
BULL. AUSTRAL. MATH. SOC. 34BO5, 34B10

VOL. 37 (1988) [337-343]

FOURTH-ORDER BOUNDARY VALUE PROBLEMS
AT NONRESONANCE

YISONG YANG

We establish under nonuniform nonresonance conditions an existence and uniqueness the-
orem for a linear, and the solvability for a nonlinear, fourth-order boundary value problem
which occurs frequently in plate deflection theory.

1 INTRODUCTION

The linear fourth-order boundary value problem

d4y/dx4 - f{x)y = g{x), 0 < x < 1,

y(0) = y0> y(l) = »a, »"(O) = yo, y"(l) = »i

and its nonlinear version

d*y/dx* - F(x,y,y',y",y'")y = G(x,y,y',y" ,y'"), 0 < x

y(0) = y0> y(l) = y», y"(O) = yo, y" ( l )=y i

occur frequently in plate deflection theory. Usmani [4] states an existence and unique-
ness theorem for problem (1) under the condition f(x) < n4 and in a recent communi-
cation [5] we observe that the existence and uniqueness theorem for problem (1) holds
under the general condition /(x) ^ k4n4 for k = 1,2,... . This last condition restricts
the problem to the so-called uniform nonresonance case. In Section 2 we establish an
existence and uniqueness theorem for problem (1) under a nonuniform nonresonance
condition which allows some "partial" resonance, that is, the occurence of f(x) — k4ir4

on a subset of [0,1]. In Section 3 we apply the theorem obtained in Section 2 to es-
tablish a solvability theorem for the nonlinear problem (2), also under a nonuniform
nonresonance condition which improves some known results (for example, Aftabizadeh
[1]). Our argument below is a combination of the Fredholm alternative theorem and a
modification of the method developed by Nkashama and Willem [3]. Throughout this
paper all functions are assumed to be real and continuous.
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2 T H E LINEAR PROBLEM

Let lm(F) denote the image of a function F: [0,1] —* R and Int(.A) the interior
of the set A C R .

THEOREM 1. Suppose that f(x) satisfies

(3a) /" ' (A:4*4) ^ [0,1], k = 1 ,2 , . . . ,and

(4a) {k4n4 : jfe = 1, 2 , . . . } n Int(Im{f)) = 0.

Then Problem (1) has a unique solution.

Remarks . (1) The uniform nonresonance condittion which can be stated as {k4n4 : k

— 1, 2,. . . } fl Im(/) = 0 satisfies conditions (3a) and (4a).

(2) Condition (3a) is in fact necessary for the uniqueness and existence of a solution

to problem (1), and this condition can be restated as

(3b) f(x)^k*n\ fc = l ,2 , . . .

(3) Since, by the continuity of / , Im(/) is a closed interval, therefore condition

(4a) is equivalent to the statement that either

(4b) f(x) < 7T4 for all x e [0,1]

or there is some integer k ^ 1 such that

(4c) fc47r4 ^ f(x) «S (k + 1 ) V for all x G [0,1].

(4a) is thus a condition which allows some "partial" resonance.

PROOF OF THEOREM 1: Let G(x,s) be the Green function of the problem

w"(x) = h(x), 0 < x < 1,

u(0) =u(l ) =0 .

Then we can convert Problem (1) into an integral equation over the space C[0, l ] :

(5) y-Ty = z

where

{Ty)(x)= I I G(x,s)G(s,t)f(t)y(t)dtds, and
Jo Jo

z(x) = 3/o +x(j/i -t/o) + / G(x,s)[yo +s(y! -yo)+ G(s,t)g(t) dt] ds.
Jo Jo
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Now it suffices to show that for any z £ C'[0,l], equation (5) is uniquely solvable in
the space C'[0,1]. Since T : C[0,1] —> C[0,1] is a linear compact operator, by the
well-known Fredholm alternatives (see, for example, Gilbarg and Trudinger [2, p71])
we see that it will be enough to prove that the only solution of equation

(6) y-Ty = 0

is the trivial solution y=0. We proceed as follows.

Convert equation (6) back into the boundary value problem

d4y/dx4 - f(x)y = 0, 0 < x < 1,

(7) y(0)=y(l) = y"(0)=y"(l)=0.

Since {v2sin jnx : j' — 1,2,. . . } is a complete orthonormal basis of £2[0,1], we have,
in L2 [0,1],

oo

y = V2 2^ aj sin jirx,
J=I

00

diy/dx4 = v2 j _ ^ ajj4^4 sin jirx.
J=I

Denote by (.,.) the standard inner product denned on L2[0,1]. Then the selfadjointness
of the operator d4 jdx4 gives the relation

0 = (d4y/dx4 - fy,y2 - Vl)
\ )

= {d4y2/dx4 - fy2,y2) - {d4y1/dx4 - fyuyi)

where the decomposition y = yi + 3/2 is made such that

V\ = 0 , V2 - y, if / satisfies (4b);
k

j/i = v 2 jf aj sin^Tra; and
i=i

00

3/2 = v2 y ajsinJTrx if / satisfies (4c).
i=k+i

If / satisfies (4b), we have from (8) and the Parseval equality that

0^{d4y/dx4,y)-(fy,y)
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Therefore ay = 0 , j = 2 , 3 , . . . . Hence, y — \/2a\ sin nx. Inserting this into (7), we

get
ai{^4 - /(x))sin7rx = 0, for all x G [0,1].

Now using (3b) we conclude that aj = 0, so y — 0. If / satisfies (4c), we have

(d4y2/dx4 - fy2,y2) > (d4y2/dx4,y2) - (k + l)47r4(y2,y2)

and

(d4ys/dx4 - fyuVi) < {d4
yi/dx4,yi) - k4*\yi,

Substituting the above two inequalities into (8) we obtain

(9a) (d4y2/dx4-fy2,y2)=0,
OO

(9b) ]T a?(jV-*<*«)=<),
j=k+1

(10a) {d4yi/dx4~fyi,yi)=0

k

(10b)

Hence a.j = 0, j ^ k,k + 1. Consequently t/j = \/2afc sin knx and y2 =

v/^afc+j sin(fc + 1)TTX. Inserting these expressions into (10a) and (9a) respectively and

observing condition (3) we obtain a* = ajt+1 = 0, so again y = 0.

The proof of the theorem is now complete. |

3 THE NONLINEAR PROBLEM

In this section we study the nonlinear problem (2). We use X to denote an arbitary
point in R4 . First we formulate (3)-(4) type conditions for the function F(x,X).

(H) Suppose that F is a bounded function on [0,1] x R4 and define a(x),b(x) G

£°°[0,l] by
a(x) =in{F{x,X), b(x) = supF{x,X),x x

where the measurability of a and b is assumed. Assume further that either b(x) ^ IT4

a.e. or there is an integer k such that k4ir4 ^ a(x) ̂  b(x) < (k + 1) rr4 a.e. and
moreover, neither a"1 (fc4?r4) nor 6-1(A;47r4) is a measure of 1.
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THEOREM 2. If G(x,X) is a bounded function and function F(x,X) satisfies

hypothesis (H), then Problem (2) has at least one solution.

PROOF: The proof uses Theorem 1 and the Schauder fixed point theorem. Define

a map T : C'3[0,1] -+ C'3[0,1] by u = Tw, where u, w are related by

d4u/dx4 - F(x,w,w',w",w'")u = G(x,w,w',w",w"'), 0 < x < 1,

«(0) = y0, «(l) = yi, «"(O) = j/o, «"(l) = y1.

We see easily that f(x) — F(x,w(x),w'(x),w"(x),iu'"(x)) satisfies conditions (3) and
(4) so the map T is well-defined. First we show that the image of T, Im(T) say, is a
bounded subset of C3[0,1].

Otherwise if Im(T) is not bounded, then there is a sequence {wn} in C'3[0,1] such
that. ((.„ = Twn satisfies

(12) lwn|c3[0,i] -» oo as n -> oo:

To simplify notation, in the following we denote by | • |; the standard norm of the space
C"[0,l]. We shall see below that {|wn|o} being bounded is equivalent to {|«n|4} being
bounded, thus we can assume from (12) that

(13) on = |un|0 -» oo as n - t oo.

In Problem (11), put vn = wn/an and fn(x) = F{x,wn(x),w'n(x),w',[(x),w'1!l'(x)).

Since {/n} is a bounded sequence in Z2[0,l], we may assume that {/„} is weakly

convergent to some /o € L2[0,l]. Then from

/ a(x)h{x) dx < / fn(x)h(x) dx ^ f b(x)h{x) dx
Jo Jo Jo

for all h 6 I°°[0,l] with h(x) ^ 0 a.e., we see that

(14) a(x) < fo(x) < b(x), a.e. on [0,1].

On the other hand, since {vn} satisfies

d4vn/dx4 -fn(x)vn=: G(x,wn,w'n,w'^w")/an, 0 < x < l ,

vn(0) = yo/an, vn(l) = y1/an, < ( 0 ) = yo/an, v'^(l) = y1/an,

therefore {d4vn/dx4} is a bounded sequence in C[0,1]. Define
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Then {V^'} is a bounded sequence in C[0,1] and V,,(0) = Vn(l) = 0 . The mean value

theorem says that there is a point xn £ [0, l] such that V^(xn) = 0. Hence the formula

= / * ds

implies that {V^} is a bounded sequence in C[0,l]. Moreover,

gives the boundedness of {Vn} in C'[0,l]. This shows that {V^}, and hence {v1^} , is
a bounded sequence in C2[0,1]. A similar argument proves that {vn} is a bounded
sequence in C2[0,1]. Consequently {vn} is a bounded sequence in C4[0,1]. Now by the
compact embedding C4[0,l] —> C'3[0,1] we can assume for convenience that vn —*'VQ

in C3[0,l] for some VQ 6 C'3[0,l]. Finally, letting n - too in (15) we easily conclude
that V'Q'(X) is absolutely continuous and VQ satisfies'

d4vo/dx4 — fo(x)vo = 0, a.e. oil [0,1],

We readily verify as was done in Section 2 that v0 = 0. This contradicts the fact that
|vo|o = 1 since vn —> v0 in C'3[0,l] and |un|0 = 1, ra = 1,2,... .

To use the Schauder fixed point theorem, it remains to show that T is completely
continuous.

The compactness of T follows from the compactness of cl(Im(T)) where we
use notation d(A) to denote the closure of a set A in an appropriate space. Let
un G Im(T), then {un} is a bounded sequence in C3[0,l]. Assume tin = Twn,
/„ - F(x,wn,w'n,iu'^w'X) and gn = G(xtwn,w'n,w'^,w^). Then in Problem (11) the
boundedness of {/„} and {gn} in C[0,l] implies the boundedness of {d4un/dx4} in
C'[0,l]. Therefore {un} is a bounded sequence in G'4[0,l]. Again using the compact
embedding C4[0,l] —> C3[0,l] we conclude that there is a subsequence of {itn} which
converges in C3[0,1]. Hence cl(Im(T)) is compact.

Continuity follows from the fact that wn —> w0 in C3[0,l] implies that un =
Txi'n —* uo = Two in C'3[0,l]. We shall argue by contradiction.

Suppose that |wn — u0 \3 -/+ 0 . Then by going to a subsequence if necessary, we may
assume that \un — uo\3 ^ c > 0, n = 1,2,... , for some constant c. The compactness
of T says that there is a subsequence, which we still denote by {wn} for convenience,
such that un -» v0 in C3[0,l]. Noting that wn —> ti»o in C3[0,1] in the following

d4un/dx4 - F(x,wn,w'n,w'^,iv'J,')un = G(x,wn,w'n,w'^,w"), 0 < x < 1,

«n(0)=y0 , « n ( l ) = » i , <(0) = y0, < ( l ) = yi,
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we see immediately that v0 6 C"4[0,1] and v0 = Tw0 . But Theorem 1 says that

v0 = iio , thus giving a contradiction.

Now we know that T : C3[0,1] —• C3[0,l] is completely continuous and Im(T) is

bounded. Let M > 0 be large so that

I m ( r ) C B = {u € C3[0,1]: |u|3 ^ M}.

Then T sends B into B, so T has at least one fixed point y € B by the Schauder

fixed point theorem. This y is a solution to Problem 2. |
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