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Computing the effectively

computable bound in

Baker's inequality for
linear forms in logarithms

A.J. van der Poorten and J.H. Loxton

For certain number theoretical applications, it is useful to

actually compute the effectively computable constant which

appears in Baker's inequality for linear forms in logarithms. In

this note, we carry out such a detailed computation, obtaining

bounds which are the best known and, in some respects, the best

possible. We show i-ntev alia that if the algebraic numbers

a,, , a all lie in an algebraic nmber field of degree D

and satisfy a certain independence condition, then for some

«.(£>) which is explicitly computed, the inequalities (in the

standard notation)

0 < \b^ log c^ + ... + t>n log an\

< exp(-(n+l)(
1+log("+1)4)(n+1)fl log a' log B)

have no solution in rational integers b, , ..., b {b # o) of

absolute value at most B , whenever n > nAD) . The very

favourable dependence on n is particularly useful.

1 . Introduction

It is our purpose in the present work to describe the detailed

computation of the lower bound in various versions of Baker's inequality
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34 A.J. van der Poorten and J.H. Loxton

for linear forms in logarithms. We have attempted to make no prejudgement

as to the relative sizes of the quantities involved, so that our results

remain quite general but, in effect, are best suited to certain

applications in elementary number theory where one wants an optimal

dependence on n , the number of logarithms. When n is small, there is

now an alternative technique due to Cijsouw and WaIdschmidt [S], which

avoids the extrapolations necessary to the present argument and is almost

surely sharper than is our present bound as regards the absolute constant

appearing therein. Moreover, our work is incomplete to the extent that our

results are stated subject to a certain independence condition on the

logarithms; however, in the immediate applications we have in mind, the

independence condition is automatically satisfied by the data. Subject

then to the above qualifications, our results are nevertheless the best

known and, for some of the variables, best possible in each of these

variables. Of particular interest is the dependence on n and the quite

good dependence on the heights of the algebraic numbers in each of our

results. There is no suggestion that our absolute constants are in any way

optimal, but they are nevertheless strikingly small.

In an attempt to make our work more transparent to the reader, we have

indicated explicitly those points in our proof at which we become committed

to a growth in the parameter k , and thence to a growth in the eventual

constant C . Nevertheless, the work forces one to a number of pre-

commitments which, even in hindsight, are difficult to coherently explain.

Throughout this work, we denote by a,, ..., a non-zero algebraic

numbers of heights respectively not exceeding A-., ..., A (with

log log A . > 1 ) . We suppose that we have A. 5i) i ... 5 A and some-

times write A. 2 . .. 5 A ^ £ A' and A = A . Throughout, we set

n' = (log A.J ... (log An x) and fi = $}' log An .

We require, of course, that n > 2 . Furthermore, we denote by K the

field K = Q(a,, ..., ct ) and we write [K : Q] = D ; the case D = 1 is

admissible. Finally, we denote by 5 a rational integer with, say,

B £ e . (However, generally, our results are quite trivial unless B is

substantially larger.)
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Linear forms in logarithms 35

In order to conveniently state our results it is useful to introduce

real numbers y, K , and e , satisfying

2/(«+l) £ y < 2 , 0 < K 5 |p , e = (u-K)/(l+u)(l+K)(n+l) .

Furthermore, we denote by k a constant satisfying

(1) k > (V
We prove the following results.

THEOREM 1. Suppose there is a prime q satisfying 13 5 q £ ke

such that \KU^, . . . , a1'**] : K = qU . Then the inequalities

0 < \b± log a1 + . . . + bn log o | < exp(-fe1+Mfi' log flr log A log B)

have no solutions in rational integers b^, — , b [bn t o) with

absolute values at most B .

By choosing y = 1/3 (log(rc+l))* and K = |y , one sees easily that

for n sufficiently large re la t ive to D , for example

log(rc+l) > (6 log 3D) , we have the corollary:

COROLLARY 1 . Suppose there is a prime q satisfying

1 3 S ( j ; exp(i(log(n+l))£) such that l!i\a^q, ..., a^/q) : K\ = qn . If

n > nAD) for some explicitly computable n
n(^) J then the inequalities

0 < 1 ^ log a± + ... + bn log an|

' log fl' log A log B)

have no solution in rational integers b. , ..., b [b # 0) with absolute

values at most B .

On the other hand, choosing y = 2 and K = j , one can obtain the

corollary:

COROLLARY 2. Suppose there is a prime q satisfying

13 2 q £ 25D(n+l) such that \A<^q» •••» c t ^ : Kj = qn . Then the

inequalities
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0 < 12^ log o 1 + ... + bn log &n\

< exp(-(25ZJ(«+l))9(n+1)nI log 0' log A log B)

have no solution in rational integers b., , b [b # o) with absolute

values at most B .

The choice of parameters in the proof of Theorem 1 is made with a

view to getting the best result of the form of Corollary 1. By making some

minor changes to the argument, we can improve the constants in Corollary 2

and, in particular, we can lower the exponent 9(«+l) to 6n + 8 . By the

argument of Baker [6] (note the minor corrections mentioned in [7 7]), one

can get rid of the independence condition so as to immediately obtain the

following result.

COROLLARY 3. There is an effectively computable constant

C = C(n, D) > 0 , dependent only on n and D , such that the inequalities

0 < 1 ^ log o^ + ... + bn log an\ < exp(-Cft' log ft' log A log B)

have no solution in rational integers £>.. , , b {b t o) with absolute

values at most B .

This is Theorem 2 of [7 7] which is announced by analogy in [7 7]; the

present argument thus confirms that assertion. Our result is sharper in A

than that of Baker [6], which has ft log ft rather than our

ft' log ft' log A , and is considerably sharper in A' than is that of Baker

[2], which is indefinite in A' , or that of Tijdeman [76], Theorem 2,

2

which has (log A')2n + 7 " rather than our ft' log ft1 < (log A')n . The

dependence on A separately is best possible; this dependence was of

course achieved earlier by Fel'dman [70] and Baker [2]. It may be useful to

remark in passing that our bound, which has ft' log ft' log A log B , is

strictly sharper than the bound announced by Cudnovskit [9], namely with

o

ft(log B) , in that the latter bound is weaker than the trivial result (see

[7], Lemma 6) if B < ft1 and is implied by our result if B > ft' .

The dependence on n and on D , for example in Corollary 2, is as

good as has been achieved, whilst the bound in Corollary 1 is quite

striking in applications when the a. are distinct primes, so that
3
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0 = 1 , and n is large. However, these results are all qualified by the

independence condition. Recently, Baker has announced a more general

result [7], namely:

The inequalities

0 < iBg+f^ log a1 + ... + 3^ log an|

< exp(-(l6n£>)20°V log ft' log /l(log B + log ft))

have no solutions in algebraic numbers 0. 3 [& + o) belonging to

the field K and of heights respectively not exceeding B .

This last result sharpens and generalises a similar result of Shorey

L-142. We are indebted to certain ideas of [74] in the present argument.

THEOREM 2. Suppose there is a prime q satisfying 13 £ q £ ke

such that \K\a^q, ..., a*/<?] : K\ = qn . Let 6 > 0 and

C = fe1+li and h = [ l o g ^ ' S " 1 ^ ' log ft')] . 2%en for any 6 wi

0 < 6 < CKl' log ft' , t/ie inequalities

0 < I&, l o g a + + b l o g a |

< min{exp(-Cfcft ' l o g ft1 l o g A), exp( -<5B/B ' )}

have no solution in rational integers b, , ..., b . and b ^ 0 with

absolute values at most B and B' respectively.

There are a number of useful corollaries of Theorem 2. Firstly, we

can transform the result to the shape of Theorem 1 of Baker [4].

COROLLARY 4. Suppose there is a prime q satisfying 13 £ q £ fee

such that yi\a^q, . . . , a ^ l : K\ = qn . Then for any 6 with

0 < 6 £ 5 , eas/j the inequalities

0 < | & 1 log a, + . . . + bn log a j < (a/B.)ff(lo8P)0(lo8B)log« . e~6B/B'

have no solution in rational integers b., — , b . and b ? 0 with

absolute values at most B and B' respectively.

Secondly, we readily obtain the following explicit form of Theorem 2
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of [4].

THEOREM 3. Suppose there is a prime q satisfying 13 2 q 5 k

such that \K\a /c?, ..., a lq\ -. K = qn . Write C = k +V . If for some

6 > 0 , there exist rational integers b. , . .., b with absolute values

at most B such that

0 < \b-L log a± + ... + b x log
 a _x - log an\ < e ,

then B < [S'1^' log ft') (log(6"1Cfil log ft')) log A or B < log A

according as & is less than or equal to, or greater than,

(Cft' log ft') (log (6 Cft' log ft')) .

This assertion is immediate for 6 5 ChQ.' log ft1 , whilst the case

6 > CTzft' log ft' is a weaker claim. One readily writes down analogues of

Corollaries 1 and 2 above.

We obtain the above results by following the argument of Baker [4].

Incidentally, by taking 6 = B'B^Ctt' log ft1 and B' s B , one sees that

Theorem 2 implies Theorem 1. Subject to the independence condition, the

above results make explicit the dependence on n, D , and ft' in Baker's

results in [4]. For comparison, we quote an earlier explicit result of

Baker [7], in which there is also no undetermined constant.

Suppose deg a- S d (1 £ j < n) and take d > h . If rational
d •

integers b.., . . . , b exist with absolute values at most B , such that

0 < 6 £ 1 and

\bx l o g a^ + • • • + b l o g a | < e ,

2 2
then either all the b . vanish, or B < (l+n 6~ a H log A]

Whilst it would obviously be desirable to remove the independence

conditions from the present theorems, doing so by the method of [6] has the

preliminary requirement that one have certain weaker results which act as a

base for an inductive argument. It is a tedious and lengthy process to

construct such results, though there do not appear to be any essential
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difficulties involved in eventually retaining much the same constants as in

the present results. On the other hand, the obtaining of any sharpening of

the present results, for example the removing of the log Q' factor, or

the improving of the dependence on n , appears to present intractable

difficulties. It would seem that a significant breakthrough will be

required to effect bounds essentially sharper than those of the present

theorems. Of course, it is known that if a , ..., a are all very close

to 1 , one can obtain very much sharper bounds (of. Shorey [73]).

The first author has been able to prove the p-adic analogues of the

present results and in so doing has obtained a particularly favourable

dependence on the prime ideal involved ([7 2]). It may be useful to remark

that some ideas culled from the p-adic situation have motivated aspects of

the present argument.

Finally, we should remark on the significance of Tijdeman's Lemma

(Lemma 1, below) which, perhaps surprisingly, is quite critical to the

sharpness of the results we manage to obtain.

2. Proof of Theorem 1

Let a,, ..., a be non-zero algebraic numbers of heights

respectively not exceeding A-. , .. . , A (with log log A . 2 1 ) and set

S21 = (log A.J ... (log An ) and U = fi1 log A . We denote by K the

field K = Q(ct,, ..., a ) and write D = [K : Q] . As in Section 1, we

introduce parameters p, < , and E satisfying

2/(n+l) 2 y 5 2 , 0 < K S |p , e = (u-K)/(l+y)(l+K)(n+l) ,

and we choose further constants k and C such that

and

c = k1+v .

Finally, we write

a = 1/(1+K)(n+1) ,
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L_± + 1 = h = [log B] ,

L + i = [ifc1-^]

and

La = ft" kl~0n log "'
We shall suppose that b.,...,b {b # o) are rational integers with

absolute values at most B (with B > e ) such that

(2) 0 < |2> log a + ... + bn log aM| < exp(-CWJ log fi') .

and we proceed to show that if there is a prime q satisfying 13 2 q 5 k

such that \K a-, . ... , a *M : ̂  = qn , then our supposition leads to a

contradiction.

For any integer h > 1 , we denote by v(7z) the least common multiple

of 1, 2, ..., h . We write

A(x; h) = (x+l)(s*2) . . . (x+h)/hl , A(x; 0) = 1 ,

and further, for any integers X > 0 , u i 0 , we denote by

A(a;; 7i, X, m) the m-th derivative with respect to x of

(A(x; h))X/ml .

LEMMA 1 . Let q and qx be -positive integers. Then

q2hX{v(h))m^x; h, \, m)

is a positive integer and we have

A(x; h, X, m) £ kX{x+h) and v(7i) 5 kh .

Proof. This i s Lemma Tl of Tijdeman [ 7 6 ] .

LEMMA 2. There are integers p(X) = p(X X ) , not all 0 ,

witft absolute values at most exp(3~ hkil log f2') such that, for all

integers I with 1 5 £ 5 l6z?7i OM<2 a l l non-negative integers

m , ..., m satisfying m + ... + m 5 kiJ log fi' ., we have
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(3) gdi m) = g[l; mQ, . . . , m^J

p ( X ) A ( l ; m ) ^ 1 . . . ctn
M = 0 ,

L0 Ln H XI

I I 1 "X =0 X =0 X =0
- 1 0 n

n-1
; m) = A(«+X_i; fc, XQ+1, mQ) T T * (*n V V n 5 mp) .

r=l

where

Proof. Let a,, . . . . a denote the leading coefficients (supposed
j. n

positive) in the minimal defining polynomials of ot , . . . , a

respectively. For any non-negative integer j , we have

where the a denote rational integers with absolute values at most

t L L -iZ
(a4r)

J (1 £ r 5 n) . Hence, on multiplying (3) by \a ... a^\ , we

obtain

0-1 0-1 s. s

s

- 1

1=° 8 =0
w

n

s
. . a n = 0

n

n r [L-Xjl (H)

where

X_1=0 Xn=0 r=l >• r r' er

Hence the conditions (3) are satisfied if the D equations V(s) = 0

hold for all choices of I and m . These represent

M 5 I6wr 1 ( f c m ° f + n ) < l6eV
+1h/cn(fi log fi')Vn

linear equations in the

N = (L_1+l) . . . ( i n + l ) 2 ^fe" + K / ( K + l ) ( f i log n '

unknowns p(X) . Further, Lemma 1 shows that af ter multiplying by
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m
(vC0) » the coefficients in these equations will be rational integers.

We have

hm + (L+I) (l+h+h)
A(Z+A i ; ft, X0+l, mQ) s h ° °

n-l n-l m

r=i n r r n r y = 1

n - l m £ h[m+...+m , ) m^+...+m , £., + . . .+£
(2B) *U -1 < e

r=l

w (i 4 )2 (A Z) n LI , Z[L .+...+£ )

' r r = l

We can therefore conclude that these rational integer coefficients have

absolute values at most

and

Provided that, say,

fc> ( 3 V 1 + 1 / K ) ( n + 1 ) ,
we have N 2 (1+7)M , whence by the box principle (see, for example, [5],

p. 13), the system of equations V{s) = 0 can be solved non-trivially

the integers p(A) can be chosen to have absolute values at most

(2NU)1/7 < exp(|ftkn log a') .

Our efforts will be directed at proving the following inductive step:

Let q denote a positive integer satisfying 13 - q — k . Then for

each integer J = 0, 1, 2, . . . with q < (8n)"1fe1"^a"e^' log SI' , there

exist integers p {^_1 ^ ) w o t a ^ ° J with absolute values at

most exp(3 hkSl log fif) , such that

-1 n / T\ r T i X.I XI
I ... I p(J)(X)A\l/qJ;m ,m a 1 . . . a " = 0

= 0 A =0 >• ° n-X> X nA =0 A =0
-1 n
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for all integers I with 1 - I - l6<? Dh and all non-negative integers

m , , m with m + ... + m -, - Q kft log ft' j where L = L ,

L{Q
J) = LQ , and L

[f] s q~JL . for 1 < j < n .

Of course, Lemma 2 is the case J = 0 and accordingly we shall assume

the above proposition to have been proved for J = 0, 1, ..., N . It is a

matter of notational convenience that we suppress the affixes and suffixes

(/I/) that should appear in our subsequent discussion.

LEMMA 3. For all non-negative integers m , ..., m n with

m + ... + mn ± - q~
NkU log ft' , let

f{z; m) = f[z; mQ, ..., mn_1)

L-l n .. Yn2 y^, n3
= I ... I PMA{z/qN; m)a^ ... a^" 1 ,

X =0 X =0 X n 1

-1 n

where y = \ - b X /b (1 5 r 5 n) . Then, for any integer I with

1 S J < l6qNDhka+*V , either g(l; m) = 0 or

(It) \f(l; m)\ > \ exp(-0(2M+il<?"V"
a)ft log ft') .

Similarly, for any integer q such that 1 5 q £ ke and any integer I

such that 1 5 J S l6</V+1D?z , either g(l/q; m) = 0 or

(5) 1/UA?; m)| > i exp(-<?"£)(2^+ii^1"0)f t log ft') .

Furthermore, for any complex number z with \z\ - ^q hk , we have

| 2 | ( ?"V"a)ft log ft1) .

g{z

Proof.

) - /( .)

x

We

=

l = 0

\f(z;

have

m)\ 5

I P
X = 0
n

... a n 1- a / ... a n

On noting that |e -l| 5 2|^| for |^| < 1 , we see that (2) implies that,
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for \z\ £ q l

l-[*± • • • an) J | £ 2 I \ z l b n \ • ̂  l o 8 «i + • • • + K l°g

S exp(-|CW2 log ft') .

The estimates of Lemma 2 readily reveal that for \z\ £ ̂ q h

(6) | ff(«)-/(*) | S exp( (^ fe+i | a | f l -V" a ] f i log O').exp(-|C*O log 0 ' )

< exp(-|Cfcfi log JJ1) .

Hence, as asser ted,

\f(z)\ < | ? ( s ) | + exV(-Zch£l log O1)

5 exp{[2hk+^\z\q~llk1~a)Sl log Si') .

We now r e c a l l t h a t by Lemma 1 ,

){L+l) "i(L Ly.1

q y° \v(h)) °[ai
X ... an

n] g(l/q;m)

is an algebraic integer of degree at most q D , and on recalling that

|a . | 5 DA . with the same inequality holding for each of the conjugates of
3 3

each of the a . , and noting that q < kSi' log ft' , we see that each of
3

the conjugates of the a lgebra ic in teger i s bounded above by

exp ([2hk*\ l q ~ V " a ) SI log SI') ,

and by v i r t u e of ( 6 ) , the asse r t ions (k) and (5) follow immediately.

LEMMA 4 . L e t J b e a n i n t e g e r w i t h 0 5 J < u / 2 e a n d s e t

SQ = lq~NkSi log a ] , Sx = [ f s j , SJ+1 = [{l-eJSj} (J > 1)

where £j = max{£, 3/k^} . Then g[l; mQ
 m

n_i) = ° for al1

integers I with 1 £ 1 £ l6q Dhk and all non-negative integers

mn, — , m , with mn + . . . + m , £ 5 T .

Proof. The asser t ion i s valid for J = 0 , since th i s i s the

inductive assumption announced subsequent to Lemma 2. We suppose the lemma

to have been ver i f ied for J = 0, 1, — , T , where T i s an integer
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satisfying 0 £ T < u/2e . We shall write

Bj = [ J V W ^ ] U » 0) .

By virtue of the present inductive hypothesis, we claim that

(7) \fm{r; mQ, . . . , m ^ ) | < expt-fcfcft log fi') ,

for a l l integers r , m satisfying 1 £ r < fly , 0 £ m 5 S
T-S

T+1
 axiA &11

non-negative integers m_, ..., m satisfying mn + ... + m . £ S~.. .
U 71—X U 71—± i +X

Here, and henceforth, f is defined by

4 = (ml)-Vm) .

To prove the assertion (7), we firstly recall that A(fc X.-i.X ; m.) is a

polynomial in y. with coefficients independent of the A!s and of degree

m . . We claim now that our present inductive assumption implies that
3

(8)

Ln

—1 n

for all non-negative integers \in, ..., p n and m , ..., m

u w—x u w—x

respectively satisfying y + — + p S m and mQ + — + m . £ ̂ T+i

To prove this claim, we argue by induction on y = u + • • • + V-n . ,

observing that the case V- = 0 is the inductive assumption of the lemma,

since 5_ < £_ . Indeed, this assumption states that

1 "z
-1=°

Ln
• I

which we can rewrite as

Vi
I d . ... d z[p , ..., j ) = o

i 'J«-i •"• n -1
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46 A . J . v a n d e r P o o r t e n a n d J . H . L o x t o n

where

H(j l S ..., 3n_x) -
,

-1

Since d. + 0 for each i , we can conclude from the inductive

assumption that ~(<7\> ..., j ,J = 0 for all non-negative integers

0±, •••> 3n_1 satisfying j± + . . . + j ^ < u , that also

H[y , . .., y ) = 0 , which confirms our claim (8).

Now write

• • • ' V r mo> •••-

X-1=C

and observe that

l-l

1-1

dz

"n-l

n-lJ

ao=...=r

(log ax) -
1 ... (log an_x)

n-1

-1

K-1=Q
•••'V i

n-1 1 n-1

In view of (2), (8), and the argument opening the proof of Lemma 3, we have
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(7) as asserted. It is relevant to remark that the quantities

y •
(y • log a.) /)i .! are, relatively, not large.
3 3 3

We w r i t e

S +1 S
T ~F(z) = {(2-l) . . . [z-RT]}

By the integral form of the Hermite interpolation formula, we have, for

each integer I satisfying Sy< I s i? ,

(9) -h- '

-± 1 l+1 fm(r) f
r>=l m=Q 'Im=o - >rr

F{z) z~l

where, for each r , F is a circle with centre r and radius j and F

is a circle about the origin of radius 3̂ /T..-, • For s on F , we have

' F / +1 . •*

log k)U log Si J .

Since T < y/2e , we may conclude in view of the size of C and on

recalling (2), that the double sum on the right in (9) is bounded above by

log a') .

For s on F , we have, in the case T = 0 ,

—N f*? 9 1

\F(l)/F(z)\ < 3 ° ° -1 < exp(-8Dhkn log fip) .

But by Lemma 3, for s on F , we have

|/(2)| < exp((2^+^0hfe1"(a"e))n log Si') .

Thus, already if

we see that the integral on the left in (9) is bounded above by

exp{-^Dhkil log fl ) . Hence the interpolation formula implies that
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\f(l; m)\ £ exp{-5Dhk£l l o g fi') + exp( -±Cf t f i l o g SI') ,

whi l s t , by Lemma 3 , we have g(l; m) = 0 or

| / ( l j n ) | > i •exp(-Z>(2Mc+i£zftfc1~(a"e))0 log Jl') .

Evidently, the inequa l i t i e s for \f(l; m)\ contradict one another, so we

obtain g(l; m) = 0 for 1 £ I £ R. and m. + . . . + m , < S . , as
-L U W — 1 1

required.

Generally, for 1 £ T < u/2e , we have for z on T ,

( ^ log Q-

and

| / ( a ) | < exp[{2hk+±±DhkET+1-{a-£))a log t l ' ) .

Thus, if say

the interpolation formula implies that

\f(l; m)\ < expf-lEyD^21"1"^ log fl'] ,

717 £?+£

whilst for 1 < J < l6<7 Z??zfe , we have by Lemma 3 that g(l; m) = 0 or

| a - e ) ) f i log Q«) .

For 1 < T < w/2e , the estimates for \f(l; m)\ contradict one another,

whence we have g(l; m) = 0 for 1 5 1 S -Rm+1 and

m + . . . + m £ "^T+I ' a s required. The lemma now follows by induction.

LEMMA 5 . For all integers I, q with l s i s l6qN+1Dh ,

7 - q - k and all non-negative integers m m . with

mQ + . . . + mn_1 £ 9~ q~ Kl l o g ft1 , we have g{l/q; mQ, . . . , mn_^) = 0 .

Proof. By Lemma h, we see that g [l; mQ, . . . , m ) = 0 for a l l

integers I satisfying 1 £ I S R and a l l non-negative integers

mn, — , m . with m. + — + m . S S , where
u w—x u n—±
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R = [\6qSlMzV'] and 5 = [ 6 ~ V ^ " log fi1] .

As shown in the proof of Lemma k, th i s implies that

(10) \fm{r; mQ% . . . , j n ^ J I £ exp(-|CWl log fi1)

for a l l integers r , m satisfying 1 £ r £ i? , 0 £ m £ 5/3 and a l l non-

negative integers m , , m satisfying m + . . . + m < 25/3 .

Now suppose that l/q i s not an integer and set

F(z) = {(3-1) . . . {

As in the proof of Lemma h, we have

i i J U) z-l/q

f f

where, for each r , F i s a c i rc le with centre r and radius

j mind , | r -Z/q |} , and T i s a c i rc le about the origin of radius

For a on F , we have

\F{l/q)/F{z)\ 5 [R</(1R)12)1+S/3 < exp [2Dhk1+iVQ log fl1) ,(1

whence (10) suffices to show that the double sum on the right in (11) is

bounded above by exp(-jChU log JJ1) . For 3 on T , we have

\F(l/q)/F(z)\ £ {3~F)S/3 < exp(-|z?^1+lMfi log Q») ,

whilst by Lemma 3,

| ( ( 1 + M a ) log fl1) ,

whence the interpolation formula implies that

\f(l/q)\ £ exp{~Dhk +2Mfi log fi') .

On the other hand, by Lemma 3, we have for 1 £ I £ l6q Dh that ei ther

g(l/q; m) = 0 or

\f(l/q;.m)\ > i exp {-qnD [2hk+±£qDhk1~a) SI log fl1) .

Plainly, the two inequalities for \f(l/q; m)\ contradict one another if,
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say,

and recalling that the data includes the cases II q an integer, we obtain

the assertion of the lemma.

We are now in a position to state formally the inductive argument

introduced prior to Lemma 3.

LEMMA 6. Let q be a prime satisfying 13 « q 5 k and suppose

that the field KW^q, ••-, °^/q\ is an extension of K = Q{a±,- ..., a j

of degree q . Then, for each non-negative integer J with

qJ < (Qnr^'^'^Of log fi', there exist integers p{J]'(A^, . . . , Aj n

all 0 and with absolute values at most exp(3~ hW, log fi1) , such that

L{J) LU)

- x I o .-. x l Q P { J \ m [ l / q J ; v .... ^ J ^ 1 ... aB» = 0
-1 n

for all integers I with 1 5 I < l6q Dh and all non-negative integers

m , , m , with m. + . . . + m . 5 q fefi log Q' , where

L ^ = L_x , L{
Q

J) =LQ,and L{/] 5 q^L. for 1 < j < n .

Proof. The case J = 0 i s just Lemma 2 and, on supposing the lemma

to have been ver i f ied for t / = 0 , l , . . . , N , ve have established tha t for

a l l in tegers I with 1 S Z- < l6<? £ft and a l l non-negative integers

1 iV
m , . . . , m with m + . . . + m < 9 ^"feJJ log fi' we have

In view of t h e s u p p o s i t i o n KMa-i » • • • > a
n
 : ^ = *? > w

conclude t h a t for some w-tuple [A1, . . . , A') of i n t e g e r s s a t i s f y i n g

0 £ A'. < q (1 £ j 5 n) , we have
7
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1 ••• n = °

for all integers I with 1 2 I 2 l6qN+1Dh and (I, q) = 1 and all non-

negative integers m , — , m satisfying

1 -il/
ffl +...+/T7 — — O feQ log ft
0 M-1 a ^

and where L^ = L ^ , ̂  = LQ , Lj = J^Lxj.j/^] (l < j < „) ,

p. = X'. + qX. (1 - J - n) , and the integers Mn , ..., y are so chosen
o d d A. 71

that not all the integers pl (X , A y ..., y ) vanish. Here, A1

is defined as is A (see Lemma 2), but with X , — , A replaced by

y , ..., M . On recalling that A(Z> Vp-i> ]in~"i^} is a polynomial in

Y = y - b \i /b with coefficients independent of the y's and with

degree m , we can argue by induction with respect to m + ... + m as

in Lemma h (one of the "inner" inductions) and infer that (12) remains

valid when the product over v in the definition of A1 is replaced by

mi mn-l
y. ... Y 7 . Then, by taking linear combinations, we can conclude that
1 w—1

in (12), A1 can be replaced by A . So we obtain that

L' L'
-in (• _+1

L ••• L p'(^ ,> ̂ nj — , O ^ /̂<7 i mn' — » m*» Ti « i « —1 0 n \ 0 M-iA =0 X =0-1 n

A..Z XI

where the p'(X) are integers not all 0 , with absolute values at most

exp(3 hkii log ft1) , and this is the assertion of the lemma for

J = N + 1 . Hence the lemma is proved by induction, provided we cope with

the cases where {I, q) t 1 .

To see this, set i? = [l6qN+1Dh\ and S = [?~1q~ffkft log ft'] . We
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have shown that g(l; m) (= 97»7+1\(^; m)) = 0 for a l l integers I with

(I, q) = 1 and 1 - I £ R and a l l non-negative integers m_, , m

with m + ... + m 5 5 . Just as in the proof of Lemma h, this implies

that

\fm[l; mQ, . . . . mn_x)\ £ exp(-fcfcfi log fi')

f o r a l l i n t e g e r s I, m w i t h ( 1 , 4 ) = 1 , 1 < Z « i? , and 0 < m £ ±S

and a l l n o n - n e g a t i v e i n t e g e r s mn, ... , m , w i t h m. + . . . + m ., < 4 s .
0 n—± u n—1 H

We w r i t e

As before, for each integer Z with (I, q) > 1 and 1 £ Z £ i? , we have

the interpolation formula

where, for each r , T i s a circle with centre r and radius j and T

i s a circle about the origin with radius 3R • Proceeding as in Lemma h,

we see that the double sum on the right is bounded above by

exp(~CW2 log n1 ) and, for z on T ,

\F(l)/F{z)\ < ( 3 -*(<7- l )A7)£ s < e X p ( - ^ Z M J 2 l o g II ' ) ,

whilst

I / (z) I £ exp ({2hk+l6Dkh1~a) fi log fi') .

So the interpolation formula gives

| / (Z; m)\ < exv(-3DhkQ log il') .

Finally, by invoking Lemma 3, we find that g(l; m) = 0 for a l l integers

Z with {I, q) > 1 and 1 £ I £ i? and a l l non-negative integers

m_, . . . , m , with m + ... + m •> - 4 ^ 1°8 8' > a s required.

To complete th i s part of the proof, we now require only an elementary
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lemma on polynomials.

LEMMA 7. If P(x) is a polynomial of degree m > 0 and with

coefficients in a field K , then, for any integer t in-th 0 £ t £ m ,

the polynomials P(x) , P(x+1), — , P(x+t) and 1, x, — , x ~ are

linearly independent over K .

Proof. This i s Lemma 2 of Baker [2] .

Proof of Theorem 1. Choose the prime q such that 13 £ q £ fee and

\K\a ^, . . . , an
 : %\ - <7 • We may suppose that we have established

Lemma 6 for J = N with

Uanr1*1-0^ log fi'/log A1 < / < (8n)-1fe1"(a"e)nl log fi' ,

whence we have

L L

(13) x Z o . . . ^ P W ( X ) A ( Z / / ; HQ v ja , 1 . . . a^ - 0

for a l l integers I with ( I , q) = 1 and I S I s \6q Dh and a l l non-

negative integers m ..., m with m + . . . + m £ <j-~ fefi log fl' ,
U 71—1. U Yl—±.

and so, a fortiori, for 0 £ m < |<7~ fefl log fl' and 0 £ m. £ L\ '

(1 £ j £ n-1) , because L{N^ < q^L . (1 £ g < n) .

We claim that the equations (13) are impossible under the given
(N)

conditions. Indeed, the equations imply that for 0 £ m £ L ,
n—x W—i

n-1
I

Xn-1=°

-1 n-2
L_ ••• L_ pv '(\)h\l/q ; mQ, ..., m^ j

• 1 n-2

. a . 1 . . . a " " 1 A = 0 ,
1 n - 1 n-1 '

whe re A n = A ( i > X , - i n X ; m , ) and
n - 1 "• n n - 1 n - 1 n' n-lJ
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A\l/qN; mQ, ..., m ^ j = h[l/qN; " 0 / A ^ .

By Lemma 7» the polynomials A (a:; m ) for 0 2 n 5 Z/_' are l inearly

independent, so i t follows that the \L^ '+l\ x 2^ '+1 determinant with

A^_ as its typical entry (in the (X +l)-th row and [m +l)-th

column) does not vanish. Hence the sums in parentheses in (lU) all vanish

and, after n - 1 applications of this argument, we obtain

L 1 L0
(15) Pm[l/<f) = 1 I P(^)(X)A[Z//+X_1, h, X0+l, mQj = 0m[) 1 I P [ / _ 1 , , X0+

for a l l integers I with (Z, <?} = 1 and 1 2 I 5 l6qNDh and a l l

integers m with 0 S m £ 2q" fen i o g fi' . But (15) asserts that for
U U 8

each admissible choice of X , ..., X , P(s) is a polynomial of degree

at most h[L +l) with at least

(16) l6qNDh(l-l/q) . lq~NkQ. log Q'
8

zeros, counted according to multiplicity. The quantity (16) is at least

as large as \2DKkSl log £2' , which exceeds h[L +l) , so that it follows

that each P{z) vanishes identically. Consequently, by Lemma 7, the

p (X) all vanish, which is contrary to the construction of Lemma 6.

This contradiction establishes the theorem.

3. Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 involve only minor modifications to our

proof of Theorem 1. We follow the argument of Baker [4]. We choose the

parameters p, K, e, k, C , and a as in Section 2 and, for 6 > 0 , we

write

'<5~1cL_x + 1 = h = [log(B'<5~1cn( log fi')] ,
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L. =

Ln =

and

V - ' V log ft'0/log A 71 (1 < j < n-l) ,

(o")"1^1"^' log fi1] ,

0 = max {log A, &B/(B'CMl' log Si')} .

Other than the new definition of h and, in effect, the replacement of

log A , wherever it implicitly appears, by 0 (so, for example, we

commence Lemma 2 with m + ... + m £ kil' log fi'0 J there is no change

from the proof of Theorem 1. However, our primary supposition (2) is here

replaced by the supposition that b. , ..., b and b t 0 are rational

integers with absolute values at most B and B' respectively such that

(IT) 0 < \b1 log o^ + ... + bn log otj < exp(-Chtl' log fl'0) .

One easily confirms that there is only one point in the proof that is

sufficiently different so as to require verification. Namely, in the proof

of Lemma 2, one needs to notice that indeed

n-1
(18) TT X -b X ; m )\

n-1

sir
1 log

l-o

8n
60 SB

* C.

the estimate being valid for 6 5 Ch£l' log Q1 . The proof of Theorem 1 now

allows one mutatie mutandis to conclude that, if there is a prime q

satisfying 13 < q 5 ke such that X c^ > ••-, % \ : ̂  = <?* . t h e n

log log log

To obtain Theorem 3, we observe that in view of the remark following

the inequality (18), the assertion is immediate for 6 5 Chil' log il' ,

whilst the case 6 > Chil' log fl1 is a weaker claim.
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