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ABSTRACT

We consider an alternative to the usual credibility premium that arises from
squared-error loss, namely, a so-called equitable credibility premium
(Promislow and Young, 1999). We derive formulas for the credibility weight
in certain cases and give sufficient conditions for exact credibility.

1. INTRODUCTION

When setting premiums for insurance, inequities will necessarily arise when,
due to imperfect information, some policyholders are charged more than
they should be and others less. By building on the previous work of
Promislow (1987, 1991), we deal with the problem of choosing premiums to
minimize this inequity (Promislow and Young, 1999). Much of our work
parallels classical credibility theory, but in place of the traditional squared-
error loss functions, we use the family of entropy loss functions. This is a
familiar family that has frequently appeared in the economics literature for
the purpose of measuring income inequality. We obtain formulas for the
optimal premiums, and in certain cases, we obtain explicit formulas for the
best affine approximation to the optimal premiums. A natural question,
then, is to ask how good the affine approximations are. A basic result of the
classical squared-error approach is that they are often exact. This occurs
(given certain regularity conditions) when probability distributions are
chosen from the linear exponential family with conjugate priors (Jewell,
1974a,b). The purpose of this note is to investigate conditions of exactness
for a particular case of an entropy loss function.

In Section 2, we set our notation and assumptions and briefly review
previous work in credibility theory, including some of our work in
Promislow and Young (1999). We consider a specific case of our equitable
credibility estimator. In Section 3, we study the case for which the equitable
credibility premium is constrained to be an affine function of the claim data.
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For the special case investigated in this paper, we have an explicit expression
for the credibility weight and determine a sufficient condition for exact
credibility.

2. BACKGROUND

Assume that the total claims of a policyholder, or risk, in the /'* policy
period, is a random variable X,- whose distribution depends on
9,i = 1, 2, ..., in which 9 varies across policyholders and may be vector-
valued. Assume that the X,- are independent (conditional on 6) and
identically distributed. The value of 9 completely determines the claim
distribution of the policyholder. Assume that the value 9 is fixed for a given
risk, although it is generally unknown and unobservable. Denote the
probability (density) function of 9 by ir(9), also called the structure function
(Biihlmann, 1970).

One goal of credibility theory is to calculate a premium for period n + 1
of a policyholder, given that the policyholder's claim experience in the first n
periods is Xn = xn — (x\, X2, •••, xn) € (R+)", or more generally given any
information, such as a demographic data. Consider general credibility
estimators, denoted by Y, in which 7 is a real-valued function on the
information given, such as (R+)", if the information is prior claim data. We
use a capital letter to denote the credibility premium Y to emphasize that it is
a random variable. If we constrain Y to be a linear function of the claim data
x, then we write L for Y.

If one knew the value of 9 that determines the claim distribution of a
policyholder, then E(Xn+i\9) would be the most equitable premium for
period n + 1, or more simply E(X|0). Let fi(9) denote E(X\9); also, let fi
denote EX. The inequity of any other premium is measured relative to this
most equitable premium. A general procedure is to select an appropriate loss
(or unfairness) function U and then to choose Y(xn) to minimize

EU[(Y(xn), M(0))].

In Buhlmann's classical theory (1967, 1970), the loss function U is taken to
be the traditional squared error. That is,

U[(YM,^0))] = (Y(xn)- mf- (2-1)

The resulting credibility premium is the posterior expected value of the
conditional mean

Y(xn) = J E(Xn+1 \9)n(9\xn)d9. (2.2)
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By restricting the form of the credibility premium I to be a linear
combination of prior claims, and by assuming that the claims are
conditionally independent and identically distributed, one deduces the
credibility estimator

in which // = EX = E[fi(6)] is the overall, or grand, mean; x is the sample
mean,

in which

_ E[Var(*jfl)]

is the ratio of the expected process variance to the variance of the
hypothetical means.

In certain cases, the predictive mean (2.2) is an affine function of the
sample mean and, thus, equals the linear credibility estimator (2.3). Jewell
(1974a,b) verifies conditions under which this exact credibility occurs: Under
certain regularity conditions, exact credibility occurs for probability
distributions from the linear exponential family when one uses the conjugate
prior.

Promislow (1987, 1991) and Promislow and Young (1999) argue that
squared error is inappropriate for measuring unfairness, and they justify
using the entropy family in its place. Squared error is a function of the
absolute difference between the charged premium and the true premium,
while unfairness should depend on the relative difference between these two
quantities. For example, we consider an individual who should be charged
1 unit but is actually charged 10 units to be treated more unfairly than an
individual who should be charged 1001 units but is actually charged
1010 units.

Promislow (1987, 1991) and Promislow and Young (1999) show that
appropriate loss functions to meet this objective are of the form

U(Y, K0)) = K0)g(r),

in which r denotes the ratio Y/fi(6). That is, loss is expressed as a function of
the relative difference, weighted by the true premiums. It is shown,
moreover, that the function g should be convex and satisfy g(l) = 0. In
this paper, we will deal with the case in which g(r) — r2 - 1, which leads to
the loss function

^ (2.6)
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In place of g, we could take the function h given by h(r) = (r — I)2. Since h
differs additively from g by a multiple of (r — 1), it is not difficult to see that
there will be no effect on the result when we compute expectations. It is of
interest to note that the classical squared error loss can be expressed in a
similar form but at the cost of distorting the weights. We can write (2.1) in
the form

U(Y, /x(0)) = n{Oyh(r),

in which h(r) = (r — I)2. The weights now are the squares of the true
premiums, which give much higher weight than before to the high cost
situations. Also, we can also compare this with squared percentage error,
where the loss function is

U(Y,pL(0))=h(r).

In this case, the weights are distorted by being independent of the true cost.
Note that the loss function in (2.6) equals UC(Y, fi(6)) from Promislow

and Young (1999) in the special case for which c = 2. We will restrict our
attention to this case for the remainder of this paper. In place of formula
(2.2), one now gets an optimal premium of

"~\ (2.7)

There is a convenient analogue of formulas (2.3) through (2.5). Indeed, (2.3)
holds with Z replaced by zi given as follows:

, (2.8)

in which J = E P y - M = E p ^ p ] > and W(A) = E{A) E(A~l) - 1,

for any positive random variable A (Promislow and Young, 1999). Note that
z2 approaches 1 as n goes to infinity.

The expression in (2.8) is similar to the formula for Z, given by (2.4) and
(2.5), with / replacing the expected process variance E[Var(Ar|0)] as a
measure of the variability in X given a value of 0, and with (j,W([i(6))
replacing the variance of the hypothetical means Var(//(#)) as a measure of
the heterogeneity of the risks. See Promislow and Young (1999) for further
discussion of the "variance" measures J and PFand for the derivation of z2.
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3. CONDITIONS FOR EXACTNESS

For the linear exponential family and conjugate priors, we derive a sufficient
condition for exact credibility. By exact credibility, we mean that the
equitable credibility estimator Y2(xn) given by (2.7) is an affine function of
the sample mean and, therefore, equals the credibility estimator
L2{xn) = (1 - zi)\i + z2x, with z2 given by (2.8).

Suppose X\9 is distributed according to a distribution from a linear
exponential family. Specifically, the pf or pdf of X\9 is of the form

for x > 0 and for 9 taking values in an interval (9$, #i), where
-oo < #o < 0i < oo. Note that q is the Laplace transform of p because
q(9) = Jo°°p(x)e~x9dx. The conditional mean of X\9 is given by

(Klugman et al., 1998). We concentrate on linear exponential families
because if the sample mean is a sufficient statistic for 9 and if the support of
the pdf of the continuous random variable X\9 is independent of 9, then the
distribution of X\9 comes from a linear exponential family (Lehmann, 1991,
Theorem 5.4).

The natural conjugate prior of 9 has the form

for some /x and k > 0. The value c(fi, k) is a normalizing constant for given
values of /x and k. Assume that 7r(#o) = TT(0I)- It follows that EX — fi, the
posterior density of 6 given xn is of the same form as the prior with

k* = n + k and fi* — — , and the predictive mean equals

in which k = E[\ar(X\9)]/\ar\p,(9)}. Thus, we get exact credibility for the
predictive mean.

To obtain exact credibility for the equitable estimator Y%, assume that
7r(0o) = TT(6»I) and that n(60) v(90) = n(0\) v(6»i), in which
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is the multiplicative inverse of the conditional mean. We next prove the
following result for exact credibility.

Theorem 3.1 Suppose that \f{X\6)} is a linear exponential family and that the
natural conjugate prior satisfies the regularity conditions on its boundary given
above. If v satisfies the differential equation

= av'

for some constant a, then the equitable credibility estimator F2 is exact.
Specifically,

Moreover, z2 = : 7—.
n + k — a/ fi

Proof:
" ^ fel v(9)ir(d\x)d8 = c(k*, //*)

Note that [q-k*ve-a0]'= -k*q-k'-lq've'a0+ q-k'v'e~ae-aq-k've~ae. By using

the definition of v and the fact that v' — av is a constant, we deduce that

[q-k've~a()}'=Kq-k"ve-ae,

for some constant K.
We next integrate by parts and obtain

Since n*k* = /j,k + nx, we have that

and the result follows. D

(1) Note that z2 will be equal to, greater than, or less than the corresponding
Biihlmann credibility weight Z, according as a is zero, positive, or
negative.

(2) The possibilities for v are limited. If a = 0, then v(6) = c\6 + c2, for some
constants c\ and c2. If a ^ 0, then v(9) = c\eae + c2, for some constants
c\ and c2. After the following examples, we determine the functions q
and p that correspond to these forms of v.
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Example 3.2 (Gamma-Gamma) Let X\6 ~ Gamma(7,8) with conditional mean

- and conditional variance -z, in which the shape parameter 7 > 0 is known,
0 8l

and let 6 ~ Gamma(a, /3). The differential equation of Theorem 3.1 holds with
n T/3

7
Example 3.3 (Poisson-Gamma) Let X\X ~ Poisson(A) with conditional mean
A, and let A ~ Gamma(a,/3). To put this in standard form, let 6 = —ln(A).
Then, v(8) = ee, and the differential equation for v holds with a—I.

The credibility weight z2 equals —r- versus Z = -, and
n + (3 — p/a n + p

F2(JC) = ( 1 - z 2 ) - - + z2 • Jc. Note that Z < z2, so that the equitable

premium Y2 gives more weight to the pohcyholder's experience than in the
Biihlmann credibility estimator. •

Example 3.4 (Binomial-Beta) Let X\p ~ Binomial(r,/7) with conditional
mean rp, and let p ~ Beta(a,/3). To put this in standard form, let
8= -\n(p/(l -/?)). Then, v(8) = (1 +ee)/r, and the differential equation

for v holds with a = 1. The credibility weight z2 equals
n | ( a + /?)(<*-!)

versus Z = —5, and F2(x) = (1 - z2) + Z2 • JC. Note that
«H a P

r
Z < z2 because a > 0, as in Example 3.3. •

Example 3.5 (Negative Binomial-Beta) Let X\p ~ Negative Binomial^,/?)
with probability function

in which r > 0 is known, and let p ~ Beta(a,/3). To put this in standard
form, let 8=-\n(l-p). Then, v(8) = (ee - l)/r, and the differential
equation for v holds with a = 1. The credibility weight Z2 equals

r/3
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Note that Z < zi because a > 0, as in Examples 3.3 and 3.4. •

It is not always the case for the linear exponential family with conjugate
prior, that the equitable premium Y2 is an affine function of the sample mean
x, as we see in the next example.

(x -t- 1 \92e~x®
Example 3.6 Let X\9 have pdf/(x|6>) = -—— , for x > 0, a member of

+ 0V»
the linear exponential family, and let 9 have pdf proportional to -—-, for

9 + 1
9 > 0, the natural conjugate prior for 9. After some tedious calculation, one
finds that for n — 1,

"1

[ 1 1 3 f°° e~2bu f00 e~2h" 1
in which c = — 3 - - 3 + —-4e2fe / du + e2h —rduU, and

|_463 2b2 2b J{ u Jx u2 J
x + 1

b — —-—. Via numerical calculation, one can verify that Yi is not linear
in x. 2 •

Now, we return to the problem of determining which distributions of X\9
lead to v" = av', for some constant a. We consider the following cases:
(1) a — 0 =£* v(9) = ci^ + C2, for some constants cy and ci, not both 0.

(a) c\ — 0 =>• ^(^) = CT,e~elCl, for some constant C3. Because /7 is the
inverse Laplace transform of q, we have that p(x) is a point mass at
x = l/c2- It follows that/(x|^) = 1 if x = \/ci and 0 otherwise.

(b) c\ ^ 0 =» ^(0) = ci(c\9 + C2)~ ^°2, for some constant c3. It follows
1 ^that p(x) is proportional to x7"1^^^, in which j=\/c\ and

A = cj_lc\. Thus,/(x|^) is proportional to x~*~'e~-v<A+6'), from which it
follows that X\9 is distributed according to Gamma(7, X + 9). In
Example 3.2, we saw a special instance of this case in which A = 0.

(2) a ^ O ^ v(9) = c\eaB + C2, for some constants c\ and C2, not both 0.

(a) c2 = 0 =>• o(0) = C3exp( — e " a e I, for some constant C3. It follows

that p(x) is proportional to

c — la) + ... +-77 T7fo(x — «a)
acx 2{acx)

e-x0

in which 8 is the Dirac delta function. Thus,/(x|#) a -,—

for x = 0, a, 2a, .... If a = cj = 1, then we have that X\9 is
distributed according to the Poisson distribution with conditional
mean e~e, as in Example 3.3.
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(b) c2 ^ 0 =>• q(0) = c3(cx + c2e~a$)l/c2, for some constant c3. It follows

that p(x) is proportional to Y2=v ( ^ ) (ci/c2)
{l/c2~m)6(x - am),

under appropriate regularity conditions. For example, if \/c2 — r, a
positive integer, if c\ = c2, and if a— 1, then we have the binomial
distribution, as in Example 3.4. If \/c2 — r, a negative integer, if c\ — c2,
and if a = 1, then we have the negative binomial distribution, as in
Example 3.5.

We see that in some sense, Examples 3.2 through 3.5 cover the simplest of
the interesting cases for the distribution of X\6 for which the conditions of
Theorem 3.1 hold. Also, note from the above discussion that if /j,(8) > 0,
then a > 0 from which it follows that z2 > Z.
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