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1. Introduction

Let {K,} be a sequence of complex numbers, let

K@@= Y K"
n=0
and let
ko = Ko, k" = K"—Kn_l (n = 1, 2, ...).

Let D be the open unit disc {z: | z | <1}, let D be its closure and let 6D = D~ D.
The primary object of this paper is to prove the two theorems stated below,
the first of which generalises a result of Copson (1).

Theorem 1. If

Zo | K, |<oo, ¢))
K(z) #0 on oD, )

and if
{a,} is a bounded sequence 3)

such that, for some positive integer N,

Y ka,,20 (n=N,N+1,..), @

r=0
then {a,} is convergent.
In essence, Copson’s theorem is the above result with conditions (1) and (2)
replaced by the single condition
—1=Ky<Ki<..<Ky_1<Ky=Ky,, =0 (r=1,2,..). (o)
If (C) holds, then (1) is trivially satisfied, and K(z) is a polynomial satisfying (2),
since K(1)<0 and, for z = ¢®, 0<f<2m,

N

Re(1—-2)K(z)= — Y k,(1—cos r6)<0.
1

The next theorem shows that condition (2) is necessary for the validity of
Theorem 1 when K{(z) is subject to certain additional conditions: in particular,
it shows that (2) is necessary when K(z) is analytic on D and K(1) # 0.
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Theorem 2. If K(z) = p(z)q(z) where p(z) is a polynomial and

o
9@)= % 4."

and if
L la]<e, (5)
q(z) # 0 on D, (©)
then there is a bounded divergent sequence {a,} and a positive integer N such
that
Y ka,.,=0 (n=N,N+1,..). (8)

(1]

r

2. Proof of Theorem 1

By (1), K(2) is analytic on D and continuous on D. Hence, by (2), K(2)
can have at most a finite number of zeros in D; and consequently
K(z) = p(z)q(z) ®
where p(z) is a polynomial with no zeros in the complement of D, and ¢(z)
is analytic on D and continuous and non-zero on D.

Let
a(z) = i a"Z",
and let n=e
u(z) = q(2)a(z), (10)
v(z) = p(2)u(z). (11)

Since, by (3), a(z) is analytic on D, so also are u(z) and u(z).
Let {g,}, {u,}, {v,} be the sequences such that

1= Y a2 u@D= T uz )= ¥ n
for all z in D.
Since v(z) = K(z)a(z), we have that

n
Up = Z Kran—r
0

r=

and hence, by (1) and (3), that {v,} is bounded. Further, by (4), we have that

Vy—Up_q = ZO ka,,z0 (n=N,N+1,..). (12)

1t follows that
v, >V (13)
where v is finite.
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We prove next that {g,} satisfies (5), and that

U, —u (14)
where u is finite.

Case (i). p(z) =cz" (m=0,1, ..).

It is evident that (5) and (14) hold in this case.
Case (ii). p(2) = a—2z, 0<|a|<].

By (9), K(z) = 0 and ¢(z) = (x—z)"'K(z). Hence

n 0
ag,= Y o "K,=—- Y o7 "K,
r=0 r=n+1l

and so, by (1), we have that
2|‘1n|<2|K|Z|°‘|r1"< l“l

Also, by (11), v(x) = 0 and u(z) = (¢x—z)"'v(z). Hence, by (13), we have
that

2 |K, |<o.

oo} o
S v
Uy=— 3 o "y, == 3 adVpy14,—>— —— as n>o0.
r=n+1 r=0 1—«a

Thus, (5) and (14) hold in Case (ii).
Application of Case (i) followed by repeated applications of Case (ii)
establishes (5) and (14) in the remaining case:

P(@) = cz™(oa—2)(ay—2)...(a;—2), 0<|a; <], O<]a,|<1,...,0<]a;|<].

Finally, since ¢(z) has no zeros on D and (5) holds, we have, by the Wiener-
Lévy Theorem ((2), p. 246), that there is a sequence {c,} such that

T i 2" (ze D) (15)
and

¥ |en]<oo. (16)
n=0
By (10), a(z) = u(z)/q(z), and hence, by (14) and (15), we have that

n o0
= Y Gu,.,—u Yy ¢ asn-o.
=0 r=0

3. Proof of Theorem 2

Define a sequence {a,} and a function a(z) by

IR < S )
a(z) = "Zo a,z" = T (ze D); an
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and let

kran—n
0

w, =
r

=

wiz)= ) w,z"
n=0
Then

w(z) = (1—DK@a(z) = (=22
{—z
and, by (6) and (7), {—z is a factor of the polynomial p(z). Consequently w(z)
is a polynomial, of degree N—1 say, and (8) follows.
Further, by the Wiener-Lévy Theorem, hypotheses (5) and (6) imply
conditions (15) and (16). Hence, by (17), we have that

u 1
"la,=0" Y ¢ ™"> — as n—oo.
r=0

q(0)
Since g({) # 0, it follows that {a,} is bounded but not convergent.

4. Remarks

1. The proof of Theorem 1 shows that conditions (1) and (2) imply that
K(z) must satisfy all the hypotheses of Theorem 2 preceding hypothesis (7).

2. The following theorem is a corollary of Theorems 1 and 2.

Theorem 3. If K(z) is analytic on D and K(1) # 0, then condition (2) is
necessary and sufficient for every bounded sequence {a,} satisfying (4), for some
positive integer N, to be convergent.

A direct proof of Theorem 3 that avoids the Wiener-Lévy theorem and
other complications can readily be constructed from parts of the proofs of
Theorems 1 and 2.

3. Theorem 1 remains valid when condition (4) is replaced by

ka,,eQ (n=N,N+1,..) (18)

0

] g E

where Q is any closed quadrant of the plane.

To establish this we need only modify the proof of Theorem 1 to the extent
of changing “ = 0 in (12) to “e @”. Condition (18) is slightly more general
than (4) and somewhat more appropriate in the context of complex sequences.
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