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FOURTH-ORDER BOUNDARY VALUE PROBLEMS
AT NONRESONANCE

YI1SONG YANG

We establish under nonuniform nonresonance conditions an existence and uniqueness the-
orem for a linear, and the solvability for a nonlinear, fourth-order boundary value problem
which occurs frequently in plate deflection theory.

1 INTRODUCTION

The linear fourth-order boundary value problem

dy/dz* — f(z)y = g(x), O<z<]l,

W ¥(0)=v0, y(1)=w, ¥"(0) =%, ¥"(1)=

and its nonlinear version

d4y/dz4 - F(a:,y,y',y",y'")y = G(x’y,y',y",y"'), 0<z <1,

(2) " _ " ,
¥y(0) =30, ¥(1)=wm, ¥"(0)=%, y'(1)=h

occur frequently in plate deflection theory. Usmani [4] states an existence and unique-
ness theorem for problem (1) under the condition f(z) < 7* and in a recent communi-
cation [5] we observe that the existence and uniqueness theorem for problem (1) holds
under the general condition f(z) # k*n* for k = 1,2,.... This last condition restricts
the problem to the so-called uniform nonresonance case. In Section 2 we establish an
existence and uniqueness theorem for problem (1) under a nonuniform nonresonance
condition which allows some “partial” resonance, that is, the occurence of f(z) = k=*
on a subset of [0,1]. In Section 3 we apply the theorem obtained in Section 2 to es-
tablish a solvability theorem for the nonlinear problem (2), also under a nonuniform
nonresonance condition which improves some known results (for example, Aftabizadeh
(1}). Our argument below is a combination of the Fredholm alternative theorem and a
modification of the method developed by Nkashama and Willem [3]. Throughout this
paper all functions are assumed to be real and continuous.
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338 Y. Yang (2]

2 THE LINEAR PROBLEM

Let Im(F) denote the image of a function F: [0,1] — R and Int(A) the interior
of the set A CR.

THEOREM 1. Suppose that f(z) satisfies
(3a) 1 (k*n*) # [0,1], k=1,2,...,and
(4a) {k*n*: k =1,2,...}n Int(Im(f)) = 0.

Then Problem (1) has a unique solution.

Remarks. (1) The uniform nonresonance condittion which can be stated as {k%n%: k
=1,2,...}NnIm(f) = 0 satisfies conditions (3a) and (4a).

(2) Condition (3a) is in fact necessary for the uniqueness and existence of a solution
to problem (1), and this condition can be restated as

(3b) f(x) # k*n4, k=1,2,...

(3) Since, by the continuity of f, Im(f) is a closed interval, therefore condition

(4a) is equivalent to the statement that either

(4b) f(z) < = for all z € [0,1]

or there is some integer k > 1 such that

(4c) kim* < f(z) < (k+1)*r* for all z € [0,1].

(4a) is thus a condition which allows some “partial” resonance.

PROOF OF THEOREM 1: Let G(z,s) be the Green function of the problem

w'(z) = h(z), 0<z <1,
u(0) = w(1) = 0.

Then we can convert Problem (1) into an integral equation over the space C[0,1]:
(5) Y- Ty ==z

where
1 41
T = G(z,s)G(s, dtds, and
(Ty)(x) /; /0 (z,5)G(s,t)f(t)y(t) dids, an
1

1
:(z)=yo+x(y1-yo)+/o G(x,s>wo+s(gl—yo>+/o G(s,t)g(t) di] ds.
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Now it suffices to show that for any z € C[0,1], equation (5) is uniquely solvable in
the space €[0,1]. Since T : C[0,1] — C[0,1] is a linear compact operator, by the
well-known Fredholm alternatives (see, for example, Gilbarg and Trudinger [2, ptl])

we see that it will be enough to prove that the only solution of equation
(6) y-Ty=0
is the trivial solution y=0. We proceed as follows.
Convert equation (6) back into the boundary value problem
d*y/dz® - fz)y =0, 0<=z<1,
(7) ¥(0) =y(1) =" (0) = y"(1) = 0.

Since {v2sinjmz:j =1,2,...} is a complete orthonormal basis of L?[0,1], we have,
in L?[0,1],

oo
y= \/iz a;sin jrz,
=
[e o]
d'y/dz* = \/'22 ajjim? sin jrz.
j=1

Denote by (.,.) the standard inner product defined on LZ[0,1]. Then the selfadjointness

of the operator d*/dz? gives the relation

0 = (d*y/dz* — fy,y2 — 1)
= (d*y2/dz* — fy2,y2) — (d*y1/dz* — fy1, 1)

where the decomposition y = y; + y» is made such that

(8)

n=0 v, =y, if f satisfies (4b);
k
= \/52(11' sin jwx and
j=1

=V2 Z ajsinjre if f satisfies (4c).
j=k+1
If f satisfies (4b), we have from (8) and the Parseval equality that

0 = (d*y/dz*,y) — (fy,9)

oo

> S a(j4nt — ).

i=1
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Therefore a; =0, j = 2,3,.... Hence, y = V2a; sinwz . Inserting this into (7), we

get
a1 (7* — f(z)) sinwz = 0, for all z € {0, 1].

Now using (3b) we conclude that a; = 0,s0 y = 0. If f satisfies (4c), we have
(d*y2/de® — fya,92) 2 (d'y2/da?,y2) — (k + 1)*7*(y2,32)
= Z a'j (j47r4 —(k+ 1)471’4) 20
J=k+1

and

(dyi/dz* — fy1,y1) < (d*yi/dz?, 1) — k*n*(y1,91)

= Z a'j (j47r4 — k47r4) < 0.

=1

Substituting the above two inequalities into (8) we obtain

(9a) (d4'.l/2/dw4 - fyZ)'yZ) =0,
(9b) Z a?- (j41r4 - k47r4) =0,
j=k+1
(10a) (d'yi/dz® ~ fy1,y1) = 0
(10Db) Z a; (_7'47r4 - k47r4) = 0.
=1
Hence a; = 0, j # k,k+ 1. Consequently y; = V2aisinkmz and y, =

V2ax41 sin (k + 1)7z. Inserting these expressions into (10a) and (9a) respectively and
observing condition (3) we obtain ar = az+; =0, so again y = 0.

The proof of the theorem is now complete. ]
3 THE NONLINEAR PROBLEM

In this section we study the nonlinear problem (2). We use X to denote an arbitary
point in R*. First we formulate (3)—(4) type conditions for the function F(z,X).
(H) Suppose that F is a bounded function on [0,1] x R* and define a(z),b(z) €
L*[0,1] by
a(z) = i}}fF(:c, X), b(x)= st‘lrp F(z, X),

where the measurability of a and b is assumed. Assume further that either b(z) < =*

a.e. or there is an integer k such that k%z? < a(z) < b(z) < (k+1)*n* ae. and

moreover, neither a~!(k*r*) nor b~ (k*r*) is a measure of 1.
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THEOREM 2. If G(z,X) is a bounded function and function F(z,X) satisfies

hypothesis (H), then Problem (2) has at least one solution.

PROOF: The proof uses Theorem 1 and the Schauder fixed point theorem. Define
amap T :C?[0,1] — C?*[0,1] by w = Tw, where u,w are related by

d*u/dz?* — F(z,w,w',w", w" )u = G(z,w,w',w",w""), 0<z <,

(11)
u(O) = Yo, 'lL(l) = Y1, '“'”(O) = :’:’05 'lL”(].) = 371-

We see easily that f(z) = F(z,w(z),w'(z),w"(x),w" (z)) satisfies conditions (3) and
(4) so the map T is well-defined. First we show that the image of T', Im(T) say,is a
bounded subset of C3[0,1].

Otherwise if Im(T') is not bounded, then there is a sequence {w,} in C*[0,1] such

that u«,, = Tw,, satisfies
(12) [tnlgsp,) — o0 as n — oo:

To simplify notation, in the following we denote by |e]; the standard norm of the space
(''[0,1]. We shall see below that {|u,|o} being bounded is equivalent to {|un|s} being

bounded, thus we can assume from (12) that

(13) an = |un]o — 00 as n — oo.

"

In Problem (11), put v, = u,/a, and fa(z) = F(z,wa(z),wy(z),w,(x),w,/(z)).
Since {fn} is a bounded sequence in L2{0,1], we may assume that {f,} is weakly
convergent to some fo € L?[0,1]. Then from

/0] (z)h(z) d /fn(a; m</01b(m)h(a:)d:c

for all h € L°°[0,1] with h(z) = 0 a.e., we see that
(14) a(z) € fo(z) < b(z), a.e. on [0,1].
On the other hand, since {v,} satisfies

dv,/dz? — fo(z)vn = G(z,Wn, 0, wh,w0n' ) an, 0<z <1,

(15)
’U,,(O) = yO/“’ny Un(l) = yl/ana '0::( ) = yO/“n) ’U::(l) = gl/anv

therefore {d%v,,/dz*} is a bounded sequence in C|[0,1]. Define

Vo = vy — [0l (0) + z( (1) —v,(0))]-
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Then {V'} is a bounded sequence in C[0,1] and V,(0) = V(1) = 0. The mean value
theorem says that there is a point #,, € [0,1] such that V,!(z,) = 0. Hence the formula

Va(z) =/ V.!'(s) ds
implies that {V!} is a bounded sequence in C[0,1]. Moreover,
Va(z) =/ Vi(s)ds
0

gives the boundedness of {V,,} in C[0,1]. This shows that {V,}, and hence {v,,}, is
a bounded sequence in C?[0,1]. A similar argument proves that {v,} is a bounded
sequence in C?*[0,1]. Consequently {v,} is a bounded sequence in C*[0,1]. Now by the
compact embedding C*[0,1] — C?3[0,1] we can assume for convenience that v, — v,
in C?[0,1] for some vo € C3[0,1]. Finally, letting n — oo in (15) we easily conclude

that vj'(z) is absolutely continuous and v, satisfies:

d*vy/dz* — fo(z)vg = 0, a.e. on [0,1],
v9(0) = vo(1) = vy (0) = vy (1) = 0.

We readily verify as was done in Section 2 that vy = 0. This contradicts the fact that
|volo = 1 since v, — v in C*[0,1] and |vnlo =1, n =1,2,....

To use the Schauder fixed point theorem, it remains to show that T is completely
continuous.

The compactness of T follows from the compactness of cl(Im(7T)) where we
use notation cl(4) to denote the closure of a set A in an appropriate space. Let
tn € Im(T), then {u,} is a bounded sequence in C3[0,1]. Assume u, = Tw,,
fn = F(z,wp,w!,w),w") and g, = G(z,wn,w,,wn,w:'). Then in Problem (11) the
boundedness of {f,} and {g.} in C[0,1] implies the boundedness of {d*u,/dz*} in
C[0,1]. Therefore {un} is a bounded sequence in C*[0,1]. Again using the compact
embedding C*[0,1} — C*[0,1] we conclude that there is a subsequence of {u,} which
converges in C*[0,1]. Hence cl(Im(7')) is compact.

Continuity follows from the fact that w, — wo in C*[0,1] implies that w, =
Tw, — wo = Twe in C?[0,1]. We shall argue by contradiction.

“Suppose that |u, —ugls # 0. Then by going to a subsequence if necessary, we may
assume that |u, — ugfz3 2 ¢ > 0, n =1,2,..., for some constant c¢. The compactness
of T says that there is a subsequence, which we still denote by {u,} for convenience,
such that u, — vo in C3[0,1]. Noting that w,, — wp in C?[0,1] in the following

4 4 ' " " ' n "
d’u,,/dz” — F(m)u’na'wnawn"wn Jun = G(T,Wn, W, w,, Wy )a 0<e <1,

un(o) = Yo, un(l) =Y, ”(L:(O) = Yo, ulr:(l) =i,
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we see immediately that vo € C*[0,1] and vy = Twy. But Theorem 1 says that
vy = ug, thus giving a contradiction.

Now we know that T': C3[0,1] — C3[0,1] is completely continuous and Im(T) is
bounded. Let M > 0 be large so that

Im(T) C B = {v € C3[0,1]: |uls < M}.

Then T sends B into B, so T has at least one fixed point y € B by the Schauder
fixed point theorem. This y is a solution to Problem 2. [ ]
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