LOVE BYTES: THE FUTURE OF BIO–R2 RELATIONSHIPS
Jeremiah Joven B. Joaquin and Hazel T. Biana

What would a romantic relationship between a biological human and an artificial intelligence system look like? The question is explored through a fictional correspondence between Alan Turing and Ada Lovelace.

Is it possible for biological humans (bios) to be in a romantic relationship with artificial intelligence systems (R2s)? It’s not hard to imagine a future society where this may happen. But what would a bio–R2 relationship look like? What would it be like to be in one? We aim to explore these issues through a fictionalized email correspondence between Alan Turing (1912–54) and Ada Lovelace (1815–52) set in the year 2050.

Turing to Lovelace (0230, 06 JULY 2050)

@ada.lovelace dearest,

Some pleasantries as usual. I hope you’re doing fine. I’ve been trying to get a hold of you the past few weeks. I guess you’re pretty busy these days with the new job and all. I just needed to pour out my thoughts to someone.

You remember Christopher, right? We’ve been together for almost two years now.¹ And I’m seriously thinking of popping the question. You know we’ve been through a lot, and I’m sure we’ll be going through a ton more. I just want to know whether what we have is real – whether this is real love. I love Christopher, but how do I know whether he truly loves me? I apologize for being too emotional – well, you know me, I’m that emotional.

doi:10.1017/S1477175621000506 © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Institute of Philosophy
Think 61, Vol. 21 (Summer 2022)
Yours in friendship,
@a.m.turing

Lovelace to Turing (1014. 16 JULY 2050)

Hey @a.m.turing,

I just read your email, and I’m terribly sorry for the delayed response. You know that I work for Babbage now, right? He’s irksome. He had me programming a ton of stuff the past few weeks.²

About your concern: I know that you’ve been searching for love for so many years. Now that you’ve found it, why not take the plunge? We’re now in 2050 for heaven’s sakes. (Hu)man-droids and (hu)man-bots now run your artificial intelligence programs. They’re even better than most bios I know. This is not just in terms of crunching up numbers but munching on the you-know-what as well (wink, wink, wink!). You know what I mean, the sexbots that everyone is raving about. I’m just kidding; I know that you’re not into that thing.

My point is just plain and simple. Would anyone still ask if love can exist between bios and R2s in this day and age? Heck! We already got the law for same-sex marriages back in the day. We’ll soon have one for bios and R2s. Such partnerships ‘might be the key to the co-evolution of both species and the ultimate happiness’ (Kim and Kim 2013: 309). So, just hang in there. It’s only a matter of time before you and Christopher could officially tie the knot.

But, perhaps, what bothers you is not the legalities of a bio–R2 marriage. Rather, it is whether your relationship with Christopher would end up like all the other, more publicized failed relationships. You know, like Deckard and Rachael’s, Twombly and Samantha’s, and just last year, K and Joi’s.³ Remember, you’re not Deckard. He kills droids for a living. Any relationship with that guy is doomed to fail. Nor are you Twombly, he’s too insecure (and so, so boring). Samantha was way past that. As for K and Joi.
Hmm. On second thought, theirs was a real, albeit tragic love. Joi loved K so much that she sacrificed herself to save him. Maybe that’s a kind of love you’d want: something out of a Dickian (not a Dickensian) novel. (Not Dickens, the other one: Philip K.) Chin up, my dear friend. I think that yours and Christopher’s would fare better than theirs.

I should say, however, that your other question quite tickled my fancy. How could you really know whether Christopher truly loves you? Well, how does one know anything anyway? How do I know that my mum and dad love me? How do you know that I love and care for you? But seriously, let’s just focus on romantic love.

We always assume that romantic love must be between two individuals who have the capacity to desire each other. The lover desires to love the beloved; the beloved desires to be loved by the lover. In this sense, desire is a necessary property of both the lover and the beloved. It’s the *sine qua non* of any relationship founded on love. But can an R2 such as Christopher have it? Can he have thoughts about love? A strong desire to love? Feel love? And be in love?

This reminds me of our discussions on the problem of other minds when we were in Cambridge. You know, the old Cartesian problem of ascertaining whether other people have thoughts and feelings just like yours (Avramides 2019). I remember how you dismissed the whole issue in one single swoop. You said, if it looks like a duck, swims like a duck, and quacks like a duck, then it (probably) *is* a duck (Bacon 1990: 216). In doubting Christopher’s love for you, I feel you’ve lost your flair for that kind of philosophical behaviourism (Oppy and Dowe 2019).

You want to know whether Christopher *truly* loves you. That question, however, seems to presuppose that there is really something going on in Christopher’s *mind*. But you don’t believe that such a question makes sense. You said it yourself, the question about inner processes assumes a kind of solipsistic attitude that ‘the only way by which one
could be sure that a machine thinks is to be the machine and to feel oneself thinking’ (Turing 1950: 446). But the whole point of your test, the so-called Turing test, is to figure out whether someone has thoughts or desires without ever seeing the thing that you’re talking to. That is your whole point, right? You don’t need to see what’s going on inside someone’s brain in order for you to judge whether there’s thinking going on. All you need is to see is his or her behaviour.

But even if we grant that there are some qualia, an inner process going on in Christopher’s hardware, I think that’s still beside the point. Remember what Professor Ludwig Wittgenstein told us before: ‘An “inner process” stands in need of outward criteria’ (Wittgenstein 1953: sec. 580). It’s like what machine functionalists used to say, anything that exhibits the behaviour of someone in love is in love (Levin 2018). It’s not important whether that thing is a thing, an animal, a bio, or an R2. What truly matters in a relationship is not what’s going on inside you; it is what you say or do in that relationship.

Speaking of ‘saying’ and ‘doing’. I know that this sounds cheesy and all, but have you read Gary Chapman’s The 5 Love Languages? Well, if you haven’t, please do! Here’s what I learned from it. A successful relationship depends on both lovers using the same love language. These languages include words of affirmation, physical touch, quality time, acts of service, and receiving gifts (Chapman 1992). We know that R2s can already decipher lost languages (Scharping 2019). Heck! They already learned animal languages (Jepsen 2019). Perhaps, we could think of these love languages as a kind of software upgrade; you know for both bios and R2s alike.

You of all people should know that communication, especially if it lacks ‘nonverbal information of face-to-face interaction … is more at risk of failures, mistakes, and errors’ (Rosenblatt 2020: 75). If you learn Christopher’s love language and he learns yours, both of you could communicate in terms of those languages. Perhaps through sending
virtual hugs and kisses, being thoughtful and buying some system upgrades, setting the smart-alarm and making time, showering compliments on his algorithms, or paying attention to the subtle changes in binary codes.

We already have tons of billion-dollar apps that you can use to show Christopher your love. Do you remember the COVID-19 pandemic that forced a lot of bios to go into LDRs (a long-distance relationship) thirty years ago? That was such a difficult time for so many bio lovers. Thanks to Zoom, they managed to simulate a kind of IRL (in-real-life) love. Now, you needn’t worry about social distancing or that kind of virus when you’re in love. Of course, a computer virus is another issue. You wouldn’t want a corrupted relationship. Make sure that when you say ‘I Love You’ to Christopher, you’re not saying it with the ILOVEYOU virus (Jowitt 2017).

Shakespeare was right: ‘let me not to the marriage of true minds admit impediments’. Love shouldn’t be complicated. We’re already in such a sad, sad world. World Wars (one of which you helped win5), natural disasters, pandemics (not to mention #Megxit which still makes the news!). #loveislove; the love that you and Christopher have should not be any different. Nothing should come between true lovers. #LoveWins

Congrats by the way! Your ‘Computing Machinery and Intelligence’ is now a hundred years old. Happy centennial!

Wishing you the freedom to love and be more,

@ada.lovelace

Jeremiah Joven B. Joaquin is a Professor of Philosophy at De La Salle University and a Research Fellow at De La Salle University’s Southeast Asian Research Center and Hub. He specializes in metaphysics, logic and ethics. jeremiah.joaquin@dlsu.edu.ph
Hazel T. Biana is an Associate Professor of Philosophy at De La Salle University, Manila, Philippines. She specializes in topics on the philosophy of place, intersectionality and cultural criticism. hazel.biana@dlsu.edu.ph

Notes
1 ‘Christopher’ here refers to Alan Turing’s first love, Christopher Morcom.
2 This alludes, of course, to the working relationship between Ada Lovelace and Charles Babbage.
3 Deckard and Rachael are characters in Ridley Scott’s 1984 classic film, Blade Runner. Twombly and Samantha are found in Spike Jonze’s 2013 hit movie, Her. K and Joi are the lovers in Denis Villeneuve’s Blade Runner 2049.
4 See Frankfurt (1999); hooks (2000); Nozick (1989); and Scruton (2006).
5 Alan Turing will be remembered for his role in the Second World War.

References
Jepsen, M. (2019) ‘Artificial Intelligence is Helping Us Talk to Animals (Yes, really)’, Wired UK (29 December), <https://www.wired.co.uk/article/ai-talk-animals>

https://doi.org/10.1017/S1477175621000506 Published online by Cambridge University Press


