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Computing the effectively
computablie bound in

Baker’s inequality for

linear forms in logarithms

A.J. van der Poorten and J.H. Loxton

For certain number theoretical applications, it is useful to
actually compute the effectively computable constant which
appears in Baker's inequality for linear forms in logarithms. In
this note, we carry out such a detailed computation, obtaining
bounds which are the best known and, in some respects, the best
possible. We show inter alia that if the algebraic numbers

al, ey an all lie in an algebraic number field of degree D

and satisfy a certain independence condition, then for some

nO(D) which is explicitly computed, the inequalities (in the
standard notation)

0<|p logo, +...+Db, log anl

(l+log(n+l)_%)(n+l)

< exp(-(n+1) Q log 2' log B)

have no solution in rational integers b , b (bn # 0) of

12 +re0 by,
absolute value at most B , whenever n > nO(D) . The very

favourable dependence on n is particularly useful.

1. Introduction

It is our purpose in the present work to describe the detailed

computation of the lower bound in various versions of Baker's inequality
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for linear forms in logarithms. We have attempted to make no prejudgement
as to the relative sizes of the quantities involved, so that our results
remain quite general but, in effect, are best suited to certain
applications in elementary number theory where one wants an optimal
dependence on 7 , the number of logarithms. When 7 is small, there is
now an alternative technique due to Ci jsouw and Waldschmidt [§], which
avoids the extrapolations necessary to the present argument and is almost
surely sharper than is our present bound as regards the absolute constant
appearing therein. Moreover, our work is incomplete to the extent that our
results are stated subject to a certain independence condition on the
logarithms; however, in the immediate applications we have in mind, the
independence condition is automatically satisfied by the data. Subject
then to the above qualifications, our results are nevertheless the best
known and, for some of the variables, best possible in each of these
variables. Of particular interest is the dependence on #» and the quite
good dependence on the heights of the algebraic numbers in each of our
results. There is no suggestion that our absolute constants are in any way

optimal, but they are nevertheless strikingly small.

In an attempt to make our work more transparent to the reader, we have
indicated explicitly those points in our proof at which we become committed
to a growth in the parameter % , and thence to a growth in the eventual
constant C . Nevertheless, the work forces one to a number of pre-

commitments which, even in hindsight, are difficult to coherently explain.
Throughout this work, we denote by Ops wees an non-zero algebraic
numbers of heights respectively not exceeding Al’ ey An (with

log log Aj >1 ]. We suppose that we have Al =4, = ... = An and some-—

2

. . < < ! =
times write Al < ... = An-l =4 and An A . Throughout, we set
Q' = (1og Al) .o (10g An-l) and Q = Q' log A .
We require, of course, that »n = 2 . Furthermore, we denote by X the

field X = Q(a s eees anJ and we write [K : Q) =D ; the case D=1 is

admissible. Finally, we denote by B a rational integer with, say,

B = e2 . (However, generally, our results are quite trivial unless B is

substantially larger.)
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In order to conveniently state our results it is useful to introduce

real numbers W, K , and € , satisfying
2/(n+1) sp=2, 0<k=gu, €= (pK)/(1+)(1+c) (n+1)
Furthermore, we denote by k a constant satisfying

(1) k= max{(3hp)(l+l/K)(n+l{ 131/6, (lOD/e)(l+u)(n+l)}

We prove the following results.

THEOREM 1. Suppose there is a prime q satisfying 13 < q < ke

such that {%{ai/q, cees ai/q] :%] = qn . Then the inequalities

0 < |bl log o+ ...t bn log an| < exp(-kl+uQ' log Q' log A log B)

have no solutions in rational integers b s b, (b, #0) with

1°
absolute values at most B .

By choosing u = l/3(log(n+l))% and K = %u , one sees easily that
for n sufficiently large relative to D , for example
log(n+l) > (6 log 3hD)2 , we have the corollary:

COROLLARY 1. Swppose there is a prime q satisfying
13=q = exp(%(log(n+1)]%) such that [%[ai/q, cees ai/q] : %] =q". If

n > nO(D) for some explicitly computable n_ (D) , then the inequalities

0

0 < Ibl log a; + ... + b, log anl

(l+log(n+l)-%)(n+l)

< exp(-(n+1) Q' log Q' log 4 log B)

have no solution in rational integers bl, cees bn [bn # 0) with absolute
values at most B .

On the other hand, choosing py =2 and Kk = 1 , one can obtain the

2
corollary:

COROLLARY 2. Suwppose there is a prime q satisfying
13 =g = 2SD(n+1) such that [%Lai/q, cees ai/q} : %] = qn . Then the

inequalities
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0<|b loga, + ... +b loga|

1
< exp (= (2°D(n+1))2™* 1)@ 10g 0" 10g 4 1og B)

have no solution in rational integers bl’ eeey b (bn # 0) with absolute

n

values at most B .

The choice of parameters in the proof of Theorem 1 is made with a
view to getting the best result of the form of Corollary 1. By making some
minor changes to the argument, we can improve the constants in Corollary 2
and, in particular, we can lower the exponent 9(n+l) to 6n + 8 . By the
argument of Baker [6] {note the minor corrections mentioned in [!1]), one
can get rid of the independence condition so as to immediately obtain the

following result.

COROLLARY 3. There is an effectively computable constant
¢ =0C(n, D) > 0 , dependent only on n and D , such that the inequalities

0 < Ibl log o ...t bn log an| < exp(-CQ' log Q' log 4 log B)

have no solution in rational integers bl, -ees b, (bn # 0) with absolute

values at most B .

This is Theorem 2 of [11] which is announced by analogy in [I7]; the
present argument thus confirms that assertion. Our result is sharper in A
than that of Baker [6], which has  log @ rather than our
Q' log Q' log A , and is considerably sharper in A' than is that of Baker
[2], which is indefinite in A' , or that of Tijdeman [16], Theorem 2,

which has (log A,)2n2+7n rather than our Q' log Q' < (log AN . e
dependence on A separately is best possible; this dependence was of
course achieved earlier by Fel'dman [10] and Baker [2]. It may be useful to
remark in passing that our bound, which has f' log Q' log 4 log B , is

strictly sharper than the bound announced by Cudnovski¥ [91, namely with

Q(log 3)2 , in that the latter bound is weaker than the trivial result (see
[7], Lemma 6) if B < Q' and is implied by our result if B = Q'

The dependence on 7 and on D , for example in Corollary 2, is as
good as has been achieved, whilst the hound in Corollary 1 is quite

striking in applications when the aj are distinct primes, so that
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D=1, and n is large. However, these results are all qualified by the
independence condition. Recently, Baker has announced a more general

result [7], namely:
The inequalities

<
0 |BO+B1 log o + ... + B log anl

1

2007 ) log Q' log 4A(log B + log 9))

< exp(-(lGnD)
have no solutions in algebraic numbers Bps --e» B, (Bn # 0) belonging to
the field K and of heights respectively not exceeding B .

This last result sharpens and generalises a similar result of Shorey

[14]. We are indebted to certain ideas of [/4] in the present argument.

THEOREM 2. Suppose there is a prime q satisfying 13 =q = k®

such that E([a]l'/q, cees arll/q] : Kj = qn . Let &8 >0 and write

c=1" amd n = [log(B'(S_lCQ' log Q')] . Then for any S with
0 < § < ChR' log Q' , the inequalities

0 < Ibl log o + ... + b log anl
< min{exp(-Ch' log Q' log 4), exp(-6B/B')}

have no solution in rational integers bl, vess b and bn #0 with

n-1
absolute values at most B and B' respectively.

There are a number of useful corollaries of Theorem 2. Firstly, we

can transform the result to the shape of Theorem 1 of Baker [4].

COROLLARY 4. Suppose there is a prime q satisfying 13 < q < k€

such that E([ai/q, cees a:'l/q] : IE—J = qn . Then for any & with

0 <8 =%, say, the inequalities

C(10gC)Q’ (Logh' ) 2104 ,~0B/B’

]
0 < |b, log @ +...+b log un] < (6/B')

have no solution in rational integers b .» b and bn #0 with

1’ n-1
absolute values at most B and B' respectively.

Secondly, we readily obtain the following explicit form of Theorem 2

https://doi.org/10.1017/5S0004972700036741 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700036741

38 A.J. van der Poorten and J.H. Loxton

of [4].

THEOREM 3. Suppose there is a prime q satisfying 13 <gq < k€
such that [%[ai/q, cees a;/q] : %] = qn . Write C = kl+u . If for some

§ > 0, there exist rational integers bl’ cees bn-l with absolute values

at most B such that

8B

< + ... - <e
0 |bl log @ +b, , log @ - log an| e R

1
then B < (671cR" log 9') (log(67 R’ 1og 2')) log 4 or B < log 4

according as & 1s less than or equal to, or greater than,
(c' log Q')(log[ﬁ_lCQ' log Q')).

This assertion is immediate for & = ChQ' log ' , whilst the case
§ > ChQ' log Q' is a weaker claim. One readily writes down analogues of

Corollaries 1 and 2 above.
We obtain the above results by following the argument of Baker [4].

Incidentally, by taking 6 = B'B-CQ' log @' and B' < B , one sees that
Theorem 2 implies Theorem 1. Subject to the independence condition, the
above results make explicit the dependence on n, D , and ' in Baker's
results in [4]. For comparison, we quote an earlier explicit result of

Baker [1], in which there is also no undetermined constant.

Suppose deg a; = d (1 =d=n) ad tgke d=>U4 . If rational
integers bl, oo bn exist with absolute values at most B , such that
0<8§ =1 and

-8B
|bl log o) + ... + bn log an| <e R

2 2
. . - +
then either all the bj vanish, or B < (hn §rEn log A)(En 1) )

Whilst it would obviously be desirable to remove the independence
conditions from the present theorems, doing so by the method of [4] has the
preliminary requirement that one have certain weaker results which act as a
base for an inductive argument. It is a tedious and lengthy process to

construct such results, though there do not appear to be any essential
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difficulties involved in eventually retaining much the same constants as in
the present results. On the other hand, the obtaining of any sharpening of
the present results, for example the removing of the log ' factor, or
the improving of the dependence on 7 , appears to present intractable
difficulties. It would seem that a significant breakthrough will be
required to effect bounds essentially sharper than those of the present

theorems. Of course, it is known that if o ceny an are all very close

l,
to 1 , one can obtain very much sharper bounds (ef. Shorey [/3]).

The first author has been able to prove the p-adic analogues of the
present results and in so doing has obtained a particularly favourable
dependence on the prime ideal involved ([72]). It may be useful to remark
that some ideas culled from the p-adic situation have motivated aspects of

the present argument.

Finally, we should remark on the significance of Tijdeman's Lemma
(Lemma 1, below) which, perhaps surprisingly, is quite critical to the

sharpness of the results we manage to obtain.

2. Proof of Theorem 1

Let « an be non-zero algebraic numbers of heights

10t
respectively not exceeding Al’ ey An (with log log Aj >1 ) and set
Q' = (log Al) <o (108 An—l) and Q= Q' log A, . We denote by K the
field K = Q(al, cees ah] and write D = [X : Q] . As in Section 1, we
introduce parameters u, kK , and € satisfying

2/(n+l) spus=2, 0<k=gu, €= (pk)/(1+p)(14c)(n+l) ,

and we choose further constants %k and C such that

4 )(l+l/K)(n+l), 61/s

% = max{ (3D )(l+u)(n+l)}

, (10D/¢e

Finally, we write

o = 1/(1+)(n+l) ,
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L_l+l

h = [log B] ,

1-
Ly+ 1= [3k %] ,

and

1-0, ;
[,J_.-:Eelén-k Qlogﬂ'/logAJ] (1=j4=n).

We shall suppose that bl, cees bn (bn # 0] are rational integers with

absolute values at most B (with Bz e2 ) such that

(2) 0 < lbl log o + ... + bn log anl < exp(-ChQ log Q') »

and we proceed to show that if there is a prime ¢q satisfying 13 = ¢q = k€
such that E([ajl_/q, ooy a;/q] : ]EI = qn , then our supposition leads to a
contradiction.

For any integer h = 1 , we denote by v(h) the least common multiple
of 1,2, ..., h . We write

Mx; h) = (z+1)(x+2) ... (x+h)/m? , A(x; 0) =1,

and further, for any integers A =20, m= 0 , we denote by

A(x; By, A, m) the m-th derivative with respect to x of
(Al=; h)]A/m!

LEMMA 1. Let q and qx be positive integers. Then

q2h>‘(v(h))mA(:c; By Ay m)
18 a positive integer and we have

A(xy By A, m) = yMa+h) and v(h) = e .

Proof. This is Lemma T1 of Tijdeman [16].

LEMMA 2. There are integers p(A) = p(A )‘n) » notall 0,

10 e

with absolute values at most exp (3-lhk$'2 log Q’) such that, for all
integers 1 with 1 =1 < 16Dh and all non-negative integers

m satisfying m. + ... +m < kQ log Q' , we have

Mo> =x=s My o n-1
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(3) g2 m) =gt my, .ooom )
L, L L, AT AL
=y Y ... Z p(AA(L; m)a cee@” =0
A_l-o AO-O A =0
where
n-1
Mz; m) = A{a+h_y5 By Ag#2, m)) T T A(p A~ A 5 m)
r=1
Proof., Let al, cees an denote the leading coefficients (supposed
positive) in the minimal defining polynomials of Ups eees @

respectively. For any non-negative integer J , we have

. D-1
(@o)l =% eI

rr . r 2
8=0 s

where the aig) denote rational integers with absolute values at most

. L L N1
(ZAr]J (1 =» =n) . Hence, on multiplying (3) by [all ven ann] , We
obtain

D-1 D-1 sn
Yy ... Z V(s) et =0,
=0 n
5
where

ey = T ... z p(MA(L; m)rT{ B ) I(,T;’Z)}.

=0 r

Ay

Hence the conditions (3) are satisfied if the " equations V(s) =

hold for all choices of . and m . These represent

n+l (kQLogQ'+n
M < 16hD [ n ]

< 16" 0" M (9 10g 0') "
linear equations in the
¥=(@_g4) ... (24) 2 %hk”*"/('“l)(ﬂ 1o0g 2')*(8n) 7"

unknowns p(A) . Further, Lemma 1 shows that after multiplying by
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m
(v(h)) 0 ,» the coefficients in these equations will be rational integers.

We have
m hm + (L +1) ( 1+h+h)
0 0 0
(v(n)) A(Z+A_l; By Agtls mo) < R
n-1 n-1 mr
TTla@ab s m)| =TT B a0 mr]
r=1 r=1
. n-1 (eB)m”qu . eh(ml+"'+mn—l)2ml+"'+mn—1hLl+"'+Ln—l
r=1
no (L-2)z (A7) n L1 L(y+...+L )
a, T g T = (2Ar) Tos exp(%lkl_cﬂ log 2')2 . n
r=1 r,sr r=1

We can therefore conclude that these rational integer coefficients have

absolute values at most

!
hikS1o0gh exp(élkl_OQ log Q') .

U=s5
Provided that, say,
by (1+1/k)(n+l
k= (3 D)( /x)(n+l) ;
we have N = (1+47)M , whence by the box principle (see, for example, [5],
p.- 13), the system of equations V(s) = 0 can be solved non-trivially and
the integers p(A) can be chosen to have absolute values at most

(20)™ 7T < exp(3nk 10g 2') .

Our efforts will be directed at proving the following inductive step:

Let ¢ denote a positive integer satisfying 13 = q = k& . Then for

each integer J = 0, 1, 2, ... with qJ < (8n)'1kl_(0_€)9' log Q' , there
(J)(A

exist integers p s An] not all 0 , with absolute values at

-1

most exp[3_lhkﬂ log Q') , such that

g(J)(Z; mo, ceay mn-l) =
() ()
2 “n (J) J A At
\ z;o ... AE;O p (A)A[Z/q N N L
-1 n
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for all integers 1 with 1 =1 = l6qJDh and all non-negative integers
(J)

. _J !
<< =
L with my *eeetm =g kR log Q' , where L_l L_l R
L(J) =17 and L(.J) < q_JL. for 1 =4=n.
0 0’ Jg - J T

Of course, Lemma 2 is the case J = 0 and accordingly we shall assume
the above proposition to have been proved for J =0, 1, ..., N . It is a
matter of notational convenience that we suppress the affixes and suffixes

(N) that should appear in our subsequent discussion.

LEMMA 3. For all non-negative integers Moy wnes M, with
Mmoo+ ...+m . =qVkQ log Q' , let
o T T T g
flzs m) = f(a; Mys +ees mn—l)
L L
3 n Y3 Y .z
1 -
= ) > p(A)A(z/qN; m)a Lo
— ol 1 n-1
A_l—O )\n-o

where Y, = )‘r - brkn/bn (L =»r =n) . Then, for any integer 1 with
1

1=17= leIVth0+Eu , etther g(ly; m) =0 or

(4) 172 m)| = & exp(-D(2hk+izq ™K ™%)0 108 ')

Similarly, for any integer q such that 1 =q = k® and any integer 1

such that 1 =1 = l6qN+th , either g(l/q; m) =0 or
(5) |f(1/q; m)| = 3 exp (—an(2hk+%Zq_Nkl-o)Q log ')
. 1 N, o+
Furthermore, for any complex number =z with |z| = 3q hk , we have
|£(z; m)| = exp((2hk+t|2]q™V%* )0 10g 2')
E} - 3 q g
Proof. We have
g(z) - f(2) =
L L -A 2/b
-1 n Az Az b b n ' n
> y p(A)A(z/qN)all o [l—[all a?
A_;=0 A =0 " n
- n

On noting that Iec-l| = 2|g| for |g| <1, we see that (2) implies that,
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for |z| = ¢'m"W

e e )

A

2|)\nz/bn|.|bl log a) + ... +b log a |

exp(-%ChQ log Q') .

1A

The estimates of Lemma 2 readily reveal that for |z| < %thk0+u

>

exp((%hk+§|z|q-”kl'c]ﬂ log Q') .exp(-2ChQ log ')
exp(—éChﬂ log ') .

(6) |g(z)-f(2)]

1A

1A

Hence, as asserted,

1f(z)]

1A

lg(2)] + exp(-éChQ log 2')

1A

exp((2hk+%]z|q‘”kl_o)9 log 2')
We now recall that by Lemma 1,

2h(N+1)(LO+1] L

mo( Ly L, /A
q (v(n)) [al e a ] g(l/q; m)

is an algebraic integer of degree at most an , and on recalling that

]ajl = DAj with the same inequality holding for each of the conjugates of
+

each of the &5 s and noting that qN 1< ka! log Q' , we see that each of

the conjugates of the algebraic integer is bounded above by

exp[(2hk+%lq—Nkl—c)Q log Q')
and by virtue of (6), the assertions (4) and (5) follow immediately.

LEMMA 4. Let J be an integer with 0 < J < u/2e and set
-N .
54 = [k log @ ] , 5, = [fso] s Sy = [(1-€J)SJ] (7 = 1)

where €, = max{e, 3/k} . Then g(1; Mys =os mn-l) =0 for all

integers 1 with 1 =1 = l6qNth€J and all non-negative integers
Mys eees My with my + ...+ m._y =< SJ .

Proof. The assertion is valid for J = 0 , since this is the
inductive assumption announced subsequent to Lemma 2. We suppose the lemma

to have been verified for J =0,1, ..., T , where T is an integer
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satisfying 0 = T < u/2e . We shall write
N €.
R, = [16¢ Dhk"] (J 2 0)

By virtue of the present inductive hypothesis, we claim that

2
(7) £, (s mys «oesm )| = exp(-3070 108 0') ,
for all integers r, m satisfying 1 <»r =< RT , 0=m= ST-ST+l and all
_ . . ) ) < .
non-negative integers mo, ooy mn-l satisfying mo + ...+ mn—l = ST+l

Here, and henceforth, fh is defined by

F = ()

m
To prove the assertion (7), we firstly recall that A[bnkj-bjkn; mj) is a
polynomial in Yj with coefficients independent of the A's and of degree

mj . We claim now that our present inductive assumption implies that

L L
=1 n N
(8) Y ... Y pAr/g s mAu ,m, o, m .
- 00 1 n-1
A =0 A_=0
-1 n
Y“l Y”n-l aAlr aA"P — o
S n-1 1 n
for all non-negative integers uo, ey un-l and mo, ey mn-l
. . R < <
respectively satisfying uo + ...+ un—l =m and my + ...+ m,_, = ST+1 .
To prove this claim, we argue by induction on U = uo L un—l .

observing that the case W =0 is the inductive assumption of the lemma,

since ST+l < ST . Indeed, this assumption states that
L-l Ln P Alr Anr
N 2;0 ... AEEO p(A)A[r/q Mg, MM, e, m W (et et =0,
-1 n
which we can rewrite as
o ( )
. a, . . Ej’ ,j =0,
j1=0 Jn—l—o l,Jl n—l,Jn_1 1 n-1
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where

L—l Ln N
E(Jl, cees Jn_l) = Z; - 2. p(MA|r/q; My*tHgs Mys ens mn—l]

A =0 A =0

-1 n

71 J n-1a>‘1” axnr
. Yl .o Yn—l 1 cee O
Since di u # 0 for each 1 , we can conclude from the inductive
SH.
7 .

assumption that E(jl, cees jn—l) = 0 for all non-negative integers
. . . . . . <

Jl, cees Jn_l satisfying Jl + ...+ Jn—l # , that also

= 0 , which confirms our claim (8).

By, vees v, )

Now write

@(zo, ey zn_l; mo, eees mn_l)
L L
=1 n Y,3 Y, 2
_ v 1°1 n-1"n-1
- 2;0 e 1220 p(A)A[zo/q 3 Mys wees mn-l]al e
-1
and observe that
_ -1 m
£(r) = (mt) (3/820 + ..+ a/azn_l) ¢ (2, , zn_l)l o
2. =...=2_ _=p
n-1
u H
0 n-1
_ -1] d 3
B 2 (“O' un-l!) [Bz ] [Bz ]
uo+. .+pn_l=m 0 n-1
Q(""Q’ °? zn‘_l] lz = =y
0 .
m_+u u u
-1 0 n-1
=T Gyt e w07 O bosa) s (og )
u0+' '+pn-l_m
L-l Ln v
\ Z;o ... AE;O p(A)A[r/q 5 MgHys Mys ey mn-l]
-1
u u A r A .r
1 n-1_"1 n-1
. Yl v Yh-l al cee @

In view of (2), (8), and the argument opening the proof of Lemma 3, we have
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(7) as asserted. It is relevant to remark that the quantities
M.
(Yj log aj) J/uj! are, relatively, not large.

We write

S,+1-S
F(z) = {(z-1) ... (z-H&J} T T+l

By the integral form of the Hermite interpolation formula, we have, for

each integer 1 satisfying RT < 1= RT+1 ,

(9) LJ F(1) ﬂi)_dz

2nt r F(z) a-1
R, S-S
7 T T+l m
- 1 F(1) (z-7)
IO gy L2 f%”)L.Fu) el %

where, for each r , Fr is a circle with centre r and radius % and T

is a circle about the origin of radius 3RT+1 . For z on Pr , Wwe have

(#@y/e)| = (7€) [y 652) )1 G,y !2]ST+1'ST+1

R, (S +1-5

< (Zeke) T T T+1) eT+1

< exp(l6th (2+e log k)§ log Q') .

Since T < p/2e , we may conclude in view of the size of C and on
recalling (2), that the double sum on the right in (9) is bounded above by
exp(-3ChQ log Q')

For 2z on [ , we have, in the case T =0 ,

-R_($ -5
|F(2)/F(=)| <3 00 < exp(-8DHKQ 1log Q') .

But by Lemma 3, for 2 on [ , we have

1£(2)| < exp((enkeienk=(9))a 10g ') .
Thus, already if

k> (16/3)(1+u)(n+1)

b

we see that the integral on the left in (9) is bounded above by
exp(-5Dhk} log 2 ) . Hence the interpolation formula implies that
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|f(2; m)| = exp(-5DhkQ log Q') + exp(—-zl-ChQ log Q') ,

whilst, by Lemma 3, we have g(l; m) = 0 or

|F(2; m)| > 3 'exp(-D(th+1—:thl-(o_€)]Q log ')

Evidently, the inequalities for |f(Z; m)l contradict one another, so we

obtain g(l; m) = 0 for lflERl and my + ... +m . =S, , as

required.

Generally, for 1 < T < y/2e , we have for z on T ,

-R(5.-S,,..)
P/Rz)] <3 T 1 T < axpl Lee pnkT*q 10g @
s 70
and
I£(2) | < exp((ehkr2ionk®TH1~(0-€))g 150 01) |

Thus, if say

k = (100/e) 1) (m41)

the interpolation formula implies that

|£(Z; m)| < exp [-geTth€T+lQ log Q'] .
whilst for 1 =1 = 16qNth€T+€ , we have by Lemma 3 that g(l; m) = 0 or
1725 m| > } exp(-D(enks2epmET {98y 144 1)

For 1 =T < p/2e , the estimates for |f(Z; m)| contradict one another,

whence we have g(Z; m) = 0 for 1 =1 =< RT+l and

m. + ... +

o ST 1 0 as required. The lemma now follows by induction.

m =
n-1

LEMMA 5. For all integers 1, q with 1 =1 = l6q”+th R

T=gq*= k* and all non-negative integers Mys cees M with

-1 N
my * ... tmoq =9 q kQ log Q' , we have g(Z/q; Mays oo mn-l) =0.

Proof. By Lemma 4, we see that g(l; mo, ey mn_l] = 0 for all

integers 1 satisfying 1 = 7 <R and all non-negative integers

m ...,mn with m, + ... +m = S , where

0’ -1 0 n-1
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1
= [16q”thE“] and 5 = [67%¢""ka log ']
As shown in the proof of Lemma 4, this implies that
2
(10) |f&(r; Mys vees mn-l)’ = exp(-3ChQ log Q')
for all integers r, m satisfying 1L =<r <R, 0 =m=S/3 and all non-
negative integers m m satisfying m_+ ... + m._y < 25/3 .

0° "7 Tl 0
Now suppose that 1/q is not an integer and set
F(z) = {(2-1) ... (2-R)}S/3141

As in the proof of Lemma kU, we have

(1) _L_&mm

277 F(z) z-l/q
R [5/3]
1 (2/q) SsiL
= f(1/q) + 333 2 mgo Tulr) L,, F(z) a-l/q

r

where, for each r , Fr is a circle with centre r and radius

s min{l, |r-2/q|} , and T 1is a circle about the origin of radius 3R .

For =z on I‘r , we have

|F(2/q)/P(z) | = (Rt/(2R)12)1*5/3 < exp (20340 10g 0)

whence (10) suffices to show that the double sum on the right in (11) is
bounded above by exp(-%ChQ log ') . For z on T , we have

1
|F(1/q)/F(z)]| = (3-R)S/3 < exp(—gthl+5uQ log Q')
whilst by Lemma 3,
1
If(z)| = exp((2hk+l6thl+5u-o]Q log 9') ,
whence the interpolation formula implies that
1
[f(2/q)] = exp (—%thh?uﬂ log 2')
N+l

On the other hand, by Lemma 3, we have for 1 =1 =< 16q
g(l/gs; m) =0 or

Dh that either

1#(2/q5.m)| = L exp(-q"D(enk+12qonk" )R 10g 0') .

Plainly, the two inequalities for [f(Z/q; m)| contradict one another if,
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say,

T<qs g/eln)

and recalling that the data includes the cases 1/q an integer, we obtain

the assertion of the lemma.

We are now in a position to state formally the inductive argument

introduced prior to Lemma 3.

LEMMA 6. Let q Dbe a prime satisfying 13 =q = k¢ and suppose

that the field K[ai/q, ai/q

] is an extension of K = Q(otl,- vees an)
of degree qn . Then, for each non-negative integer J with

qJ < (8n)-lkl-(0_€)9' log ', there exist integers p(J)()\_l, cens )‘n) not

all 0 and with absolute values at most exp (3-lhk9 log Q') , such that

9(7) (z; Mays oo mn-l)

(J) (J)
Ly L, ) J Al AL
= )\Z=O )\éop (MA{L/q 5 mys ""mn—l]al cee =0
-1 ”n

for all integers 1 with 1 =<1 =< l6qJDh and all non-negative integers

. -dJ.
Mas wees My o with Mg+ ...tm ) =q kQ log ' , where
(7) _ (J) _ (J) -J .
L_l —L_l, LO —Lo,and Lj <q Lj for 1=2=n.

Proof. The case J = 0 is just Lemma 2 and, on supposing the lemma
0,1, ..., N , we have established that for
N+1

to have been verified for J
all integers ! with 1 =17 <169 ~Dh and all non-negative integers

) -1 W ,
Mys wees My o with Moy + eee +mn_159 q~ kR log Q' we have

g(N) (Z/q; Mys <o mn-l) =0 .

In view of the supposition E((ai/q, ey at/q] : IEI = qn , We may now

conclude that for some #-tuple (A!

15 cees )\;L] of integers satisfying

05A3<q (1 =4 =n) , we have
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L' L'

(12) il > M0, A )
P e )\=Op -1° “0° ul’ LR ] un
-1 n

Al Al
. A'[Z/q”+l; Moy oens mn-l]all ..o =0

for all integers I with 1 <1 <164 "*Dh and (I, q) =1 and all non-

m satisfying

negative integers mo, cees My 4

<1—_ ~-N !
m +...+@Pl—qq kQ log ' ,

v _ (N) ' < 4 <
Ly » Lj- HLJ. -)\j]/q:] (L=4=n),

“j = K; + qkj (1 =4 =n) , and the integers H,, ..., M, are so chosen

1 — H
and where L_l = L-l N Lo

that not all the integers p(N)[A_l, AO’ Bis oees un] vanish. Here, A'

is defined as is A (see Lemma 2), but with Al’ cees An replaced by

His wees B - On recalling that A(b u.-b u E—ﬁyj is a polynomial in

n n'r rmn
Yp = H, - brun/bn with coefficients independent of the U's and with
degree m, s We can argue by induction with respect to m + ...+ m._y @as

in Lemma 4 (one of the "inner" inductions) and infer that (12) remains

valid when the product over r in the definition of A' is replaced by

1 n-1

Yl cee Y

n-1 Then, by taking linear combinations, we can conclude that

in (12), A' can be replaced by A . So we obtain that

L' L'
=1 n
’ N+1

\ Z=0 . AZ_O p' (A Aps -ees )\n)A[Z/q S Mgy e mn_l]

-1 n
Al Al
et ...a” =0
1 n

where the p'(l) are integers not all O , with absolute values at most

exp(B—lth log Q') , and this is the assertion of the lemma for
J =N+ 1. Hence the lemma is proved by induction, provided we cope with

the cases where (1, q) # 1 .

N+l

To see this, set R = [16q  ~Dh] and S = [9—lq-NkQ log '] . We
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have shown that g(l; m) (=g (Z; m)} =0 for all integers I with
(N+1)

(Z, q) =1 and 1 =1 =R and all non-negative integers Mays oy My o

with my + ... +m . < S . Just as in the proof of Lemma Y4, this implies

that
lfm(Z; Mys +oos mn—l)l < exp(-%(]hﬂ log Q')

for all integers I, m with (l,q) =1, 1<1<R,and OSm<=3S
+

m with m  + .

and all non-negative integers m 1 9 . 1

0

We write

R 1
Fz) = T (z-r)[rslﬂ .
r=1
(r,q)=1
As before, for each integer I with (I, gq) >1 and 1 =7 =R , we have
the interpolation formula

1 F(1) f(2) _ 1 R (381 F(2) gz-r!m
2nt L. F(z) a-1 dz = f(1) + 57 r—z-:l ”Z:O Fulr) II‘ F(z) a-1 da ,
(r,q)=1 r

where, for each r , I‘r is a circle with centre r and radius % and T

is a circle about the origin with radius 3R . Proceeding as in Lemma U4,
we see that the double sum on the right is bounded above by
exp(-%ChQ log Q') and, for 2 on T ,
-R(g- lg
1P(2)/8(z)] = (RO ¢ e lepmia 106 2')

whilst

|£(z)| = exp((ehk+160kk )2 10g Q')
So the interpolation formula gives
|f(z; m)| < exp(-3DhkQ log 2') .

Finally, by invoking Lemma 3, we find that g(Z; m) = 0 for all integers
7 with (Z, q) >1 and 1 <7 <R and all non-negative integers

m with m_ + +m < ¢ "k log ' , as required.

0* *cto My ot e 1 S

To complete this part of the proof, we now require only an elementary
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lemma on polynomials.

LEMMA 7. If P(xz) 4is a polynomial of degree m > 0 and with
coefficients in a field K , then, for any integer t with 0 =<t =m,
the polynomials P(x), P(x+l), ..., Plx+t) and 1, x, ..., L e
linearly independent over K .

Proof. This is Lemma 2 of Baker [2].

Proof of Theorem 1. Choose the prime ¢q such that 13 =g = k® ana
E([Oti'/q, ooy Oti/q] : IEI = qn . We may suppose that we have established

Lemma 6 for J = N with
ESn)'lkl'OQ log Q'/log Arj < qN S (8n)'1kl-(°_€)ﬂ' log Q'

whence we have

fe) .

-1 n-1 () ¥ >‘lZ A lZ
(13) Yoo, ¥y P (A)A[Z/q;mo, ce., m ]a .ot =0

A =0 A =0 n-1)"1 n-1

-1 n-1

for all integers ¢ with (Z, ¢) =1 and 1 =17 = l6qNDh and all non-

. . . -N
negative integers my, ..., m . with m + ... +m . =q kQ 10g Q' ,

. . N
and so, a fortiori, for 0 = my = %q kQ log Q' and 0 = ms s Lé.N)

(1 =4 =n-1) , because L;.N) < q-NLj (L=24 =n)

We claim that the equations (13) are impossible under the given

()

conditions. Indeed, the equations imply that for O =m 1 =L N

n- n-1
S
n-=1 =1 n-2 (N) N
(14) Y Yoo, Y p ()\)A[Z/q S M.y ooy m ]
A =0 A =0 A =0 0 n-2
n-1 -1 n-2
Al AL
1 n-1 _
@ an-l An-l =0,
where An-l = A(bn)\n-l—bn-lxn.’ mn-l) and
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A[Z/qN; Mys wens mn_z] = A(Z/q”; m)/An_l .

By Lemma T, the polynomials A(x; mn-l) for 0 = mn—l = L;Yi are linearly

independent, so it follows that the (Lifi+l] x [L;fi+l] determinant with
B, , asits typical entry (in the (A,  +l)-th row and (m  +1)-th
column) does not vanish. Hence the sums in parentheses in (14) all vanish

and, after n - 1 applications of this argument, we obtain

L L
=1 (0]
) B (W = § ¥ pMoon(ude sk A m) = o
0 A_1=0 A %0 - 0" 0

for all integers ! with (7, ¢) =1 and 1 <1 = 16qNDh and all

~N
integers m, with 0 = m = %q kQ log Q' . But (15) asserts that for
each admissible choice of Al’ vens An , P(z) is a polynomial of degree
at most h(L0+l) with at least
N 7 =N '
(16) 16q Dh(1-1/q) . =q kQ 1og Q

zeros, counted according to multiplicity. The quantity (16) is at least
as large as 12DhK log Q' , which exceeds h(LO+1) , SO that it follows

that each P(2) vanishes identically. Consequently, by Lemma T, the

p(N)(A) all vanish, which is contrary to the construction of Lemma 6.

This contradiction establishes the theoren.

3. Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 involve only minor modifications to our
proof of Theorem 1. We follow the argument of Baker [4]. We choose the
parameters W, Kk, €, K, C , and ¢ as in Section 2 and, for &§ > 0 , we

write

h = [log(B's7 ' 10g 0')] ,

o]
+
[
]

L, +1= [ %] ,
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t~
|

= Ean)'lkl‘ofz' log Q'0/log AJZI (1=4=n1),

t~
|

[(8n) &% 10¢ 9'] ,

0 = hax{log 4, 6B/(B'ChQ' 1log ')} .

Other than the new definition of % and, in effect, the replacement of
log A , wherever it implicitly appears, by © [so, for example, we

commence Lemma 2 with my + ... +m = kQ' log 2'0 ) there is no change

0
from the proof of Theorem 1. However, our primary supposition (2) is here
replaced by the supposition that bl’ cees bn-l and bn # 0 are rational

integers with absolute values at most B and B' respectively such that
(17) 0<|b, loga + ... +b loga| <exp(-ChQ' log Q'0) .
1 1 n n
One easily confirms that there is only one point in the proof that is

sufficiently different so as to require verification. Namely, in the proof

of Lemma 2, one needs to notice that indeed

n-1

(18) I;I IA(bnxr-brxn; "le

n-1 m 1-0
-1 r,|K 56 6B
=T [B'G Q' log Q’) A L—————- + —T—]; m
r=1 8n Clogd, B c r
R{m +...4m ) m+...+m 1,1-0, '
<g 1 n-1 .21 n—l.zgk thogQG’
the estimate being valid for & = ChQ' log Q' . The proof of Theorem 1 now

allows one mutatis mutandis to conclude that, if there is a prime ¢

satisfying 13 < q < k° such that E{[ai/q, cens ai/q] : IEI = ¢" , then

|bl log a; + ... + b, log anl > exp(-ChQ' log Q'0) .

To obtain Theorem 3, we observe that in view of the remark following
the inequality (18), the assertion is immediate for & = ChQ' 1log Q' ,
whilst the case & > ChQ' log Q' is a weaker claim.
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