Review article

The use of visual analogue scales to assess motivation to eat in human subjects: a review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings

R. J. Stubbs1*, D. A. Hughes 1, A. M. Johnstone 1, E. Rowley 1, C. Reid 2, M. Elia 3, R. Stratton 3, H. Delargy 4, N. King 4 and J. E. Blundell 4

1Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
2Biomathematics and Statistics, Scotland, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
3Clinical Nutrition Group, The Dunn Clinical Nutrition Centre, Hills Road, Cambridge, UK
4Biopsychology Group, Psychology Department, University of Leeds, Leeds LS2 9JT, UK

(Received 13 May 1998 – Revised 9 November 1999 – Accepted 22 November 1999)

This present paper reviews the reliability and validity of visual analogue scales (VAS) in terms of (1) their ability to predict feeding behaviour, (2) their sensitivity to experimental manipulations, and (3) their reproducibility. VAS correlate with, but do not reliably predict, energy intake to the extent that they could be used as a proxy of energy intake. They do predict meal initiation in subjects eating their normal diets in their normal environment. Under laboratory conditions, subjectively rated motivation to eat using VAS is sensitive to experimental manipulations and has been found to be reproducible in relation to those experimental regimens. Other work has found them not to be reproducible in relation to repeated protocols. On balance, it would appear, in as much as it is possible to quantify, that VAS exhibit a good degree of within-subject reliability and validity in that they predict with reasonable certainty, meal initiation and amount eaten, and are sensitive to experimental manipulations. This reliability and validity appears more pronounced under the controlled (but more artificial) conditions of the laboratory where the signal : noise ratio in experiments appears to be elevated relative to real life. It appears that VAS are best used in within-subject, repeated-measures designs where the effect of different treatments can be compared under similar circumstances. They are best used in conjunction with other measures (e.g. feeding behaviour, changes in plasma metabolites) rather than as proxies for these variables. New hand-held electronic appetite rating systems (EARS) have been developed to increase reliability of data capture and decrease investigator workload. Recent studies have compared these with traditional pen and paper (P&P) VAS. The EARS have been found to be sensitive to experimental manipulations and reproducible relative to P&P. However, subjects appear to exhibit a significantly more constrained use of the scale when using the EARS relative to the P&P. For this reason it is recommended that the two techniques are not used interchangeably.

Visual analogue scales: Electronic appetite rating systems: Appetite: Hunger

A specific advantage of studying the behaviour of human subjects (relative to animals) is that human subjects can be asked a number of questions relating to their motivation, sensations and attitudes. Psychologists and clinicians have long used subjective feelings of bodily sensations or functions to help in research investigations and patient management. Such assessments have been carried out in diverse conditions to examine a variety of ‘functions’: quality of life (Hunt et al. 1981), pain (Ohnhaus & Alder, 1975; Downie et al. 1978), sex, libido, depression, anxiety (Keys et al. 1950), nausea and appetite (Hill & Blundell, 1982). Freyd (1923) has pointed out that such ratings are the only practical equivalents of objective measurements for many types of psychological phenomena, especially introspective or verbally reported data.

Attempting to understand the role of food and other

Abbreviations: EARS, electronic appetite rating systems; P&P, pen and paper; VAS, visual analogue scale.

*Corresponding author: Dr R. James Stubbs, fax +44 (0) 1224 715349, email J.Stubbs@rri.sari.ac.uk
environmental influences on human appetite and feeding behaviour is now considered a crucial part of the study of energy balance in human subjects. At the present time there is considerable concern and interest in understanding how diet, drugs and behaviours such as exercise influence patterns of food and energy intake. In animal models it is only possible to study the behaviour of the subject within the constraints of the experimental design. In such studies changes in either amount or type of food eaten or both are taken as indicative of the motivation of the animal to eat. In human subjects, additional information can be obtained by studying the effects of various agents on subjectively expressed appetite, as well as feeding behaviour and energy balance. With human subjects it is possible to ask structured questions about their motivation to eat or not eat, which type of food and what amount they would consume.

The value of psychometric tools in studies of food, energy and nutrient intake

It might be supposed that the measurement of subjective motivation to eat in terms of hunger, satiety and expressed appetite for certain foods is a superfluous measurement since the critical measure is objective food intake. However, it is important to recognize that ‘objective food intake’ may not be as objective or as ‘uncontaminated’ an outcome as it ostensibly appears. Studies of human feeding often allow subjects to feed entirely *ad libitum* within the constraints of the experimental design. This can take the form of a single test meal of a constant composition, a range of food items, or subjects recording their own intakes in their natural setting. There are several other means of measuring food intake and the reader is referred to detailed reviews which describe many of the experimental limitations to the measurement of food energy and nutrient intake (Spitzer & Rodin, 1981; Hill et al., 1995; Stubbs et al., 1998b). The basic point is that each experimental design which measures food intake is constrained by the design characteristics of the foods or diets used. In some experiments, design constraints only allow subjects to increase or decrease the amount of a diet of constant composition that they eat (Lissner et al., 1987; Stubbs, 1995). Under these conditions assessments of motivation to eat can yield important information that is not made available by measuring food intake alone. For instance, in a recent study subjects were allowed to feed *ad libitum* on high carbohydrate diets of high (< 6500 kJ/kg) or low (< 3000 kJ/kg) energy densities. Subjects could only alter the amount they ate of a diet of constant composition for 2 weeks per treatment (Stubbs et al., 1998a). Subjects ate similar amounts of food on each diet, and energy intakes were 8.7 and 14.8 MJ/d on the low and higher energy-dense diets respectively. Measuring food intake alone suggested that simple alterations of energy and nutrients that are ingested in laboratory experiments and food choice as well as being interested in the energy and nutrients which meet their requirements. Under these conditions, the measurement of motivation to eat yields critical data that could never be inferred from measures of voluntary intake. Similarly, during weight loss therapy the measurement of energy and nutrients that have been prescribed during a period of energy restriction will tell the investigator little about the probable success of that treatment. Measurement of motivation to eat provides some of that information by informing the investigator whether subjects are able to tolerate and comply with the treatment in real life.

The measurement of motivation to eat in studies of food intake also allows different aspects of motivation to be assessed without contaminating the main behavioural outcome being measured. For instance, the effect of an experimental manipulation on intake at a test meal can be assessed. Insights into likely feeding behaviour in real life can also be obtained by assessing subjects’ appetite for other foods that are not present in the experimental design. Assessment of motivation to eat gives greater insights into feeding behaviour than can be derived from measures of voluntary intake alone. This is a critical factor if we are interested in the behaviours that alter energy balance and food choice as well as being interested in the energy and nutrients that are ingested in laboratory experiments and real-life interventions.

What are hunger, appetite and satiety?

When studying the physiology of appetite control it is important to remember that hunger, appetite and satiety have objective (unconditioned, or physiological) and subjective (conditioned, or learned) components. In order to dissociate these components it is important to attempt to measure them. Clearly this requires a means of assessing subjective motivation to eat. But what exactly are we measuring? It is important to consider what people mean when they use the terms hunger, appetite and satiety. Blundell (1979) has argued that hunger, appetite and satiety are not tangible or even objectively observed phenomena: ‘instead they are explanatory concepts which are inferred from events which cannot be directly observed or defined…’ by people at large. In other words, people use these terms as an aggregate description of several sensations they recognize as predictors of their normal behaviour. The actual sensation of hunger is therefore likely to differ both quantitatively and qualitatively between individuals.
as shown in a study carried out by Monello & Mayer (1967). A questionnaire completed by 603 men, women, boys and girls, which investigated the individuals' subjective experience of hunger and satiety, could find no clear constellation of traits, sensations or characteristics that typified hunger in most subjects (Monello & Mayer, 1967). Different people feel hungry in different ways. The amount of perceived hunger or appetite that triggers feeding will differ between individuals in a given situation and will differ within an individual in different situations. This suggests that these motivations are best measured in within-subject, repeated-measures designs. Blundell (1979) thus argues that hunger, appetite and satiety are hypothetical constructs that we use to conceptualize our perception of sensations or motivations which are themselves indirectly linked to processes which influence our behaviour. In other words, physiological signals, environmental influences and past experience summate to determine the multiple afferent inputs which lead us to ‘feel’ like eating or not eating. However, the source of these inputs (e.g. low blood glucose, a social occasion, or previous food poisoning respectively) are not often directly measurable as indicators of a need for food or a need to avoid food. We therefore invoke words as a common reference which conceptualize our inclination to behave in given ways, but do not actually describe every detailed sensation underlying that expressed motivation. For instance, we do not say ‘I feel tired, empty, unable to concentrate, irritable and impatient to eat’, we say ‘I’m hungry’. As hunger is a subjectively expressed construct that is used to express a motivation to eat, the most appropriate measure of hunger is its subjective expression at a given time. The same is true for other aspects of motivation to eat. Tracking changes in subjective hunger (or other aspects of appetite) over time provides important information in relation to the structure or the effects of feeding events, for instance, the effects of diet composition on feeding behaviour or the effects of physiological variables on the appetite control system. How are hunger and appetite measured?

The use of visual analogue scales in appetite research

A number of systems has been devised to ask subjects specific questions relating to aspects of their motivation to eat (Hill & Blundell, 1982; Silverstone & Goodall, 1986; Leathwood & Pollet, 1988; De Graaf, 1993). One of the most productive and popular systems is the use of VAS. The VAS have become particularly popular in pain (Ohnhaus & Alder, 1975; Downie et al. 1978) and appetite research (Hill & Blundell, 1982; Leathwood & Pollet, 1988; De Graaf, 1993). The VAS typically take the form of a straight line with two extreme states anchored at either end. For example, a scale with a question such as ‘how hungry are you?’ would be anchored with ‘not at all hungry’ at one end and ‘as hungry as I have ever felt’ at the other end. Such scales have the advantage of being easy and quick to use, simple to interpret, they do not require the subject to invoke their own descriptive terms, they allow considerable discrimination and they are presented in a standardized format that can be compared under a variety of different experimental manipulations.

The most commonly used methodology in the UK is that of Hill & Blundell (1982). The original version of this questionnaire contained six questions: ‘How hungry do you feel?’ (not at all hungry/as hungry as I’ve ever felt); ‘How full do you feel?’ (not at full/as full as I have ever felt); ‘How strong is your desire to eat?’ (very weak/very strong); ‘How much do you think you could eat now?’ (nothing at all/a large amount); ‘Urgé to eat’ (no urge to eat/strong, want to eat now, waiting is very uncomfortable); ‘Preoccupation with thoughts of food’ (no thoughts of food/very preoccupied difficult to concentrate on other things). These ratings have been found to co-vary to a great extent and it is therefore pertinent to ask whether the six questions used relate to a single phenomenon, motivation to eat, or to more than one underlying motivation or process. In several studies, with the numbers of subjects ranging from five to sixteen, we have applied principal components analysis to the six commonly used 100 mm VAS to identify distinct dimensions in the responses to the questions (Reid et al. 1998). In almost every case the first principal component is essentially an average of the six VAR. In every study this component explains at least 85 % of the variation observed across the six VAR and can be thought of as a general measure of satiety or appetite. Unfullness is the maximum measurable value of the scale (100) minus the recorded value for fullness. Subjects usually rate fullness as the opposite of hunger and the other four questions; thus in principal components analysis, it is most useful to describe this similar (but reverse) pattern as 100 (maximum value) minus fullness (100—fullness). The analysis reveals a pattern similar to that for other ratings. Principal components analysis also suggests a second compound rating, contrasting a gut-based sensation, as measured by unfullness, with motivation to eat, as measured by desire, urge, prospective consumption and thoughts of food. In each study, the first two principal components explain over 90 % of the variation. Thus, if these data are generally applicable to large numbers of subjects, it would appear that questionnaires used to monitor hunger could be redesigned to account for these two aspects of hunger and to assess other possible dimensions of motivation to eat and drink. These analyses suggest that these six VAS collectively relate to a general motivation to eat and a sense of gastrointestinal repletion which subjects appear to distinguish from their general motivation to eat. Future questionnaires could amplify these distinctions and add other aspects of motivation to eat not included in these particular assessments. Having considered why we should measure hunger and satiety, what they are and what the VAS most commonly used in the UK appear to identify in motivation to eat, it is pertinent to consider the reliability and validity of VAS.

The reliability and validity of visual analogue scales

A major problem with psychometric ratings of sensation or motivation is that it is difficult if not impossible to objectively validate them. Freyd (1923) noted that in choosing which sort of rating to use it would be ideal to compare different ratings with each other in relation to an objective measure of the phenomenon under scrutiny. However, as
Freyd himself recognized, if this were the case, a rating
would not be required in the first place. Freyd invoked two
basic categories of criteria to assess the value of different
ratings scales, (1) their practical validity: ease of use,
interpretability, convenience and universality of the scale
and (2) statistical validity: statistical comparison with other
ratings systems for a given trait, test–retest validity (repeatability), the normality and spread of data obtained from
ratings. Too low a spread of data means that the rating
has little discriminatory power, too high a degree of
variability and the rating may be imprecise or ‘noisy’ in
the assessments made when using it.

As stated above the reliability and validity of a rating
scale can be difficult to demonstrate unequivocally since
there are often few if any objective measures of the trait with
which to compare the rating system. However, there are
comparisons which can be made to assess the reliability of
an appetite rating system: (1) the apparent validity of the
rating in terms of its ability to predict the behaviour
which is being assessed by the rating is one method of
demonstrating its usefulness; (2) the rating can be compared
under conditions where it should change if sensitive
(e.g. nutrient loads, anorectic drugs); (3) the reproducibility
(test–retest–reliability) of the rating can also be assessed.

Predictive power

de Castro & Elmore (1988) have reported significant
correlations between subjectively-rated hunger and the
reported energy content of eating bouts, in nine men and
twenty-two women self-recording their food intakes for 7
consecutive days. Subjects also recorded their subjective
hunger at the beginning of each meal on a 7-point scale. Pearson product moment correlations were calcu-
lated between reported hunger, energy intake at the meal
(denoted as intakes >0.21 MJ) and the interval since the last
meal. The authors found that the amount eaten in a meal
was correlated positively with subjective hunger ($r = 0.27$;$P < 0.05$), as was the duration of the interval preceding
the meal ($r = 0.14$; $P < 0.05$). de Castro & Elmore (1988)
note that while consistent and significant, these average
within-subject correlation coefficients were small. They
cautions however that these relationships were established
under self-reporting conditions where a number of uncontrolled
and unmeasured variables constitute noise which inflate
error variance estimates. Under more controlled conditions
these correlation coefficients should (theoretically at least)
be higher.

Mattes (1990) has examined the relationship between
subjective hunger (tracked hourly during waking hours)
and feeding behaviour under free-living (real life) condi-
tions in twelve men and twelve women self-recording food
intake and subjective hunger, over 7 consecutive days. When
hunger ratings at the start of each hour were correlated with
reported intake in the hour following each hunger rating, the
group correlation between hunger ratings and energy intake
was $r = 0.50$ ($P < 0.02$). This effect was apparent for the
whole group of subjects on five weekdays but not the two
weekend days. Thus for the group subjective hunger was a
reasonably good predictor of when eating will occur under
these conditions where many extraneous factors may
influence or obscure the relationship between hunger and
feeding. When these analyses were conducted within
individuals there were no significant associations between
hunger ratings and energy content of eating occurrences in
the same hour. Eating occurrence in this study was defined
as a reported intake >0 MJ. The within-subject effect of
eating on hunger was also assessed. Hunger declined in the
time points before and after an eating episode on 49% of
eating occasions. When subjects fasted during the same
time interval, Mattes (1990) reports that hunger increased
46% of the time. However, hunger ratings were not a
useful proxy measure of either computed energy content of
eating occurrences or total reported number of eating
occurrences (Mattes, 1990), indicating that they cannot
be used as a proxy for quantitative variables such as
energy intake. This is not surprising since in the natural
setting people often eat when they are not hungry and
sometimes do not eat when they do feel hungry. It is
important to note that the studies of de Castro & Elmore
(1988) and of Mattes (1990) took reported energy intakes
given. These are not reported in the documents and so it
is difficult to assess their plausibility in relation to expected
energy requirements. Only recently has the likely impact of
mis-reporting of dietary intakes been fully appreciated.
Mis-reporting is likely to contribute further to the inflation
of error variance estimates mentioned by de Castro &
Elmore (1988). It therefore appears that subjectively-
rated hunger is a valid predictor of human feeding beha-
vour in terms of approximate meal size and frequency
under free-living conditions, but a poor proxy of quantita-
tive variables such as energy intake. Mattes (1990) notes
that when fasted or given pharmacological treatments
which affect appetite, subjects display changes in motiva-
tion to eat that predict changes in behaviour consistent with
the effects of the intervention (Speigel et al. 1987; Blundell
& Hill, 1988; Wolfrom et al. 1988). However, there is a
number of other less extreme experimental conditions in
which hunger does not reliably predict feeding behaviour
(Pi-Sunyer et al. 1982; Thompson et al. 1982; Trenchard
& Silverstone, 1983; Rogers et al. 1988; Rolls et al. 1988).
Mattes (1990) argues that these discrepant findings can be
resolved by the argument that hunger is an innate reflection
of physiological systems controlling appetite (which
becomes apparent when those systems are experimentally
manipulated) and also an entrainable response under more
normal dietary conditions. In some experiments changes in
hunger may reflect previous entrained responses more than
they indicate a response to (often modest) nutritional
challenges which comprise the novel experimental inter-
vention.

De Graaf (1993) has cautioned that the correlation co-
efficient between a subjective expression of appetite and energy
intake is heavily influenced by the exact statistical relation-
ship that is calculated. For instance, hunger gradually climbs
as the time since the last meal increases. As the onset of the
next meal approaches there is often a more rapid elevation
of hunger. Therefore correlations between hunger in the
hour preceding a meal and amount eaten at the meal will
be greater than those calculated between average hourly
hunger in the intermeal interval and energy intake at the
next meal. Different authors tend to calculate different
statistical relationships. For example, the definition of a meal given by Mattes (1990) differed from that of de Castro & Elmore (1988). Additionally, assessments have tended to examine the relationship between appetite and energy (but not food) intake (i.e. amount eaten).

The variation in the subjectively-expressed hunger of human subjects (using hourly ratings) is heavily influenced by time which often accounts for 20–30% of the variance in our experiments. This suggests that hunger itself exhibits a large learned component in relation to entrained feeding patterns (Mattes, 1990; De Graaf, 1993; Blundell & Stubbs, 1997). Furthermore, the factor which tends to account for most of the variance in VAS of a group of subjects is inter-subject variation in response, which has been found to account for >50% of the variance in some of our experiments. This means that VAS are best used in within-subject comparisons. Where small groups of subjects are being studied, and a significant treatment effect found, it is useful to consider what proportion of subjects were accountable for the significant group effect. In addition to assessments of predictive power, the reliability and validity of VAS can be evaluated in terms of their sensitivity to experimental manipulations.

Sensitivity to experimental manipulations

VAS in appetite research have been repeatedly found to be sensitive to a number of experimental manipulations including alterations in diet composition (de Castro & Elmore, 1988; Hill & Blundell, 1992; Johnstone et al. 1996; Stubbs et al. 1996), alterations in energy intake (Westrate, 1992; De Graaf et al. 1993; Stubbs et al. 1997) and administration of drugs which stimulate (Thompson & Campbell, 1977, 1978) or inhibit appetite (Hill & Blundell, 1990). Furthermore, changes in expressed appetite using VAS have been related to changes in physiological variables thought to exert important influences on appetite. For example, the postprandial utilization of carbohydrate may influence hunger (Mayer, 1955; Campfield et al. 1992; Raben et al. 1995). It has been noted that a number of relatively modest experimental manipulations have not shown subjective hunger to predict feeding behaviour, possibly because the experiments do not influence innate physiological systems to a great extent. We have found in our laboratory that VAS are often more sensitive to a dietary manipulation than are changes in food and energy intake (e.g. Johnstone et al. 1996; Stubbs et al. 1998a), at least when subjects are given ad libitum access to a selection of high-protein, high-carbohydrate or high-fat foods. Average daily VAS scores were 32, 61, 42 (SED 4) mm on days 1, 2 and 3 respectively. Energy intakes were similar on days 1 and 3 but hunger was significantly different due to the intervening energy imbalance.

Leathwood & Pollet (1988) examined the effects of slow-release starches on plasma glucose and hunger in six subjects who were given six different test meals in triplicate. On each occasion hunger sensations were rated on a 10-point scale. The pooled within-subject, within-treatment standard deviations for satiety, fullness, hunger and ‘gourmandize’ (a term used by Leathwood & Pollet (1988)) were 2.09, 2.06 and 2.1 respectively, showing that within a given treatment, ratings were consistent. Within-subject variability in ratings increased over time (Leathwood & Pollet, 1988). Lappalainen et al. (1993) also found no significant difference between VAS ratings measuring appetite after three identical meals on three separate occasions. Raben et al. (1995) note that this in itself does not strictly constitute a test of reproducibility, citing Bland & Altmann’s (1986) test for assessing agreement between two methods in clinical measurements. Raben et al. (1995) found that subjective appetite scores are not easily reproduced when tested after identical (albeit highly unusual) meals in the same subjects on different days under standardized conditions (Raben et al. 1995).

Silverstone & Goodall (1986) looked at the between-group reproducibility of VAS scores using an anorectic drug (Triforex) and found it to exert similar effects in suppressing hunger in two independent study populations. Any such comparisons would, however, be of a semi-quantitative nature due to a large inter-subject variability in use of the VAS. Similarities or differences between the average scores of different groups are heavily affected by inter-subject variability in response when using the VAS. Hence comparisons are semi-quantitative because like is not being directly compared with like.

We have recently demonstrated the test–retest reliability of VAS using paper and pen and new hand-held computer systems used to assess motivation to eat in a series of...
three experiments (Delargy et al. 1996; Stubbs et al. 1997; Stratton et al. 1998a). While there were some differences between techniques the VAS were largely reproducible both within and between techniques.

The previous section reviews evidence that subjective motivation to eat predicts feeding behaviour in free-living subjects going about their normal routines in their familiar environmental setting. There is strong evidence that a large component of motivation to eat is entrained and so contrary to expectation it is not always easy to demonstrate a clear relationship between hunger and manipulations of energy balance in the laboratory. This is particularly so where small manipulations of energy balance are used. They are simply not large enough to overcome entrained effects. Given these caveats, there is evidence that subjective motivation to eat is sensitive to experimental manipulations. There is also evidence that subjective ratings of motivation to eat are reproducible. With the development of new techniques to improve data capture, using VAS, further studies have been conducted which provide evidence of the sensitivity and reproducibility of VAS used to assess motivation to eat.

Recent developments in data collection using visual analogue scales

There are problems inherent in the use of the traditional pen and paper (P&P) method of VAS. In many experiments subjects will be largely unsupervised while completing questionnaires and the integrity of the data cannot be verified. We have had to discard data on two occasions when individuals have completed all their questionnaires at the end of the day, rather than hourly throughout the day. It is not surprising that subjects often forget to complete a questionnaire on the hour, and studies over several days are often characterized by data-sets that contain numerous missing values. Under these conditions statistical tests must be conducted to check if the number and distribution of missing data values are balanced across time and treatments. Interestingly, studies conducted over similar time periods in the controlled environment of the calorimeter yield more complete data-sets (Stubbs et al. 1995). Other errors may arise in the completion of the VAS. Subjects can fail to record the time or other important details. Tabulation and analysis of the data is very time consuming when using paper and pen VAS since each question has to be physically measured and recorded by the investigator. Errors may arise when transposing the data from the paper onto a spreadsheet. With these considerations in mind some groups have now developed automated systems for data collection. Electronic appetite rating systems (EARS) have recently been developed automated systems for data collection. Electronic appetite rating systems (EARS) have recently been developed. One system employs the Psion organizer (Psion plc, London, UK) (Delargy et al. 1996) and the other employs the Newton Message Pad (Apple Computer Inc., Cupertino, CA, USA) (Stubbs et al. 1997; Stratton et al. 1998b). The Psion and Newton were specifically chosen as electronic devices that mimic the ease of use of P&P, as the Psion consists of a moving cursor along a dotted line and the Newton consists of a pen-based graphical interface which is ideal for use with VAS. A program has been written for the Psion which produces a VAS on the graphical display (© J. E. Blundell and N. King). An object-based program has been written for the Newton (© R. J. Stubbs and M. Elia). The program makes use of the Newton’s features to prompt the subject hourly to complete a series of VAS which appear on the screen in sequence. Both machines have been developed with the following features; entries are automatically date and time verified; incomplete and/or incorrect entries and back reference to previous entries are precluded. The Psion and Newton store the data in a format which can be readily downloaded and the questions asked can be changed. These devices have recently been described and validated as machines that can greatly enhance the ease and quality of time-veriﬁed data capture (Delargy et al. 1996; Stratton et al. 1997; Stubbs et al. 1997). One study has now been conducted on the Pion (Delargy et al. 1996) and two independent studies have been conducted on the Newton-based EARS (Stubbs et al. 1997; Stratton et al. 1998b), in comparison with the traditional P&P method. In addition other studies have now used the Newton-based EARS in dietary manipulations which have demonstrated its sensitivity (e.g. Stubbs et al. 1998c). Some of the comparisons of the EARS with traditional P&P involved comparison of reproducibility and validity, and these studies provide further evidence of the suitability of using VAS in appetite research. In all of these comparisons a series of questions was put to subjects hourly, relating to motivation to eat. The methodology used VAS and questions as similar to those described by Hill & Blundell (1982).

Delargy et al. (1996) conducted a study which compared the responsiveness of the Psion-based EARS or P&P with three lunches which were low energy (1·6 MJ), high energy (3·2 MJ) or high energy–high fat (3·2 MJ). This study was conducted in sixteen men and women, as a 3 × 2 design (three lunch conditions and two measurement techniques, Psion EARS and P&P). Each subject was thus studied on six separate occasions in a counterbalanced order. Ratings were recorded hourly during waking hours. In this experiment subjects consumed a standard breakfast (at 08.30 hours), the manipulated lunch (at 12.30 hours) and eating was prohibited until 17.30 hours, after which subjects recorded in food diaries everything they ate. This experiment compared subjects’ response with: (1) differing amounts of food and energy and (2) differing energy densities, of lunches containing the same energy content.

Delargy et al. (1996) found that the mean ratings for the two techniques were very similar, although the standard deviation about the mean was slightly lower with the Psion-based EARS than P&P. Around 50% of the data for the EARS fell within a slightly narrower range than for the P&P. Within-subject linear regression of EARS (outcome) against P&P gave r2 values for various aspects of motivation to eat ranging from 65 to 76%. Parenthetically, the two methods gave far lower r2 values for questions relating to lethargy (r2 22%). ANOVA of the ratings before the manipulated lunch also showed there to be no effect of method of measurement or sex of subject on ratings of...
motivation to eat. These results indicated that the methods were comparable before the nutritional challenge. ANOVA and post hoc tests revealed that during the period after lunch before ad libitum intake, significant differences between the lunches occurred, depending on whether EARS or P&P was used. Both methods detected significant differences between the low- and high-energy lunches. The EARS detected significant differences between the high-energy and high-energy–high-fat lunches only in the first hour after lunch, whereas the P&P did not. These effects were however, subtle, since ANOVA revealed no overall effect of method on the response to the differing lunches. The results showed that both of the techniques were sensitive to nutritional manipulations that typify single-meal manipulations made in the laboratory and were of a similar magnitude to changes in feeding in real life. The two techniques were largely reproducible with the notable exception that subjects tended to exhibit a slight but significantly more constrained variance when using the EARS. This effect was clearly not sufficient to affect differently the recorded response of subjects to nutritional challenges in the laboratory.

Stratton et al. (1998b) have compared the response of subjects using the Newton-based EARS with the P&P. The study was conducted in free-living subjects consuming their normal diet ad libitum. The purpose of the study was to examine the results of each method when rated at the same time (in consecutive order) in twelve subjects and to evaluate the test–retest reliability of Newton-based EARS v. P&P in eight subjects. In the direct comparison seven women and five men completed the EARS and the P&P consecutively, every waking hour, for 2 consecutive d. To assess the test–retest reliability of the two methods eight subjects continued for a further 2 d. In random order on one day they completed two copies of the P&P questionnaire, and on the other day two copies of the EARS questionnaire, in the same manner as described for the EARS v. P&P comparison.

We used the method of Bland & Altman (1986) for the comparison of two measurement techniques to assess whether there was bias between the two means of measuring subjective hunger (Stratton et al. 1998b). In the P&P v. EARS comparison there was no significant difference between the two techniques for responses of motivation to eat, except for hunger and fullness ratings. For hunger and fullness the differences between the two techniques became significant at the extreme ends of the VAS (i.e. very high and very low ratings). Indeed for all of the responses there was a tendency for the differences between methods to become larger with increasing score, although the overall pattern of change and sensitivity of the two methods remained similar. This effect was greatest (and hence significant) for the hunger and fullness ratings. The difference in the use of the two techniques appeared to be due to a slightly more constrained use of the range of responses when using the EARS, giving a correspondingly constrained variance in response for this technique. This means that the bias was apparent in the following directions. The highest scores on the EARS were lower than the highest scores on the P&P and the lowest scores on the EARS were higher than the lowest scores on the P&P, i.e. the variance was constrained with reference to the centre of the VAS. In the test–retest comparison for both techniques there was no significant difference in the individual hourly results or in the mean summary appetite ratings for the whole study period. There was significant bias for one response: ‘How strong is your desire to eat?’ on the EARS. Nevertheless the pattern of change remained similar for this response. This evaluation of the Newton-based EARS v. the P&P suggested that both techniques are largely reproducible and follow the same pattern of response. However, as for the comparison of the Psion-based EARS with P&P (Delargy et al. 1996), the electronic version tended to be used by subjects with a slightly and significantly more constrained range of responses. It is this tendency for subjects to avoid the very extreme ends of the shorter electronic VAS, which contributes the greater disparity between methods at the extremes of the response range (e.g. ‘not at all hungry’ or ‘as hungry as I have ever been’).

Stubbs et al. (1997) have recently compared the response of subjects using the Newton-based EARS and the P&P, when consuming fixed mandatory meals of the same energy density, energy and nutrient content, at fixed time points over a day (breakfast 08.30 hours, lunch 13.30 hours, supper 17.20 hours). This experiment was conducted in ten men and ten women on two separate days. On each day the diet

![Fig. 1. The Newton palmtop computer showing visual analogue scales.](https://www.cambridge.org/core/coreAsset/5a02d0e5369e1e1cbe47b7629a86d437)
was designed to match energy requirements at $1.5 \times BMR$. The twenty subjects were each studied once in a randomized study design which lasted 4 d. Day 1 was followed by two intervening days (days 2 and 3; ‘intervening period’) and then another test day (day 4). Both the electronic and P&P methods were completed hourly but the order in which the two methods were used was alternated on even and odd hours, such that on even hours subjects were required to complete P&P questionnaires first and on odd hours the EARS first, every waking hour between 08.00 hours and 23.00 hours. Each subject kept to the same order on the two test days. This study examined the subjective responses to fixed intakes of energy and food at fixed times, using two different methods of measurement. In addition the test–retest reliability of each technique was compared on two non-consecutive days.

As in the Stratton study (Stratton et al. 1998b), the mean daily ratings for hunger and fullness were compared using Bland & Altman’s (1986) test for bias between two measurement techniques. The mean difference between the two techniques was significantly different from zero (hunger $t_{19} = 2.26$; $P = 0.036$; fullness $t_{19} = -4.84$; $P < 0.001$). Further scrutiny revealed that this bias was due to a significantly higher variance in the ratings using P&P than the EARS (hunger $t_{19} = -6.32$; $P = 0.001$; fullness $t_{19} = -4.83$; $P < 0.001$). These data patterns were similar for the other responses but less pronounced for ‘desire to eat’ and ‘urge to eat’.

To further explore the relationship between the expressed variables using the two techniques, linear regression analysis was conducted using the P&P technique as the predictor variable and the EARS technique as the outcome variable. Models were checked for gender, order and day effects. The results demonstrated a strong linear relationship between the two methods ($r^2 76.6–98.6$). The plots of mean hourly hunger for all subjects across days 1 and 4, using the paper and EARS are given in Fig. 1. Regression analysis showed that for all responses, the slope of the line was less than 1 and the constant was significantly greater than zero ($P < 0.01$). This indicates that a smaller range of values tended to be used for the EARS than the P&P, both being 100 unit scales of a different absolute size (66 mm v. 100 mm respectively). As in the studies of Delargy et al. (1996) and Stratton et al. (1998b), subjects tended to avoid the extremes of the scale on the EARS and thus the highest scores for the EARS tended to be lower than the highest scores for the P&P and the lowest scores for the EARS tended to be higher than the lowest scores for the P&P.

Fig. 2 illustrates the reproducibility in patterns of hunger using the Newton on days 1 and 2. The lines with symbols are mean hunger ratings at each time point smoothed using a smoothing spline with 4 degrees of freedom. The lines around the margins are reference bands. At each time point the region has a width of twice the standard error of the differences in hunger between the two days, and is centred at the average of the two means. Where the plotted means exceed this band, the means are significantly different, since the means exceed 2 SE of the difference. All the mean ratings for all hours of the day lie within the reference bands, indicating that hunger ratings were not significantly different at any time during days 1 and 2 of the experiment.

In addition, the Newton-based EARS has been used to

![Fig. 2. Reproducibility of subjective hunger ratings between day 1 and the second day (day 4) of the experiment in twenty subjects using (a) the Newton palmtop computer or (b) paper and pen. (□—□, ○—○), mean hunger ratings on day 1 and day 4 respectively, smoothed using a smoothing spline with 4 degrees of freedom. The margins are reference bands corresponding to twice the standard error of the differences in hunger between the two days, and are centred at the average of each pair of mean values. If plotted means exceed this band they are significantly different, since the means exceeded 2 SE of the difference. All values lie within the reference bands indicating the reproducibility of the ratings under the same conditions on non-consecutive days.](https://www.cambridge.org/core/terms)
test for differences in subject response to nutritional challenges. While these studies were not used as a comparison to P&P, they did use relatively subtle nutritional manipulations and significant differences were detected between those experimental conditions when the subject used the EARS. In one of these studies (Stubbs et al. 1998c), sixteen men were each studied four times in a randomized counterbalanced design. On each occasion they received a mandatory intake as breakfast (08.30 hours) plus a snack at 10.30 hours. This comprised 80 % of resting energy requirements as high-protein, high-carbohydrate, or high-fat foods (60 % of energy in each case) or an equal mixture of macronutrients (33 % of energy from protein, from carbohydrate and from fat). All treatments contained the same energy content and had the same energy density and thus only differed in macronutrient content. From 12.30 hours onwards subjects had ad libitum access to the selection of thirty high-protein, high-carbohydrate and high-fat foods. Subjects were significantly less hungry before lunch on the high-protein and mixed (33 % protein) treatments ($F_{3,44} = 7.35, P < 0.001$). They were also significantly more full on the high-protein treatment and significantly less full on the high-fat treatment relative to all other treatments. At lunch subjects ate significantly more on the high-fat treatment than any other treatment. This study has shown that when all other factors (including energy density) are held constant and only the macronutrient content of foods is manipulated, the EARS is sensitive to subtle nutritional challenges. Furthermore, motivation to eat predicted feeding behaviour in a manner consistent with the effects of the manipulated breakfasts. These studies collectively suggest that the EARS has considerable utility for increasing reliability of data collection and reducing investigator workload. How do subjects themselves feel about this new technique?

Subject attitudes to the electronic appetite rating systems and paper and pen techniques

It is important to ascertain the attitude of subjects to the two techniques. While the use of the EARS may have lightened the load of the investigator it will not improve the quality or reliability of data collection if subjects are less able or willing to use it. The three comparative studies have also evaluated the preference of subjects for the EARS over the P&P technique (Delargy et al. 1996; Stubbs et al. 1997; Stratton et al. 1998b). EARS-based questionnaires have previously been developed for use in self-rating of symptoms by patients in the clinical setting. The questionnaires used were also evaluated against traditional P&P methods in patients suffering from gastrointestinal disorders. Most of the patients (57 %) preferred the electronic method with 13 % preferring P&P and 30 % expressing no preference. Results obtained using either technique were within 2 % of each other (Drummond et al. 1995). In the study of Delargy et al. (1996) all of the subjects found the EARS easy to use, 81 % preferred it to the P&P and 75 % found it more convenient. The subjects in this study were young members of the University population, whereas in the studies of Stratton et al. (1997) and Stubbs et al. (1997) a wider range of subject types was used. In the study by Stratton et al. (1997) 54 % of subjects preferred the P&P, 38 % the electronic method and 8 % had no preference. In the study by Stubbs et al. (1997) there were no apparent differences in the subjects’ (males and females combined) preference for either technique. The main difference between techniques was that women found the computer technique to be more tedious than did men. With this exception it appears that subjects had largely similar attitudes to both techniques (Delargy et al. 1996; Stubbs et al. 1997; Stratton et al. 1998b).

In summary, these studies have found that the EARS do produce similar (largely reproducible) responses relative to P&P. The main difference between subjects’ use of the EARS and P&P was that they tended to avoid the very extremes of the scale when using EARS as compared with P&P. The greatest discrepancies between the two techniques would have occurred when subjects were scoring very high or low values. This effect appears to be consistent across the three studies which have compared the two techniques. Because of these differences in use of the two techniques it should be recommended that in order to maximize test–retest reliability of each technique, the EARS and P&P should not be used interchangeably. While the EARS greatly improves the ease and reliability of data capture for the experimenter, there was some variability between types of study populations in their preference for either technique. It is probable that younger or more computer-literate subjects will find the EARS easier to use than subjects less familiar with this type of tool.

While the EARS is a potentially useful tool in appetite research, there are also disadvantages to using EARS for data collection. These instruments are expensive and easily lost or stolen. Furthermore, if a subject damages or loses a unit during the course of a study all of the data contained in it will be lost also. When using P&P subjects tend to take only a small number of questionnaires with them at a time, and so tend to avoid total data loss. Therefore the data have to be downloaded daily when using the EARS.

A particular attraction of palmtop computers for data collection in studies of human feeding behaviour is that other applications can be used or developed for simultaneous or alternate data capture. For instance, a diary facility enables subjects to use the Newton as a portable food diary in addition to a psychometric data collector. Furthermore the initial program was written so that the questions asked can be changed in content and number to suit the study. The advantages of the new technique in terms of quality, reliability and speed of data collection is the adaptability and versatility of the tool. These features make it an ideal data capture tool for use in free-living subjects, the laboratory and clinical setting.

Summary and conclusion

VAS of subjective motivation to eat are psychometric tools. The results obtained from VAS are neither objective nor strictly quantitative and yield the most valuable information when combined with other aspects of feeding behaviour and energy balance. It is important to recognize that subjectively rated motivation to eat is not an inevitable outcome of underlying physiological processes. Rather it is the subject’s
own interpretation of their own sensations and motivations, which are influenced inter alia by underlying physiological processes (Blundell, 1979). A direct and high correlation between feeding behaviour and subjectively expressed hunger or appetite should not therefore always be expected. Bearing these caveats in mind this present paper reviews the evidence relating to the validity and reliability of VAS and finds that: (1) VAS show some ability to predict aspects of feeding behaviour and act as a useful adjunct to measures of food, energy and nutrient intake; (2) they show sensitivity to experimental manipulations, provided those manipulations exceed or disrupt the effects of conditioned motivation to eat (e.g. hunger at meal-times); (3) the VAS show good reproducibility (test–retest reliability) under controlled conditions provided that they are used within-subject designs and provided that different VAS systems (e.g. P&P and EARS) are not used interchangeably.

Acknowledgements
This work was supported by the Scottish Office Agriculture, Environment and Fisheries Department and BBSRC grant no. F02501.

References

© Nutrition Society 2000