ON THE KERNELS OF REPRESENTATIONS OF FINITE GROUPS

by SHIGEO KOSHITANI

(Received 1 November, 1979)

Let G be a finite group and p a prime number. About five years ago I. M. Isaacs and S. D. Smith [5] gave several character-theoretic characterizations of finite p-solvable groups with p-length 1 . Indeed, they proved that if P is a Sylow p-subgroup of G then the next four conditions (1)-(4) are equivalent:
(1) G is p-solvable of p-length 1 .
(2) Every irreducible complex representation in the principal p-block of G restricts irreducibly to $N_{G}(P)$.
(3) Every irreducible complex representation of degree prime to p in the principal p-block of G restricts irreducibly to $N_{G}(P)$.
(4) Every irreducible modular representation in the principal p-block of G restricts irreducibly to $N_{G}(P)$.

The purpose of the present paper is to generalize the above result. It can be stated as follows: if B is an arbitrary p-block of G with defect group D, then the following four conditions (1)-(4) are equivalent:
(1) D is contained in the intersection of the kernels of all irreducible modular representations in B.
(2) Every irreducible complex representation in B restricts irreducibly to $N_{G}(D)$.
(3) Every irreducible complex representation in B whose character has height zero restricts irreducibly to $N_{G}(D)$.
(4) Every irreducible modular representation in B restricts irreducibly to $N_{G}(D)$.

Since $O_{p^{\prime}, p}(G)$ is the intersection of the kernels of all irreducible modular representations in the principal p-block of G, our result is a generalization of the result of Isaacs and Smith.

Throughout this paper we use the following notation. For an integer n we write $\nu_{\mathrm{p}}(n)=r$ if $p^{r} \mid n$ and $p^{r+1} \nmid n$. We write $\operatorname{Irr}(G)$ (respectively $\operatorname{IBr}(G)$) for the set of all irreducible complex (respectively Brauer) characters of G. For a p-block B of G let us denote by $\operatorname{Irr}(B)$ (respectively $\operatorname{IBr}(B)$) the set of all elements of $\operatorname{Irr}(G)$ (respectively $\operatorname{IBr}(G)$) which belong to B, by $k(B)$ the number of elements of $\operatorname{Irr}(B)$, and by $k_{0}(B)$ the number of elements of $\operatorname{Irr}(B)$ with height zero. When $\chi \in \operatorname{Irr}(G)$ (respectively $\phi \in \operatorname{IBr}(G)$), let $\operatorname{Ker} \chi$ (respectively $\operatorname{Ker} \phi$) be the kernel of the irreducible complex (respectively modular) representation which corresponds to χ (respectively ϕ). Following [1, pp. 494-495] let $N_{B}=\bigcap\{\operatorname{Ker} \chi \mid \chi \in \operatorname{Irr}(B)\}$ and $N_{B}^{*}=\bigcap\{\operatorname{Ker} \phi \mid \phi \in \operatorname{IBr}(B)\}$ for a p-block B of G. We write $B_{0}(G)$ for the principal p-block of G. When H is a subgroup of G and b is a p-block of H, we use the notation b^{G} in the sense of $[3,857]$ for the case where b^{G} is defined. When H is a subgroup of G, for a character ψ of G and a character $\tilde{\psi}$ of $H,\left.\psi\right|_{H}$ and $\tilde{\psi}^{G}$ denote the restriction of ψ to H and the induced character of $\tilde{\psi}$ to G, respectively.

Glasgow Math. J. 22 (1981) 151-154.

We write G^{\prime} for the commutator subgroup of G. If S is a subset of $G, N_{G}(S)$ denotes the normalizer of S in G. We use the notation $O_{p^{\prime}}(G), O_{p}(G)$ and $O_{p^{\prime}, p}(G)$ following custom (cf. [3, p. 397]).

Theorem. Let B be an arbitrary p-block of G with defect group D, and let $N=N_{G}(D)$. Then the following are equivalent.
(1) $D \subseteq N_{B}^{*}$.
(2) When b is a p-block of N with $b^{G}=B$, for each $\psi \in \operatorname{Irr}(b)$ there is some $\chi \in \operatorname{Irr}(B)$ such that $\left.\chi\right|_{N}=\psi$.
(3) When b is a p-block of N with $b^{G}=B$, for each $\psi \in \operatorname{Irr}(b)$ with height zero there is some $\chi \in \operatorname{Irr}(B)$ such that $\left.\chi\right|_{N}=\psi$.
(4) When b is a p-block of N with $b^{G}=B$, for each $\psi \in \operatorname{Irr}(b)$ with height zero there is some $\chi \in \operatorname{Irr}(B)$ such that χ has height zero and $\left.\chi\right|_{N}=\psi$.
(5) If $\chi \in \operatorname{Irr}(B)$ then $\left.\chi\right|_{N} \in \operatorname{Irr}(N)$.
(6) If $\chi \in \operatorname{Irr}(B)$ and χ has height zero then $\left.\chi\right|_{N} \in \operatorname{Irr}(N)$.
(7) If $\phi \in \operatorname{IBr}(B)$ then $\left.\phi\right|_{N} \in \operatorname{IBr}(N)$.

Proof. (7) \Rightarrow (1). Since D is normal in N, by [3, Theorem $53.9(i i)], D \subseteq \operatorname{Ker} \tilde{\phi}$ for all $\tilde{\phi} \in \operatorname{IBr}(N)$. Thus, (7) implies (1).
(1) $\Rightarrow(5)$, (7). Let $H=N_{B}^{*}$ and $V=N_{B}$. By [1, Propositions (3A) and (3D)], H is p-nilpotent and $V=O_{p^{\prime}}(H)$. Let $\phi \in \operatorname{IBr}(B)$. Since $H \subseteq \operatorname{Ker} \phi$, we can consider $\phi \in$ $\operatorname{IBr}(G / H)$, so that $\phi \in \operatorname{IBr}(\bar{B})$ for some p-block \bar{B} of G / H. By [3, Lemma 64.3(1)], $\bar{B} \subseteq B$. Hence, by [3, Lemma 64.3(2)], D contains a Sylow p-subgroup of H. Thus, (1) implies that D is a Sylow p-subgroup of H, so that $H=V D$. Hence, by the Frattini argument [4, I 7.8 Satz], $G=H N=V N$. This proves (5) since $V \subseteq \operatorname{Ker} \chi$ for all $\chi \in \operatorname{Irr}(B)$. Similarly, we get (7) since $H \subseteq \operatorname{Ker} \phi$ for all $\phi \in \operatorname{IBr}(B)$.
$(5) \Rightarrow(6)$. Trivial.
(6) \Rightarrow (4). Let b be a p-block of N with $b^{G}=B$. By [3, Corollary 54.11 and Lemma 57.4], D is a defect group of b. Let $\psi \in \operatorname{Irr}(b)$ such that ψ has height zero. We can write $\psi^{G}=\sum_{i} u_{i} \chi_{i}$ where $\chi_{i} \in \operatorname{Irr}(G)$ and u_{i} is a non-negative integer for each i. Let $|D|=p^{d}$. If $\chi_{i} \in \operatorname{Irr}(B)$ and $u_{i} \neq 0$, then we have

$$
\begin{aligned}
\nu_{\mathrm{p}}\left(\mu_{\mathrm{i}} \chi_{\mathrm{i}}(1)\right) \geqslant \nu_{\mathrm{p}}\left(\chi_{\mathrm{i}}(1)\right) \geqslant \nu_{\mathrm{p}}(|G|) & -d \\
& =\nu_{\mathrm{p}}(|G: N|)+\nu_{\mathrm{p}}(|N|)-d=\nu_{\mathrm{p}}(|G: N|)+\nu_{\mathrm{p}}(\psi(1))=\nu_{\mathrm{p}}\left(\psi^{G}(1)\right)
\end{aligned}
$$

since ψ has height zero. Hence it follows from [2, (3A)] that there is some $\chi_{i} \in \operatorname{Irr}(B)$ such that $u_{i} \neq 0$ and $\nu_{p}\left(u_{i} \chi_{i}(1)\right)=\nu_{p}\left(\psi^{G}(1)\right)$. This implies that $\chi_{i} \in \operatorname{Irr}(B)$ has height zero by the above inequality. By Frobenius reciprocity, ψ is a component of $\left.\chi_{i}\right|_{N}$. Thus, (6) implies $\left.\chi_{i}\right|_{N}=\psi$.
(4) \Rightarrow (3). Clear.
$(5) \Rightarrow(2)$. Similar to the proof of $(6) \Rightarrow(4)$.
(2) \Rightarrow (3). Clear.
$(3) \Rightarrow(1)$. By Brauer's first main theorem [3, Theorem 58.3], there is a p-block b of N with defect group D such that $b^{G}=B$. Let $R=N_{b}$, so that $R \subseteq O_{p^{\prime}}(N)$ from [1, Proposition (3A)]. Let $\phi \in \operatorname{IBr}(b)$. By [1, Proposition (3D)] and [3, Theorem 53.9(ii)],
$R D \subseteq \operatorname{Ker} \phi$. Hence we can consider $\phi \in \operatorname{IBr}\left(b^{*}\right)$ for some p-block b^{*} of $N /(R D)$. By [3, Lemma 64.3(1)], $b^{*} \subseteq b$. Let $\psi \in \operatorname{Irr}\left(b^{*}\right)$. We can consider $\psi \in \operatorname{Irr}(b)$ with $R D \subseteq \operatorname{Ker} \psi$. Clearly, we may consider $\psi \in \operatorname{Irr}\left(N /\left(R D^{\prime}\right)\right)$. Since $(R D) /\left(R D^{\prime}\right)$ is an abelian normal subgroup of $N /\left(R D^{\prime}\right)$, we get from [4, V 17.10 Satz] that $\psi(1) \| N /(R D) \mid$. This shows that $\psi \in \operatorname{Irr}(b)$ has height zero since D is a defect group of b. Hence, by (3) there is some $\chi \in \operatorname{Irr}(B)$ with $\left.\chi\right|_{N}=\psi$. This shows $R D \subseteq \operatorname{Ker} \chi$. Hence $\{\chi \in \operatorname{Irr}(B) \mid R D \subseteq \operatorname{Ker} \chi\} \neq \varnothing$. Let $L=\bigcap\left\{\operatorname{Ker} \chi \mid \chi \in \operatorname{Irr}(B), R D^{\prime} \subseteq \operatorname{Ker} \chi\right\}$, so that $R D^{\prime} \subseteq L \cap N$. Let $\psi_{i} \in \operatorname{Irr}(b)$ with $R D^{\prime} \subseteq \operatorname{Ker} \psi_{i}$. As above, ψ_{i} has height zero. Thus, by (3) there is some $\chi_{i} \in \operatorname{Irr}(B)$ with $\left.\chi_{i}\right|_{N}=\psi_{i}$, so that $R D^{\prime} \subseteq \operatorname{Ker} \chi_{i}$. This implies $L \subseteq \bigcap_{i}$ Ker χ_{i}, so that

$$
L \cap N \subseteq \bigcap\left\{\operatorname{Ker} \psi \mid \psi \in \operatorname{Irr}(b), R D^{\prime} \subseteq \operatorname{Ker} \psi\right\}
$$

Next, we want to claim

$$
\begin{equation*}
\cap\left\{\operatorname{Ker} \psi \mid \psi \in \operatorname{Irr}(b), R D^{\prime} \subseteq \operatorname{Ker} \psi\right\}=R D^{\prime} \tag{*}
\end{equation*}
$$

Let $I=\left\{\psi \in \operatorname{Irr}(b) \mid R D^{\prime} \subseteq \operatorname{Ker} \psi\right\}=\left\{\psi_{1}, \ldots, \psi_{m}\right\}$. We have already shown $I \neq \varnothing$. Take any ψ_{i} with $1 \leqslant i \leqslant m$. Since $\mathrm{RD}^{\prime} \subseteq \operatorname{Ker} \psi_{i}$, we can consider $\psi_{i} \in \operatorname{Irr}\left(\bar{b}_{i}\right)$ for some p-block \bar{b}_{i} of $N /\left(R D^{\prime}\right)$. By [3, Lemma 64.3(1)], $\bar{b}_{i} \subseteq b$ for all $i=1, \ldots, m$. Then, $I=\bigcup_{i=1}^{m} \operatorname{Irr}\left(\bar{b}_{i}\right)$. Take any \bar{b}_{i} with $1 \leqslant i \leqslant m$. By [3, Lemma 64.3(1)], there is a p-block \tilde{b}_{i} of N / R with $\bar{b}_{i} \subseteq \tilde{b}_{i} \subseteq b$. Let $\tilde{F}=\bigcup_{i=1}^{m} \operatorname{IBr}\left(\tilde{b}_{i}\right)$ and $\bar{F}=\bigcup_{i=1}^{m} \operatorname{IBr}\left(\bar{b}_{i}\right)$. Take any \tilde{b}_{i}. Let $\phi \in \operatorname{IBr}\left(\tilde{b}_{i}\right)$. Since $\left(R D^{\prime}\right) / R$ is a normal p-subgroup of $N / R,\left(R D^{\prime}\right) / R \subseteq \operatorname{Ker} \phi$ from [3, Theorem 53.9(ii)]. Thus, $R D^{\prime} \subseteq \operatorname{Ker} \phi$ if we consider $\phi \in \operatorname{IBr}(b)$. Then, $\phi \in \operatorname{IBr}(\bar{b})$ for some p-block \bar{b} of $N /\left(R D^{\prime}\right)$. By [3, Lemma 64.3(1)], $\bar{b} \subseteq b$. Take any $\psi \in \operatorname{Irr}(\bar{b})$, so that $\psi \in \operatorname{Irr}(b)$ with $R D^{\prime} \subseteq \operatorname{Ker} \psi$. This shows $\psi \in I$. Hence $\bar{b}=\bar{b}_{j}$ for some j. So that $\phi \in \operatorname{IBr}\left(\bar{b}_{j}\right)$. Thus, we have $\tilde{F}=\bar{F}$. Then,

$$
\begin{align*}
\bigcap_{i=1}^{m} N_{\bar{b}_{i}}^{*}=\bigcap_{\phi \in \bar{F}} \operatorname{Ker} \phi \cong \\
=\left(\bigcap_{\phi \in \bar{F}}\left(\operatorname{Ker} \phi /\left(\left(R D^{\prime}\right) / R\right)\right)\right. \tag{**}\\
\operatorname{Ker} \phi) /\left(\left(R D^{\prime}\right) / R\right)=\left(\bigcap_{i=1}^{m} N_{\bar{b}_{i}}^{*}\right) /\left(\left(R D^{\prime} / R\right) .\right.
\end{align*}
$$

Take any \tilde{b}_{i}. Let $\tilde{\psi} \in \operatorname{Irr}\left(\tilde{b}_{\mathrm{i}}\right)$ By [1, Proposition (3B*)], $N_{\tilde{b}_{i}}=O_{\mathbf{p}^{\prime}}(\operatorname{Ker} \tilde{\psi})$. When we consider $\tilde{\psi} \in \operatorname{Irr}(b)$, we write ψ for $\tilde{\psi}$. Then, similarly $R=N_{b}=O_{p^{\prime}}(\operatorname{Ker} \psi)$. Since $\operatorname{Ker} \tilde{\psi}=(\operatorname{Ker} \psi) / R$, $N_{\bar{b}_{i}}=1$. Hence, by [1, Proposition (3D)], $N_{\bar{b}_{i}}^{*}$ is a p-group for all i. Thus, $\bigcap_{i=1}^{m} N_{b_{i}}^{*}$ is also a p-group from (**). Hence, by [1, Propositions (3A) and (3D)], $\bigcap_{i=1}^{m} N_{b_{i}}=1$. Since $\bigcap_{i=1}^{m} N_{b_{i}}=\left(\bigcap_{\psi \in I} \operatorname{Ker} \psi\right) /\left(R D^{\prime}\right)$, we get (${ }^{*}$).

Hence, $L \cap N=R D^{\prime}$. Let $K=\bigcap\{\operatorname{Ker} \chi \mid \chi \in \operatorname{Irr}(B), R D \subseteq \operatorname{Ker} \chi\}$. We get $K \cap N=$ $R D$ as for $L \cap N$. Since $D^{\prime} \subseteq L \cap D,(L D) / L$ is isomorphic to a factor group of D / D^{\prime}, so that $(L D) / L$ is abelian. We have shown that there is some $\chi \in \operatorname{Irr}(B)$ with $R D \subseteq \operatorname{Ker} \chi$. Hence $K \subseteq \operatorname{Ker} \chi$. We can consider $\chi \in \operatorname{Irr}(\bar{B})$ for some p-block \bar{B} of G / K, so that $\bar{B} \subseteq B$ by [3, Lemma 64.3(1)]. Then, by [3, Lemma 64.3(2)], D is a Sylow p-subgroup of K since $D \subseteq K$. Hence $(L D) / L$ is an abelian Sylow p-subgroup of K / L. Let $M / L=N_{K / L}((L D) / L)$. By Sylow's theorem, $M=L(M \cap N)$. Hence $M \subseteq L(K \cap N)=L(R D)=L D$, so that $(L D) / L=M / L$. Thus, by Burnside's theorem [3, Theorem 18.7], K / L is p-nilpotent. Let $C / L=O_{p^{\prime}}(K / L)$, so that $C \cap L D=L$. Hence, $C \cap D \subseteq L \cap D=L \cap N \cap D=R D^{\prime} \cap D=$ D^{\prime}. Since D is a p-group, $D^{\prime} \subseteq \Phi(D)$ where $\Phi(D)$ is the Frattini subgroup of D. Then it
follows from [4, IV 4.7 Satz] that C is p-nilpotent. Hence, $C=X(C \cap D)$ where $X=O_{\mathrm{p}},(C)$. Since X is normal in K and since $K=X D, K$ is also p-nilpotent. We know from [1, Proposition (3A)] that $N_{B} \subseteq O_{p^{\prime}}(K)$. On the other hand, there exists $\chi \in \operatorname{Irr}(B)$ with $R D \subseteq \operatorname{Ker} \chi$. By [1, Proposition (3B*)], $N_{B}=O_{p^{\prime}}($ Ker $\chi)$. Since $O_{p^{\prime}}(K)$ is normal in Ker $\chi, O_{\mathrm{p}^{\prime}}(K) \subseteq O_{p^{\prime}}(\operatorname{Ker} \chi)$. Hence $N_{\mathrm{B}}=O_{\mathrm{p}^{\prime}}(K)$. Then, by [1, Proposition (3D)], we have $K / N_{\mathrm{B}} \subseteq O_{\mathrm{p}}\left(G / N_{B}\right)=N_{\mathrm{B}}^{*} / N_{\mathrm{B}}$. Hence $D \subseteq N_{B}^{*}$. This completes the proof of the theorem.

Corollary 1. Let G, B, D and N be as above and satisfy $D \subseteq N_{B}^{*}$. Let b be a p-block of N with $b^{G}=B$. Then
(i) $p \backslash|G: N|$.
(ii) $k(b) \leqslant k(B)$.
(iii) $k_{0}(b) \leqslant k_{0}(B)$.

Proof. Since there exists $\psi \in \operatorname{Irr}(b)$ with height zero, we get (i) by Theorem (4). We have (ii) and (iii) from Theorem (2) and Theorem (4), respectively.

Corollary 2 (cf. [5, Theorems 2 and 4]). Let P be a Sylow p-subgroup of G, and let $N_{0}=N_{G}(P), B_{0}=B_{0}(G)$ and $b_{0}=B_{0}\left(N_{0}\right)$. Then the following are equivalent.
(1) G is p-solvable of p-length 1 .
(2) For each $\psi \in \operatorname{Irr}\left(b_{0}\right)$ there is some $\chi \in \operatorname{Irr}\left(B_{0}\right)$ such that $\left.\chi\right|_{N_{0}}=\psi$.
(3) For each $\psi \in \operatorname{Irr}\left(b_{0}\right)$ with $p \nmid \psi(1)$ there is some $\chi \in \operatorname{Irr}\left(B_{0}\right)$ such that $\left.\chi\right|_{N_{0}}=\psi$.
(4) If $\chi \in \operatorname{Irr}\left(B_{0}\right)$ then $\left.\chi\right|_{N_{0}} \in \operatorname{Irr}\left(N_{0}\right)$.
(5) If $\chi \in \operatorname{Irr}\left(B_{0}\right)$ with $p \nmid \chi(1)$ then $\left.\chi\right|_{N_{0}} \in \operatorname{Irr}\left(N_{0}\right)$.
(6) If $\phi \in \operatorname{IBr}\left(B_{0}\right)$ then $\left.\phi\right|_{N_{0}} \in \operatorname{IBr}\left(N_{0}\right)$.

Proof. Clearly, G is p-solvable of p-length 1 if and only if $P \subseteq O_{p^{\prime}, p}(G)$. By [3, Theorem 65.2(2)], $N_{B_{0}}^{*}=O_{p^{\prime}, p}(G)$. Since $p \nmid\left|G: N_{0}\right|$, by Brauer's third main theorem [3, Theorem 65.4], the corollary is a special case of the theorem.

Remark. Concerning kernels of representations of finite groups there is a result of G. O. Michler [6].

REFERENCES

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489-521.
2. R. Brauer, On blocks and sections in finite groups I, Amer. J. Math. 89 (1967), 1115-1136.
3. L. Dornhoff, Group representation theory, parts A and B, (Dekker, 1971-1972).
4. B. Huppert, Endliche Gruppen I, (Springer-Verlag, 1967).
5. I. M. Isaacs and S. D. Smith, A note on groups of p-length 1, J. Algebra 38 (1976), 531-535.
6. G. O. Michler, The kernel of a block of a group algebra, Proc. Amer. Math. Soc. 37 (1973), 47-49.

Department of Mathematics

Chiba University
1-33, Yayol-cho
Chiba-ctiy, 280
Japan

