n, p, ¢, a, a;(4p,) and B{4p,)
(j: 1727 "'7m)‘

Proof. From (6.15), we have

-n 57 Ho -l/po
0 utdx < C<p0“"J L‘t;“dx) .
1(200) 1200

Combining this inequality with (6.9), we obtain
_ 1/po . .
(O‘"f u?"dx) < Cinf @, J=12 -, m.
1(2p0) I(po)

Hence Theorem 6.2 can be proved if we show

m

(6.20) > supm, < CY (pa”f ﬁﬂﬂdx)l“m.
Jj=1 I(2po)

J=1 I(po)

In fact this is true as is shown below. Put @, = us?~"'¢* with ¢ > 0,
q # (@ — /o, where { = {(x, p/, p) with p, < o < p = 2p,
In case 0 < ¢ < (a — /o, D, (i # j) is defined to be 0, and

0= [ 0,4+ 00,a,l + dayde

is shown by (6.5). Since V®; = (aq — a + D@LV, + au?-"'¢- g, by
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(6.7), we have
—(aq — @+ 1)[ a, a5 |7, "o da
I(p)
< [ fomgerere @ e e + )
P
+ wae g b, |\, + dust) + jag — a + 1emildx.
Put v, = 5% Then, by the same argument as before, we have
f a;|Vv,|¢dx < Cq‘[ VL |*B(x)vidx .
I(p) I(p)
Therefore,
m , m ap 1/9
ZI a;|Vv,¢*dx < Cp — p)‘“ps‘(po‘"J (Z v;) dx) ,
J=1JItp) I(p) \7=1
where C, is a constant depending only on n, p, q, t, @, a,(20°) and B,(2p,)
(j: 1>2, "'9m)'
In case (@« — 1)/a < g, we define @, = u3~**'¢* (j = 1,2, - - -, m) to have
3 I (F®, 4, + 0,B)dx = 0.
J=1J I(p)

Since V®, = (aq — a + 1) ¢ Vu; + au®=**'¢"'V¢,

(agq —a+1) ilzjj )a]—u;q-a|l717j|a§adx
5=

I(p

IA

[, femecemra(ara - + 5egu)
I(p) !

Jj=1

+ n?q_aﬂca(bjlm_‘fla'l + i awﬁ?—l)

-
Il
-

+ (g — a + 1)C“<é,-u;" + >3 c“ug—‘uf~“>}dx
is proved by using the condition (6.6). By Lemma 6.4, 3 < Cgj=**'
is true. Noting aq/(e — 1) = 1, we see, by using Young’s inequality,
g'usrett < a4 uyt and  @i'nstt < CT'(wt + u3d).

Thus, putting v; =74 (j = 1,2, ---, m), we have

(6.21) i—:\l‘[m) a,|7v,1it*dx < Cylp — p')~“p" ]}7; (po-" J.m) (i vj)aﬁdx>’/zs ,

Jj=1
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where C, is a constant depending only on n, p, q, ¢, «, a;(2p,) and B,(20,)
G=12---,m).
We have therefore obtained (6.21) for any ¢ > 0 with ¢ # (¢ — 1)/a.
Let q, be a sufficiently small number such that 0 < ag,p < p, and
q(rp)* # (¢ — D/a, s =0,1,2, ---. Then, (6.20) is obtained in a similar
manner to the case of Theorem 4.1, which was to be proved. Q.E.D.

To close this section we give an illustrative example.
Take a vector function

C 1 a2 o ou, KO (a=1)2/a &} ou,
J'(x7 u) - Z C, U, S18N —-——, - - -, Z Ci;U; s1gn ——= ) .
& 0, oz,

Let A(x, u;,Vu;) = (A,;, -+, A,;) and a scalar function B,(x, u, Fu,) be
given and satisfy the following inequalities

1#]

§-A)(x, upy &) Z a5lEl — cjluyl — f5,
Bi(x,w, O S bEl + D dufuf + g,
l4,(x, uy, O < G161 + eluyl" + Ay, §eR"

j=1,---,m. Here a,, b,, ---, h; and @, are non-negative measurable func-

tions in 2, a;'e LY(2) for any t > 1, a; < @;, and @, @}, b,a}™%, ¢, d,,,

fj’ g (ci?j)"/“’")alj/““'), e;/(a—l)é}/(l—w, ]_l;/w—l)dy(l—a) c Lp/a(Q)’ and i € Hl,p/a([_))’
Define A,(x, u, V'u;) = A,(x, u;, Vu,) + C,(x, u) and

— M~ m

B]'(x’ u, Vu]) = Bj(x’ u, Vu]) + Z diju?—l + Z Eijugaulﬂ/a ’
t=1 =1
1#]

for some choices of functions, d,;, ¢;; € L?’*(Q).
We assume that for any i (i # J)

o

L - ~
kZ::\L] +Cij§0 and d”—l—dijéo.

L X

Then, the system
—div 4,(x, u, Vu,) + B,(x,u,Vu;) =0 Gg=12---,m
satisfies the condition (I)-(III).
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