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On Z-Modules of Algebraic Integers

J. P. Bell and K. G. Hare

Abstract. Let q be an algebraic integer of degree d ≥ 2. Consider the rank of the multiplicative

subgroup of C∗ generated by the conjugates of q. We say q is of full rank if either the rank is d − 1 and

q has norm ±1, or the rank is d. In this paper we study some properties of Z[q] where q is an algebraic

integer of full rank. The special cases of when q is a Pisot number and when q is a Pisot-cyclotomic

number are also studied. There are four main results.

(1) If q is an algebraic integer of full rank and n is a fixed positive integer, then there are only finitely many

m such that disc
`

Z[qm]
´

= disc
`

Z[qn]
´

.

(2) If q and r are algebraic integers of degree d of full rank and Z[qn] = Z[rn] for infinitely many n, then

either q = ωr ′ or q = Norm(r)2/dω/r ′, where r ′ is some conjugate of r and ω is some root of unity.

(3) Let r be an algebraic integer of degree at most 3. Then there are at most 40 Pisot numbers q such that

Z[q] = Z[r].

(4) There are only finitely many Pisot-cyclotomic numbers of any fixed order.

1 Introduction

In this paper we study some properties of Z[q], where q is an algebraic integer of

full rank. As well, we study the special cases of Pisot numbers and Pisot-cyclotomic

numbers. We begin by recalling the definition of full rank.

Definition Let q be an algebraic integer of degree d ≥ 2. Consider the rank of the

multiplicative subgroup of C∗ generated by the conjugates of q. We say q is of full

rank if either the rank is d − 1 and q has norm ±1, or the rank is d.

It is worth observing that if the multiplicative subgroup of C∗ generated by the

conjugates of q has rank d, then q cannot have norm ±1. As we later show, an impor-

tant class of full rank algebraic integers is given by the collection of Pisot numbers.

Definition A Pisot number is a real algebraic integer greater than 1, all of whose

conjugates are of modulus strictly less than 1.

Our first result is the following theorem.

Theorem 1.1 For a given algebraic integer q of full rank and a fixed positive integer n,

there are only finitely many m for which disc
(

Z[qm]
)

= disc
(

Z[qn]
)

. Hence there are

only finitely many m such that Z[qm] = Z[qn].
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From this we obtain the following corollary.

Corollary 1.2 Let q be an algebraic integer of full rank. Then the absolute value of the

discriminant of qn tends to infinity as n → ∞.

We next consider under which conditions on two algebraic integers q and r we can

have Z[qn] = Z[rn] for infinitely many n.

Theorem 1.3 Let q and r be full rank algebraic integers of degree d. If Z[qn] = Z[rn]

for infinitely many n, then either q = ωr ′ for some conjugate r ′ of r and some root of

unity ω, or q = Norm(r)2/dω/r ′ for some conjugate r ′ of r and some root of unity ω.

Relating this theorem to Pisot numbers gives the following result.

Corollary 1.4 Let q and r be Pisot numbers. Suppose that Z[qn] = Z[rn] for infinitely

many n. Then q = r.

For Pisot numbers q and r of small degree we can in fact obtain upper bounds on

the number of n for which Z[qn] = Z[rn].

Theorem 1.5 Let r be an algebraic integer of degree at most 3. Then there are at most

40 Pisot numbers q such that Z[q] = Z[r].

It should be mentioned that in practice no example has been found of an algebraic

integer r of degree 3 for which there are more than 7 Pisot numbers q satisfying

Z[q] = Z[r].

An important application of Theorem 1.5 is the determination of Pisot-cyclotomic

numbers.

Definition A Pisot-cyclotomic number of order n is a Pisot number q such that

Z[q] = Z[βn], where βn = 2 cos
(

2π
n

)

.

Pisot-cyclotomic numbers have applications to the study of quasicrystals and

quasilattices [3, 4]. Methods to find Pisot-cyclotomic numbers of higher orders re-

quire solutions to homogeneous Diophantine problems in several variables and are

the obvious extension to Theorem 1.5. This is discussed further in [1].

The last result of this paper implies that there are only finitely many Pisot-

cyclotomic numbers of order n for any fixed n. In fact, a stronger result is given.

Theorem 1.6 Let r be a Pisot number with the property that all of its conjugates lie in

the extension Q(r). Then there are only finitely many Pisot numbers q with the property

that Z[q] = Z[r].

Corollary 1.7 There are only finitely many Pisot-cyclotomic numbers of any fixed

order.

Theorem 1.1 is proved in Section 4. Theorem 1.3, along with some interesting

results concerning unitary matrices, is shown in Section 5. Section 6 gives a proof of

Theorem 1.5. Section 7 gives of proof of Theorem 1.6 using the Schmidt Subspace

Theorem. Section 8 lists some possible future work and some open problems in this

area.
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2 Background on the Discriminant

Throughout this paper we use the discriminant of an algebraic integer in our consid-

erations. Given an algebraic integer q with conjugates q = q0, q1, . . . , qd−1, we define

the discriminant of q to be

disc(q) :=
∏

0≤i< j<d

(qi − q j)
2
=

(

det
(

q
j−1
i−1

) d

i, j=1

) 2

.

The following theorem is a famous result which shows the utility of discriminants.

Theorem 2.1 Let q and r be algebraic integers. If Z[q] = Z[r], then disc(q) = disc(r).

Conversely, if q and r are algebraic integers of the same degree with disc(q) = disc(r)

and Z[q] ⊂ Z[r], then Z[q] = Z[r].

Proof cf. Marcus [6, Theorem 11 and exercise 27 on page 45].

From the first part of the Theorem, we observe that we can define disc(Z[q]) =

disc(q) where q is any algebraic integer that generates the ring.

3 Algebraic Integers of Full Rank

In this section we prove some important facts about algebraic integers of full rank.

Proposition 3.1 Every Pisot number is of full rank.

Proof Let q be a Pisot number and let q = q0, . . . , qd−1 denote its conjugates. Let m

denote the norm of q. Suppose that

(3.1) qa0

0 · · · q
ad−1

d−1 = 1.

Let j = max{−ai | 0 ≤ i < d}. Then j +ai ≥ 0 for 0 ≤ i < d and there exists some k

such that j + ak = 0. Then multiplying both sides of equation (3.1) by (q0 · · · qd−1) j

we get

(3.2) q
j+a0

0 · · · q
j+ad−1

d−1 = m j.

Now since the Galois group of Q(q0, . . . , qd−1)/Q acts transitively on the conjugates

of q, there is an automorphism σ which sends qk to q = q0. Applying σ to both sides

of equation (3.2), we see that there exist nonnegative integers b1, . . . , bd−1 such that

qb1

1 · · · q
bd−1

d−1 = m j . Since q is a Pisot number, |q1|, . . . , |qd−1| < 1. Since |m| ≥ 1,

we see that b1 = b2 = · · · = bd−1 = 0 and |m| = 1. Thus if the norm of q is not

±1, then the multiplicative group generated by the conjugates of q has rank d. If the

norm is equal to ±1, then the only relations in the multiplicative group are of the

form (q0 · · · qd−1) j
= 1. Hence the multiplicative group has rank d − 1. Thus q has

full rank.
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Proposition 3.2 Let q be an algebraic integer of full rank having conjugates q =

q0, q1, . . . , qd−1. Suppose for some integers a0, . . . , ad−1 satisfying either

• at least one of the ai is 0; or
• the ai sum to 0,

that
∏

i qai

i is a root of unity. Then all the ai are 0.

Proof By replacing each ai by mai for some appropriate m, we may assume that the

root of unity is in fact 1. If the norm of q is not ±1, then since the multiplicative group

generated by q = q0, . . . , qd−1 has rank d, we conclude that a0 = · · · = ad−1 = 0.

Thus we may assume that q has norm ±1. Let G denote the multiplicative group

generated by q0, . . . , qd−1. Then we have a surjection Zd → G. By assumption, the

kernel of this map is a subgroup of rank 1. Since it is finitely generated and torsion

free the kernel is isomorphic to Z. Notice that q2
0 · · · q2

d−1 = 1 and so by the above

remarks if qa0

0 · · · q
ad−1

d−1 = 1, then a0 = a1 = · · · = ad−1. Thus if ai = 0 for some i or

a0 + · · · + ad−1 = 0, we must have that all the ai are 0.

It should be noted that Proposition 3.2 is true if we replace algebraic integers with

algebraic numbers. This generality was not needed for this paper.

4 Proof of Theorem 1.1.

Throughout the rest of the paper, we take Sm to be the set of permutations of

{0, 1, . . . , m − 1}.

An important result we use is the so-called Skolem–Mahler–Lech theorem. See,

for example, Lech [5].

Theorem 4.1 (Skolem–Mahler–Lech) Suppose that a rational function over a field

of characteristic 0 whose series expansion
∑∞

i=0 ciz
i has infinitely many ci = 0. Then

there exist integers a, b with 0 ≤ b < a such that cam+b = 0 for all m sufficiently large.

Corollary 4.2 Suppose that a rational function over a field of characteristic 0 whose

series expansion f (z) :=
∑∞

i=0 ciz
i has infinitely many ci = C for some constant C.

Then there exist integers a, b with 0 ≤ b < a such that cam+b = C for all m sufficiently

large.

Proof Consider g(z) = f (z) − C
1−z

.

Lemma 4.3 Let q be an algebraic integer with conjugates q = q0, . . . , qd−1 and let An

denote the d × d matrix whose (i, j) entry is q
( j−1)n
i−1 . Then for 0 ≤ b < a, the power

series
∑∞

n=1 det(Aan+b)zn is a rational function whose poles are of the form
∏d−1

i=0 q−aσ(i)
i

with σ ∈ Sd.
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Proof Using the Vandermonde formula for det(An), we see

F(z) :=

∞
∑

n=0

det(Aan+b)zn

=

∑

σ∈Sd

∞
∑

n=0

sgn(σ)(qσ(0)
0 · · · qσ(d−1)

d−1 )an+bzn

=

∑

σ∈Sd

sgn(σ)(qσ(0)
0 · · · qσ(d−1)

d−1 )b
∞
∑

n=0

(qσ(0)
0 · · · qσ(d−1)

d−1 )anzn

=

∑

σ∈Sd

sgn(σ)(qσ(0)
0 · · · qσ(d−1)

d−1 )b
( 1

1 − qaσ(0)
0 · · · qaσ(d−1)

d−1 z

)

.

Hence F(z) is a rational function whose poles are of the form
∏

i q−aσ(i)
i with σ ∈ Sd.

Again, Lemma 4.3 is valid with algebraic integers replaced with algebraic numbers,

but this generality was not needed for this paper.

Proof of Theorem 1.1 Let q = q0, q1, . . . , qd−1 denote the conjugates of q and let An

denote the d × d matrix whose (i, j)-th entry is q
n( j−1)
i−1 . We note that qn

i 6= qn
j for

distinct conjugates qi and q j of q since q has full rank. Hence

det(An)2
= disc(Z[qn])

Suppose there is an infinite subset S of N such that disc(Z[qn]) is constant for n ∈ S.

By Theorem 2.1, there is some constant C such that det(An) = C for infinitely many

n ∈ S. Let

F(z) :=

∞
∑

n=0

det(An)zn.

Then by Lemma 4.3, F(z) is a rational function. Now suppose that det(An) is equal

to C for infinitely many n. By Theorem 4.1, there exist a, b such that det(Aam+b) = C

for all m sufficiently large. Hence

G(z) :=

∞
∑

m=0

det(Aam+b)zm
= P(z) + C/(1 − z),

for some polynomial P(z). By Lemma 4.3, G(z) is a rational function whose poles are

of the form
∏

i q−aσ(i)
i with σ ∈ Sd. Since σ(i) = 0 for some i and q has full rank, we

see that none of the poles are roots of unity by Proposition 3.2. Consequently, for a

given integer k there are at most finitely many n for which disc(Z[qn]) = k.
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5 Proof of Theorem 1.3

Throughout this section q and r are algebraic integers of full rank, and degree d. We

shall also use q = q0, . . . , qd−1 and r = r0, . . . , rd−1 to denote the conjugates of q

and r respectively. For convenience, we take Sd to be the group of permutations of

{0, 1 . . . , d − 1}. We define

X(σ) =

d−1
∏

j=0

q
σ( j)
j and Y (σ) =

d−1
∏

j=0

r
σ( j)
j

and we define

v(σ) := (σ(0), . . . , σ(d − 1)) ∈ Q
1×d.

Finally, we let Pd = {v(σ) | σ ∈ Sd}.

Lemma 5.1 The Q-vector space spanned by Pd is Q1×d; moreover, a basis is given by

{v(id)} ∪ {v((i, i + 1)) | 0 ≤ i ≤ d − 2}.

Proof We claim that

S = {v((i, i + 1)) − v(id) | 0 ≤ i ≤ d − 2}

is linearly independent. To see this, suppose that

d−2
∑

i=0

ci

(

v((i, i + 1)) − v(id)
)

= (0, 0, . . . , 0).

Then for 0 ≤ j ≤ d − 1 we have

d−2
∑

i=0

ci(δ j,i − δ j,i+1) = 0.

Taking j = 0, we see that c0 = 0. We also have c j − c j−1 = 0 for 1 ≤ j ≤ d − 2 and

so c0 = · · · = cd−2 = 0. Thus S is linearly independent. Notice that the sum of the

entries of each element of S is equal to 0 and hence v(id) cannot possibly be in the

span of S. It follows that

{v((i, i + 1)) | 0 ≤ i ≤ d − 2} ∪ {v(id)}

is a basis for Q1×d.

Lemma 5.2 Suppose that for every σ ∈ Sd there is some τ ∈ Sd such that X(σ) =

Y (τ). Then there is a d × d matrix E with rational entries such that whenever X(σ) =

Y (τ), we have v(τ) = v(σ)E; moreover the row sums of E are all equal to 1.
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Proof Take a basis {v(σ0), . . . , v(σd−1)} for the Q-vector space spanned by Pd. Then

we can find τ0, . . . , τd−1 such that X(σi) = Y (τi) for 0 ≤ i < d. Since {v(σi) | 0 ≤
i < d} is a basis, there is a unique matrix E such that v(τi) = v(σi)E for 0 ≤ i < d.

Let σ ∈ Sd. Then there exist integers a0, . . . , ad−1 and b 6= 0 such that

(5.1) bv(σ) = a0v(σ0) + · · · + ad−1v(σd−1).

Right-multiplying both sides of equation (5.1) by the vector (1, 1, . . . , 1)T, we see

that

b

(

d

2

)

= (a0 + · · · + ad−1)

(

d

2

)

.

Right-multiplying both sides of equation (5.1) by E, we see

bv(σ)E = a0v(τ0) + · · · + ad−1v(τd−1).

Write bv(σ)E = (c0, . . . , cd−1). Then

c0 + · · · + cd−1 = (a0 + · · · + ad−1)

(

d

2

)

= b

(

d

2

)

.

Now
d−1
∏

i=0

rci

i =

d−1
∏

i=0

Y (τi)
ai

=

d−1
∏

i=0

X(σi)
ai

= X(σ)b.

By assumption there is some τ such that X(σ) = Y (τ), and so

d−1
∏

i=0

rci

i =

d−1
∏

i=0

rbτ (i)
i .

Equivalently,
d−1
∏

i=0

rci−bτ (i)
i = 1.

Notice that
d−1
∑

i=0

(

ci − bτ(i)
)

=

d−1
∑

i=0

ci − b

(

d

2

)

= 0.

Thus, ci = bτ(i) for all i by Proposition 3.2, and so we see that v(τ) = v(σ)E for each

σ ∈ Sd.

To show that the row sums of E are all equal to 1, we use our basis of row vectors.

Using the fact that v(τ) = v(σ)E, we see







v(σ0)
...

v(σd−1)













1 · · · 1
...

. . .
...

1 · · · 1






=







cv(τ0)
...

v(τd−1)






E







1 · · · 1
...

. . .
...

1 · · · 1
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Furthermore, we have







v(σ0)
...

v(σd−1)













1 · · · 1
...

. . .
...

1 · · · 1






=







v(τ0)
...

v(τd−1)













1 · · · 1
...

. . .
...

1 · · · 1






=

(

d

2

)







1 · · · 1
...

. . .
...

1 · · · 1






.

From this we get







v(τ0)
...

v(τd−1)













1 · · · 1
...

. . .
...

1 · · · 1






=







v(τ0)
...

v(τd−1)






E







1 · · · 1
...

. . .
...

1 · · · 1







Since q and r are of full rank, we see that {v(τi) | 0 ≤ i ≤ d − 1} is a basis for Qd×1.

Hence the matrix whose i-th row is v(τi) is invertible and so we see







1 · · · 1
...

. . .
...

1 · · · 1






= E







1 · · · 1
...

. . .
...

1 · · · 1







from which the result follows.

We are now almost ready to prove our key structure result for matrices which send

Pn to itself. We need a few simple lemmas before we can continue.

Lemma 5.3 Let d be a positive integer and let σ ∈ Sd. Then 〈v(id), v(σ)〉 =

〈v(id), v(id)〉 − 1 if and only if σ = (i, i + 1) for some i with 0 ≤ i ≤ d − 2.

Proof When σ = (i, i + 1), it is easy to verify that 〈v(id), v(σ)〉 = 〈v(id), v(id)〉 − 1.

We prove the other direction by induction. The claim is clearly true when d = 1.

Suppose that the claim is true when d = m and consider the case d = m + 1. If

σ(m) = m, then by the inductive hypothesis we have σ = (i, i+1) for some i < m−1.

Thus we may assume that σ(m) = j < m. Also, there is some k < m with σ(k) = m.

Let S = 12 + · · · + m2. Then

S − 1 = 〈v(id), v(σ)〉
= 〈(0, 1, . . . , m), (σ(0), . . . , σ(m))〉

= km + m j +
∑

i 6=k,m
iσ(i)

≤ km + m j +
∑

i 6=k,m

i2 + σ(i)2

2

= km + m j − k2/2 − j2/2 − m2 + S

= −(m − k)2/2 − (m − j)2/2 + S.

Hence (m − k)2 + (m − j)2 ≤ 2. Since j, k < m are integers we must have equality

and k = j = m − 1. Thus σ(m) = m − 1 and σ(m − 1) = m. Thus σ restricted to
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{0, 1, . . . , m − 2} is a permutation of this set. Using the Cauchy–Schwarz inequality

we see

〈v(id), v(σ)〉 = 〈(0, 1, . . . , m − 2), (σ(0), . . . , σ(m − 2))〉 + 2(m − 1)m

≤
(

02 + 12 + · · · + (m − 2)2
)

+ 2(m − 1)m = S − 1.

By assumption, 〈v(id), v(σ)〉 = S−1 and so we must have an equality in the Cauchy–

Schwarz inequality. Hence σ(i) = i for i < m − 1 and σ is just the transposition

(m − 1, m). This proves the lemma.

Lemma 5.4 Let E be an orthogonal d × d matrix with the property that PdE = Pd

and v(id)E = v(id). Then either E is the identity matrix, or E =
2
d

J − U , where U is

the permutation matrix whose (i, j) entry is δi+ j,d+1 and J is the matrix of all 1’s.

Proof First observe that if E =
2
d

J −U then

EET
=

( 2

d
J −U

)( 2

d
J −U−1

)

=

4

d2
J2 − 2

d
JU−1 − 2

d
U J + I = I,

and so E is unitary. Furthermore,

v(σ)E =

2

d
v(σ) J − v(σ)U

= (d − 1, d − 1, . . . , d − 1) − (σ(d − 1), . . . , σ(0))

= (d − 1 − σ(d − 1), d − 1 − σ(d − 2), . . . , d − 1 − σ(0))

= v(τ)

(5.2)

for some permutation τ . Thus E =
2
d

J −U satisfies the conditions of the lemma.

We now look at which matrices satisfy the conditions of the statement of the

lemma.

〈v(id), v(id)〉 − 1 = 〈v(id), v((i, i + 1))〉 = 〈v(id)E, v((i, i + 1))E〉
= 〈v(id), v((i, i + 1))E〉.

Thus, v((i, i + 1))E = v(( j, j + 1)) for some j by Lemma 5.3. Let τ be a permutation

of {0, 1, . . . , d − 2} such that v((i, i + 1))E = v((τ(i), τ(i) + 1)).

Let ei denote the row vector which has a 1 in the i-th position and zeros everywhere

else. Then v((i, i + 1)) − v(id) = ei+1 − ei+2. Consequently,

〈v((i, i + 1)) − v(id), v(( j, j + 1)) − v(id)〉 = 0 if and only if |i − j| ≥ 2.

Since E is unitary and v(id)E = v(id), we see that

〈v((i, i + 1)) − v(id), v(( j, j + 1)) − v(id)〉
= 〈v((i, i + 1))E − v(id)E, v(( j, j + 1))E − v(id)E〉
= 〈v(τ(i), τ(i) + 1) − v(id), v(τ( j), τ( j) + 1) − v(id)〉.
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It is then clear that |τ(i)−τ( j)| ≥ 2 if and only if |i− j| ≥ 2. Hence |τ(i)−τ( j)| ≤ 1 if

and only if |i− j| ≤ 1. Moreover, since τ is a permutation, if i 6= j, then τ(i) 6= τ( j),

and so |i − j| = 1 if and only if |τ(i) − τ( j)| = 1 for 0 ≤ i, j ≤ d − 2.

Notice that 0 and d − 2 are the only values of i ≤ d − 2 such that there is exactly

one j between 0 and d − 2 with |i − j| = 1. Thus τ(0) ∈ {0, d − 2}. There are now

two cases. Suppose that τ(0) = 0 and that τ(i) 6= i for some i. Pick i0 > 0 minimal

with τ(i0) 6= i0. Then

1 = |τ(i0) − τ(i0 − 1)| = |τ(i0) − (i0 − 1)|.

Hence τ(i0) ∈ {i0 − 2, i0}. If i0 − 2 ≥ 1, then τ(i0 − 2) = i0 − 2 and so τ(i0) = i0;

if i0 − 2 < 1, then τ(i0) cannot equal i0 − 2 and hence must be i0, a contradiction.

It follows that if τ(0) = 0 then τ is the identity. A similar argument shows that if

τ(0) = d − 2, then τ(i) = d − 2 − i for 0 ≤ i ≤ d − 2.

If τ is the identity, then v((i, i +1))E = v((i, i +1)) for all applicable i and v(id)E =

v(id) and hence by Lemma 5.1, E is the identity matrix, and so the claim is true in

this case.

If τ is not the identity, then v((i, i +1))E = v((d−i−2, d−i−1)) for all applicable

i and v(id)E = v(id). Above, we saw that X =
2
d

J −U satisfies:

• PdX = Pd;
• X is orthogonal; and
• v((i, i + 1))X = v(d − i − 2, d − i − 1)) for all applicable i and v(id)X = v(id).

Thus we see that in this case E =
2
d

J −U . The result follows.

Proposition 5.5 Let G = {Y ∈ GLd(C) | PdY = Pd}. Then G ∼
= Z/2Z × Sd, where

Sd corresponds to the group of permutation matrices and Z/2Z corresponds to the group

{Id,
2
d

J − Id}, where J is the matrix of all 1’s.

Proof Clearly G is a finite group and the set of permutation matrices is a subgroup of

G. Since G is a finite linear group, there is an invertible matrix M such that MY M−1

is unitary for all Y ∈ G. In particular MPM−1 is unitary for all permutation matrices

P. Hence if P is a permutation matrix,

Id = (MPM−1)(MPM−1)∗ = (MPM−1)((M−1)∗P∗M∗.

Letting X = M−1(M−1)∗, we see that PXP∗
= X; moreover, since P is unitary, we

have XP = PX for all permutation matrices P. The permutation matrices arise from

a representation of Sd which is a direct sum of two irreducible representations. It

follows that the set of X which commute with all permutation matrices is a 2 dimen-

sional C-vector space. Since both Id and J commute with every permutation matrix,

we see that these two matrices span the vector space of matrices which commute with

every permutation matrix. Hence X = αId + β J. Since X is invertible and J is not,

we see that α is nonzero. Let Y ∈ G. Observe that for each σ ∈ Sd, there exists

τ ∈ Sd such that v(σ)Y = v(τ). Let yi denote the sum of the ith row of Y . Then

multiplication by (1, 1, . . . , 1)T gives

v(σ) · (y1, . . . , yd) =

(

d

2

)

.
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In particular, v(σ) · (y1 − 1, . . . , yd − 1) = 0 for all σ ∈ Sd. Since the vectors v(σ)

span Qd, we see that the row sums of Y must all be equal to 1. We have

Id = (MY M−1)((M−1)∗Y ∗M∗),

and hence Y XY ∗
= X. Equivalently, Y (αId + β J)Y ∗

= αId + β J. Since Y has row

sums equal to 1 and Y ∗ has column sums equal to 1, we see that Y JY ∗
= J, and so

we conclude that αYY ∗
= αId. Since α 6= 0, we see that Y is unitary. Thus G is a

unitary group.

Let Y be in G. Then there is some permutation matrix P such that v(id)Y P =

v(id). By Lemma 5.4, Y P is either the identity or Y P =
2
d

J −U , where U and J are as

in the statement of Lemma 5.4. Notice that in the second case Y PU =
2
d

J − Id. Since

P and U are permutation matrices, we conclude that G is indeed the product of the

group of permutation matrices and the group {Id,
2
d

J − Id}. Since J commutes with

the collection of permutation matrices, we obtain the direct product decomposition

for G given in the statement of the proposition.

Proof of Theorem 1.3 Let S = {n | Z[qn] = Z[rn]}. From Theorem 2.1, we have

disc(Z[qn]) = disc(Z[rn]) for all n ∈ S.

Let An denote the d × d matrix whose (i, j)-th entry is q
n( j−1)
i−1 and let Bn be

the d × d matrix whose (i, j)-th entry is r
n( j−1)
i−1 . Then det(An)2

= disc(Z[qn])

and det(Bn)2
= disc(Z[rn]). Hence det(An) = ± det(Bn) for all n ∈ S. We have

F(x) :=
∑∞

i=0 det(Ai)xi and G(x) :=
∑∞

i=0 det(Bi)xi are rational power series whose

coefficients agree (up to sign) on some infinite set. By Theorem 4.1, they must

agree (up to sign) on some arithmetic progression. Hence there exist a, b > 0 and

ǫ ∈ {−1, 1} such that det(Aam+b) = ǫ det(Bam+b) for all m sufficiently large.

Now
∞
∑

m=0

det(Aam+b)xm
= ǫ

∞
∑

m=0

det(Bam+b)xm

are rational functions. Hence they must have exactly the same poles. Let aσ =

∏d−1
j=0 q

−aσ( j)
j . By Proposition 3.2 and Lemma 4.3, the aσ are distinct and each must

be a pole for each of these power series; i.e., there can be no cancellation. Similarly,

bσ =

∏d−1
j=0 r

−aσ( j)
j has the property that bσ is a pole of

∑

det(Bam+b)xm
= ǫ

∑

det(Aam+b)xm

for all σ ∈ Sd. Since the two power series in the line above are the same up to

sign we have that for each permutation σ there is some permutation τ such that

X(σ) :=
∏

i qaσ(i)
i is equal to Y (τ) :=

∏

i raτ (i)
i . Moreover, the correspondence σ 7→ τ

is a set-bijection of Sd. By Lemma 5.2, there exists some matrix E such that
(

σ(0), . . . , σ(d − 1)
)

E =

(

τ(0), . . . , τ(d − 1)
)

for all pairs (σ, τ) such that X(σ) = Y (τ). By relabeling the conjugates of r so that

X(id) corresponds to Y (id), we may assume by Proposition 5.5 that E is either the

identity or the matrix 2
d

J −U , where U is the permutation matrix whose (i, j) entry

is δi+ j,d+1. Thus we are left with two cases.
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Case I. E =
2
d

J −U .

In this case, we have v((i, i + 1))E = v((d − 2 − i, d − 1 − i)) by equation (5.2).

Hence

(v((i, i + 1)) − v(id))E = v((d − 2 − i, d − 1 − i)) − v(id).

Equivalently, for each i < d − 1, qi/qi+1 = rd−2−i/rd−1−i = r ′i /r ′i+1, where r ′i =

r−1
d−1−i . Thus q0/q j = r ′0/r ′j for 0 ≤ j ≤ d − 1. Take s = q0/r ′0 = q0rd−1. Then

sr ′j = q j for all j. Notice that

sm((r ′0)m + · · · + (r ′d−1)m) = (qm
0 + · · · + qm

d−1).

Since (r ′0)m + · · · + (r ′d−1)m is a symmetric function of the ri , it is rational; moreover,

it is nonzero for infinitely many m. Similarly, qm
0 + · · · + qm

d−1 is rational for all m.

It follows that sm is rational for some m. Since it is an algebraic integer, we conclude

that it is an integer. Hence there are integers m, N with m > 0 such that qmrm
d−1 = N.

Taking norms of both sides of this equation, we see that Nd
= Norm(q)mNorm(r)m.

The fact that X(id) = Y (id) gives that q and r have the same norm up to sign. Thus

q = Norm(r)2/dω/r ′ for some conjugate r ′ of r and some root of unity ω. This

completes the proof in this case.

Case II. E is the identity matrix.

Assume that E is the identity matrix. Then since v((i, i + 1)) − v(id) = ei+1 − ei+2

is fixed by E, we see that qa
i /qa

i+1 = ra
i /ra

i+1 for all i. Let z = qa
0/ra

0 . Then qa
i /ra

i = z for

all i. Since v(id) is fixed by E, we have

z(d
2)

∏

i

rai
i =

∏

(zri)
ai

=

∏

i

qai
i =

∏

i

rai
i .

Hence z(d
2) = 1 and so q0/r0 is a root of unity. It follows that q = ωr ′ for some root

of unity ω and some conjugate r ′ of r.

In either case we have that q = ωr ′ for some conjugate r ′ of r and some root of

unity ω. This completes the proof.

Proof of Corollary 1.4 By Theorem 1.3, we see that there are two cases to consider.

Case I. q = ωr ′ for some conjugate r ′ of r and some root of unity ω.

In this case |q| = |r ′|. Since all conjugates of r are less than 1, we deduce that

r ′ = r. Thus q = ωr. Since q and r are both positive real numbers, we see that ω = 1

and hence q = r.

Case II. q = Norm(r)2/dω/r ′ for some conjugate r ′ of r and some root of unity ω.

We see that if deg(q) = 2, then Norm(r)2/dω/r ′ = ωr ′ ′ where r ′ ′ is the conjugate

of r ′. Thus, for degree 2, it suffices to consider Case I only. So assume that deg(r) ≥ 3.

Let q = q0, . . . , qd−1 denote the conjugates of q and let r0, r1, . . . , rd−1 denote the

conjugates of r. By relabeling if necessary, we may assume that qi = Norm(r)2/dωi/ri ,

where ωi is a root of unity. Since d ≥ 3, we can pick j > 0 such that r j 6= r.

Then |q j | = |Norm(r)|2/d/|r j |. But this gives an immediate contradiction since

|q j|, |r j | < 1 and |Norm(r)| ≥ 1.
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We note that both possibilities given in the conclusion of Theorem 1.3 can occur.

We give the following example to show this.

Example. Let q be a full rank algebraic integer of norm ±1. Then

Z[qn] = Z[1/qn] = Z[(−q)n]

for all integers n 6= 0.

Proof This follows from the fact that qn has norm ±1.

6 Pisot Numbers of Small Degree

Here we prove our finiteness results for Pisot numbers of degree at most 3.

Proof of Theorem 1.5 First suppose that deg(r) = 2 and let r ′ denote the conjugate

of r. Let q be a Pisot number with Z[q] = Z[r] and let q ′ denote the conjugate of q.

Then we can write q = br + a. Now disc(q) = b2 disc(r) and hence b = ±1. Thus

either q = a+r or q = a−r. If q = a+r, then q ′
= a+r ′ and hence |a+r ′| < 1. There

are at most two integers a which satisfy this inequality and so there are at most two

Pisot numbers q of the form a + r. If, on the other hand, q = a − r, then q ′
= a − r ′

and so |a− r ′| < 1. Again, we see that there are at most two integers a which give rise

to a Pisot number q of the form a − r. Hence there are at most four Pisot numbers q

such that Z[r] = Z[q].

Next suppose that deg(r) = 3 and let r = r0, r1, r2 denote the conjugates of r. Let

q be a Pisot number with Z[q] = Z[r]. Write q = a + br + cr2. Then the conjugates

of q are given by a + bri + cr2
i for i = 0, 1, 2. Hence

disc(q) =

∏

0≤i< j≤2

(b(ri − r j) + c(r2
i − r2

j ))2

=

∏

0≤i< j≤2

(ri − r j)
2(b + c(ri + r j))2

= disc(r)(b + c(r0 + r1))2(b + c(r0 + r2))2(b + c(r1 + r2))2.

Since disc(q) = disc(r), we deduce that

(b + c(r0 + r1))2(b + c(r0 + r2))2(b + c(r1 + r2))2
= 1.

Consider the polynomial in indeterminates x and y

(6.1) P(x, y) := (x + y(r0 + r1))(x + y(r0 + r2))(x + y(r1 + r2)).

Since P is a symmetric function of r0, r1, r2, it is a homogeneous polynomial in x

and y of degree 3 with integer coefficients. By the remarks above, we have P(b, c) =

±1. The polynomial P(x, y) can factor into at most three irreducible polynomials in

Q[x, y].

If P(x, y) is not irreducible in Q[x, y], then it has at least one linear factor with

rational coefficients. From equation (6.1) we then see that ri + r j must be rational for
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some i 6= j. But r0 + r1 + r2 is also rational and hence rk is rational for some k. But

this contradicts the fact that r has degree 3, and so P(x, y) must be irreducible.

Hence the equation P(x, y) = ±1 is a Thue equation. It is known that in the case

of Thue equations, there are only a finite number of integer solutions to P(x, y) =

±1 [8]. Moreover, for cubic Thue equations, there are at most 20 integer solutions

to P(x, y) = ±1 [2]. Thus there are at most 20 integer points (b, c) which satisfy

P(b, c) = ±1. We claim that for particular b and c there are at most two a such that

q = a + br + cr2 is a Pisot number. The reason for this is that the conjugates of q must

be less than 1; that is,

|a + br1 + cr2
1 | < 1 and |a + br2 + cr2

2| < 1.

Let α = br1 + cr2
1 and let β = br2 + cr2

2 . Then there are at most two values of a

such that |a + α| < 1 and so there are at most two values of a giving solutions to both

equations. Since there are at most 20 values of (b, c) which give rise to Pisot numbers,

there are at most 40 Pisot numbers q such that Z[r] = Z[q].

In general, there are finitely many integer solutions (x, y) to a Thue equation

P(x, y) = ±k.

7 Pisot-Cyclotomic Numbers

In this section we prove that there are only finitely many Pisot-cyclotomic numbers

of any fixed order. In fact we prove a stronger result. For this we use the Schmidt

Subspace Theorem [7, Chapter VI].

Theorem 7.1 (Schmidt Subspace Theorem) Let C be a positive constant and

let ε > 0. If L1, . . . , Ln are n independent linear homogeneous functions of x =

(x1, . . . , xn) with algebraic integer coefficients, then the set of points x ∈ Zn such that

|L1(x) · · ·Ln(x)| < C||x||−ε

is finite.

We start with a Lemma.

Lemma 7.2 Let r0, . . . , rd−1 be distinct nonzero complex numbers. Then the d − 1

linear homogeneous forms

Li(x) = (ri − r0)x1 + (r2
i − r2

0)x2 + · · · + (rd−1
i − rd−1

0 )xd−1, 1 ≤ i ≤ d − 1,

are linearly independent over C.

Proof Let H0(x) = r0x1 +r2
0x2 + · · ·+rd−1

0 xd−1 and for 1 ≤ i ≤ d−1, define Hi(x) =

H0(x) + Li(x). It is sufficient to show that H1, . . . , Hd−1 are linearly independent
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over C. Suppose that some linear combination of them is zero, say
∑

wiHi(x) = 0.

Then we can express this as a vector equation

wTV x = [w0r0, · · · , wd−1rd−1]











1 r0 · · · rd−1
0

1 r1 · · · rd−1
1

...
...

. . .
...

1 rd−1 · · · rd−1
d−1





















x0

x1

...

xd−1











= 0,

where V is a Vandermonde matrix and w is a nonzero column vector. Since this

equation holds for all column vectors x, we conclude that wTV = 0, contradicting

the fact that V is invertible. The result follows.

Lemma 7.3 Let r and q be a Pisot numbers of degree d such that there exist integers

c0, . . . , cd−1 with the property that q = c0 + c1r + · · · + cd−1rd−1. Then there exist

positive constants C1 and C2, dependent only on r (and hence independent of q) such

that

C1q <
√

c2
0 + · · · + c2

d−1 < C2q.

Proof To get the lower bound we use the Cauchy-Schwarz inequality, noting that

|q| = (c0, . . . , cd−1) · (1, r, . . . , rd−1) ≤
√

c2
0 + · · · + c2

d−1

√
12 + r2 + · · · + r2d−2.

Let c = [c0, . . . , cd−1]T. The upper bound relies on the fact that q and r are Pisot. Let

q = q0, q1, . . . , qd−1 denote the conjugates of q and let q = [q0, q1, . . . , qd−1]T. Then

there is a Vandermonde matrix V whose entries are powers of conjugates of r such

that

q =











q0

q1

...

qd−1











=











1 r0 r2
0 · · · rd−1

0

1 r1 r2
1 · · · rd−1

1
...

...
...

. . .
...

1 rd−1 r2
d−1 · · · rd−1

d−1





















c0

c1

...

cd−1











= V c.

Thus ‖c‖ ≤ ‖V−1‖ · ‖q‖. Note that ‖V−1‖ depends only on r and since q is Pisot we

have

‖q‖ ≤
√

q2 + |q1|2 + · · · + |qd−1|2 ≤
√

q2 + q2 + · · · + q2 ≤ q
√

d.

Taking C2 = ‖V−1‖
√

d completes the proof.

Proof of Theorem 1.6 We can, without loss of generality, assume that r is a Pisot

number. For take r ′ a Pisot number such that Z[r] = Z[r ′]. If no such r ′ exists then

there are no (hence finitely many) Pisot numbers q such that Z[r] = Z[q]. If such an

r ′ exists, Z[q] = Z[r] if and only if Z[q] = Z[r ′].

Let q be a Pisot number satisfying Z[q] = Z[r]. Let q = q0, . . . , qd−1 denote the

conjugates of q, and similarly r = r0, . . . , rd−1 denote the conjugates of r. Then there

exists an integer polynomial P(x) = c0 + · · · + cd−1xd−1 of degree at most d − 1 such

that for some labeling r0, r1, . . . , rd−1 we have

(7.1) qi = P(ri) = c0 + c1ri + · · · + cd−1rd−1
i
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and q0, r0 > 1. Further, we have

disc(r) = disc(q) =

∏

i< j

(qi − q j)
2

is fixed, for all q. Using equation (7.1), we see that

qi − q j = Pi, j := c1(ri − r j ) + · · · + cd−1(rd−1
i − rd−1

j ).

Consider the d(d − 1) linear homogeneous polynomials

Li, j(x) := (ri − r j)x1 + · · · + (rd−1
i − rd−1

j )xd−1 1 ≤ i, j ≤ d, i 6= j

and let c = (c1, . . . , cd−1). Notice that

qi − q j = P(ri) − P(r j) = c0 + c1ri + · · · + cd−1rd−1
i − (c0 + c1r j + · · · + cd−1rd−1

j )

= c1(ri − r j) + · · · + cd−1(rd−1
i − rd−1

j ) = Li, j(c).

Then | disc(q)| =

∏

i< j |Li, j(c)|2. For 0 ≤ i ≤ d − 1, define

Qi(x) =

∏

j≤d−1, j 6=0,i

Li, j(x).

Then

| disc(q)| = |Q1(c) · · ·Qd−1(c)(q0 − q2)2 · · · (q0 − qd)2|.
By assumption q1, . . . , qd−1 are in the unit disc, and so we have

|(q0 − q2)2 · · · (q0 − qd−1)2| > (q − 1)2d−2.

From this we see that |Q1(c) · · ·Qd−1(c)|(q − 1)2d−2 < |disc(q)| and thus |Qi(c)| <
(q− 1)−2|disc(q)|1/(d−1) for some i. We are almost ready to apply the subspace theo-

rem to the polynomials Li,0, . . . , Li,d−1 (with Li,i omitted). Observe that these homo-

geneous linear forms are linearly independent over C by Lemma 7.2. Next observe

that if x ∈ Zd, then

|Li,0(x) · · ·Li,d−1(x)| = |Qi(x)| |Li,0(x)|.

We have

|Li,0(x)| = |(ri − r0)x1 + · · · + (rd−1
i − rd−1

0 )xd−1|

≤ ‖[ri − r0, . . . , rd−1
i − rd−1

0 ]‖ · ‖[x1, x2, . . . , xd−1]‖

≤ ‖[r + 1, . . . , rd−1 + 1]‖ · ‖x‖

≤ ‖[rd−1 + 1, . . . , rd−1 + 1]‖ · ‖x‖

≤
√

d − 1 · |rd−1 + 1| · ‖x‖.
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Let 0 < ε < 1. By Schmidt’s subspace theorem, for any positive C, there are only

finitely many x ∈ Zd−1 such that |Li,0(x) · · ·Li,d−1(x)| < C‖x‖−ε. Consequently,

there are only finitely many integer points x such that |Qi(x)| < ‖x‖−1−ε, since for

each such point x, we have

|Li,0(x) · · ·Li,d−1(x)| = |Qi(x)| |Li,0(x)| < ‖x‖−1−ε
√

d − 1 · |rd−1 + 1| · ‖x‖

= C‖x‖−ε,

for some constant C.

By Lemma 7.3, there exist positive constants C0 and C1 which depend only on r

such that C0q ≤ ‖c‖ ≤ C1q.

Thus there are only finitely many Pisot numbers q (with corresponding integer

vectors c) such that

‖Qi(c)‖ < ‖c‖−1−ε ≤ (C0q)−1−ε ≤ C−1−ε
0 · q−1−ε ≤ C2 · q−1−ε,

(here C2 = C−1−ε
0 ). Suppose that there are infinitely many Pisot numbers q with

Z[q] = Z[r]. Then we have just shown that |Qi(c)| ≥ C2q−1−ε for infinitely many

such q. But we know |Qi(c)| < (q − 1)−2| disc(q)|1/(d−1)
= (q − 1)−2 disc(r)1/(d−1),

and so we have C2q−1−ε < (q − 1)−2| disc(q)|1/(d−1) for infinitely many Pisot num-

bers q with Z[q] = Z[r]. Equivalently,

(q − 1)2

q1+ε
<

disc(r)1/(d−1)

C3

for infinitely many Pisot numbers q with Z[q] = Z[r]. But we see then that there is

a computable upper bound for q, as
(q−1)2

q1+ε → +∞ as q → +∞. But Pisot numbers

in a number field are discrete, and so we obtain a contradiction. The result now

follows.

8 Conclusions, Open Questions, and Conjectures

A number of finiteness results are shown in this paper. Unfortunately, Theorem 1.5

only provides a bound for the number of Pisot numbers for degrees 2 and 3. In addi-

tion, these bounds are probably not best possible. Theorem 1.6 proves that there are a

finite number of Pisot numbers q such that Z[q] = Z[r], given some nice restrictions

on r. Unfortunately, no upper bounds are given on the number of Pisot numbers q

of this form. We therefore state the following open problems.

(1) Improve the bounds given in the statement of Theorem 1.5.

(2) Improve Theorem 1.6 to give bounds for the number of Pisot numbers q such

that Z[q] = Z[r] in terms of r.

(3) Extend the results of Theorem 1.6 to say something about the case where the

conjugates of r do not all lie in Q[r], or give an example to show that the finiteness

property does not hold.
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[3] Č. Burdı́k, Ch. Frougny, J. P. Gazeau, and R. Krejcar, Beta-integers as natural counting systems for
quasicrystals. J. Phys. A 31(1998), no. 30, 6449–6472.

[4] J.-P. Gazeau, Pisot-cyclotomic integers for quasilattices. In: The mathematics of long-range aperiodic
order, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 487, Kluwer Academic Publishing, Dordrecht,
1997, pp. 175–198.

[5] C. Lech, A note on recurring series. Ark. Mat. 2(1953), 417–421.
[6] D. A. Marcus, Number fields. Universitext, Springer-Verlag, New York, 1977.
[7] W. M. Schmidt, Diophantine approximation. Lecture Notes in Mathematics 785, Springer, Berlin,

1980.
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