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Abstract

Traditional functional languages do not have an explicit distinction between binding times. It
arises implicitly, however, as one typically instantiates a higher-order function with the
arguments that are known, whereas the unknown arguments remain to be taken as parameters.
The distinction between 'known' and 'unknown' is closely related to the distinction between
binding times like 'compile-time' and 'run-time'. This leads to the use of a combination of
polymorphic type inference and binding time analysis for obtaining the required information
about which arguments are known.

Following the current trend in the implementation of functional languages we then
transform the run-time level of the program {not the compile-time level) into categorical
combinators. At this stage we have a natural distinction between two kinds of program
transformations: partial evaluation, which involves the compile-time level of our notation, and
algebraic transformations (i.e., the application of algebraic laws), which involves the run-time
level of our notation.

By reinterpreting the combinators in suitable ways we obtain specifications of abstract
interpretations (or data flow analyses). In particular, the use of combinators makes it possible
to use a general framework for specifying both forward and backward analyses. The results of
these analyses will be used to enable program transformations that are not applicable under all
circumstances.

Finally, the combinators can also be reinterpreted to specify code generation for various
(abstract) machines. To improve the efficiency of the code generated, one may apply abstract
interpretations to collect extra information for guiding the code generation. Peephole
optimizations may be used to improve the code at the lowest level.

Capsule review

Many different techniques are needed in an optimising compiler - constant folding, program
transformation, semantic analysis and optimisation, code generation and so on. This paper
proposes a uniform framework for all these activities. Every computation in the program to be
compiled is classified as either compile-time or run-time, and the run-time parts are translated
into an easily manipulable form - categorical combinators. The Nielsons set up a framework
for defining operations on these intermediate forms, and show how it can be used to define
concisely two forwards analyses (strictness, constant propagation), a backwards analysis
(liveness), and even code generation. Both compile- and run-time parts can also be transformed.
Every technique presented is illustrated using a simple running example, and the emphasis
throughout is on intuition rather than absolute formality.

Hanne and Flemming Nielson have been engaged for many years in a research program in
the area of semantics directed compilation, which has heavily influenced this paper. Much of
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this work is referred to here, and this paper will also be useful as a clear introduction to and
overview of this substantial body of research.

1 Introduction

The functional programming style is closely related to the use of higher-order
functions. In particular, the functional programming style suggests that many
function definitions are instances of the same general computational pattern, and that
this pattern is defined by a higher-order function. The various instances of the pattern
are then obtained by supplying the higher-order function with some of its arguments.

One of the benefits of this programming style is the reuse of function definitions
and, more importantly, the reuse of properties proved to hold for them: usually, a
property of a higher-order function carries over to an instance by verifying that the
arguments satisfy some simple properties.

One of the disadvantages is that the efficiency in a compiler that reuses code
generated for higher-order functions is often rather poor. The reason for this is that
when generating code for the higher-order function it is impossible to make any
assumptions about its arguments and to optimize the code accordingly. Also,
conventional machine architectures make it rather costly to use functions as data.

We shall therefore be interested in transforming instances of higher-order functions
into functions that can be implemented more efficiently. The key observation in the
approach to be presented here is that an instance of a higher-order function is a
function where some of the arguments are known and others are not. To be able to
exploit this we shall introduce an explicit distinction between known and unknown
values or, using traditional compiler terminology, between compile-time entities and
run-time entities. This leads to the following approach to implementing functional
languages

• annotate the programs with type information so that they can be uniquely typed
in a monotyped type system (Section 3);

• annotate the programs with binding time information so that there is an explicit
distinction between the computations that involve known (compile-time) data
and those that involve unknown (run-time) data (Section 4);

• transform the programs into combinator form so that the computations
involving unknown (run-time) data are expressed as combinators (Section 5);

• specify various abstract interpretations by reinterpreting the combinators and
use the results to enable program transformations that are not applicable under
all circumstances (Sections 6, 7 and 8);

• specify a simple-minded code generation scheme for an abstract machine by
reinterpreting the combinators (Section 9); and

• specify an abstract interpretation by reinterpreting the combinators and use this
to improve the code generation (Section 10).

We illustrate our approach on an example program in the enriched .̂-calculus, to be
presented in Section 2. We assume that the semantics is non-strict, i.e., lazy, although
most of the analyses and transformations equally well apply to a language with a
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strict semantics. Finally, Section 11 contains a discussion of our approach including
efficiency, correctness and automation.

2 Operations made explicit

In Miranda* (Turner, 1985) the functions reduce and sum may be written as

reduce f u = g
where g [ ] = u

g (x: xs) = f x (g xs)
sum = reduce ( + ) 0

The left-hand side of an equation specifies the name of the function and a list of
patterns for its parameters, and the right-hand side is the body of the function. If
more than one equation is given for the same function (as is the case for g), there is
an implicit conditional testing the form of the patterns in the parameter list.
Recursion is left implicit because a function name on the right-hand side of an
equation that defines that function name indicates recursion (as is the case for g).
Finally, function application is left implicit as the function is just juxtaposed with its
argument(s).

A similar equational definition of functions is allowed in Standard ML (Milner,
1984). But here one has the possibility of making some of the implicit operations or
concepts more explicit as is illustrated in

val reduce = fn f=> fn u=> let val rec g = fn xs =>

if xs = [ ] then u
else f (hd xs) (g (tl xs))

in g end;
val sum = reduce (fn x=> fn y = ) x + y) 0;

Function abstraction is now expressed explicitly by the construct fn. . . = > . . . and
the recursive structure of g is expressed by the explicit occurrence of r e c . Also, the
test on the form of the list argument is expressed explicitly.

Our approach requires all the operations to be expressed explicitly. We shall
therefore define a small language, an enriched X-calculus, that captures a few of the
more important constructs present in modern functional languages like Miranda and
Standard ML, but in an explicit way.

The general form of a program in the enriched X-calculus is a sequence of definitions
(prefixed by DEF) followed by an expression (prefixed by VAL) and its overall type
(prefixed by HAS). In the enriched X-calculus we write the program sum as

DEF reduce =Xf.Xu. fix (Xg. Xxs. if isnil xs then u

else f (hd xs) (g (tl xs)))
VAL reduce (X.x. Xy. + ( <x, y>) ) (0)
HAS Int list-^Int

Here we use the special parentheses ( and ) for the explicit function application.

* Miranda is a trademark of Research Software Limited.
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Furthermore, we use f i x to make recursive definitions and the angle brackets
< and > to construct pairs. The constructs i s n i l e ,hde , t i e , f i x e and i f ex

then e2 e l s e e3 are built-in constructs of the language, and thus we omit the
explicit parentheses. Additionally, we have used the (ordinary) parentheses ( and ) to
indicate the parsing of the expression.

3 Types made explicit

Both Miranda and Standard ML enjoy the property that a programmer need not
specify the types of the entities denned in the program. The implementations of the
languages are able to infer those types if the program can be consistently typed at all.
This is important for the functional programming style because then the higher-order
functions can be instantiated much more freely.

As an example, implementations of Miranda and Standard ML will infer that the

type of reduce is (a^p^P)^p^a list-P

where a and p are type variables. The occurrence of reduce in the definition of sum
has the type

(Int-> Int->• In t ) -* I n t - * I n t l i s t - > I n t

because it is applied to arguments of type I n t - * I n t - * I n t and In t .
The enriched A,-calculus is equipped with a type inference system closely related to

that found in Miranda and Standard ML (Milner, 1978; Damas, 1985), but
somewhat more monomorphic. As an example, the function application e(e') is only
well-formed if the type of e has the form t -* ?' and if the type of e' is t, and then the
type of the application is /'. Another example is the construct i s n i l e, which is well-
formed of type Bool provided that e is well-formed and has a type of the form
t l i s t . Similar rules exist for the other composite constructs of the language. For the
constants we have axioms stating, e.g., that + has type I n t x I n t -* In t , and that
0 has type I n t . Based upon such axioms and rules we can infer that the program sum
is well-formed, and we can determine the types of the various subexpressions. For
some programs these types may contain type variables, and these type variables will
then be replaced by a trivial type called Void. The purpose of the type following the
keyword HAS is to avoid all type variables to be replaced by Void: those type
variables that must match a subtype of the type following HAS will be instantiated
accordingly.

The next step is to annotate the program with the inferred type information: we
shall add the actual types to the constants and the bound variables of ^.-abstractions.
This means that the type analysis will transform the untyped program for sum (of
Section 2) into the following typed program (to be called sum,)

DEF reduce = X,f [Int -* Int -* Int ]. X,u[Int].
fix (X,g[Int list-* Int]. X.xs[Int list].

if isnil xs then u
else f (hd xs) (g(tl xs)))

VAL reduce (Xx[Int].Xy[Int]. + [Int xInt -* Int](<x, y>))
(O[Int])

HAS Int list-* Int
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Note that the type of reduce is fixed. This is possible because there is only one
application of reduce in the program. Otherwise, we may have to duplicate the
definition, as the development to be performed does not (yet) allow the use of type
variables. (This is what was meant above by the type system being more monomorphic
than those for Miranda and Standard ML.)

4 Binding time made explicit

Neither Miranda, Standard ML nor the enriched X.-calculus has an explicit distinction
between binding times. However, for higher-order functions we can distinguish
between the parameters that are known and those that are not. The idea is now to
capture this implicit distinction between binding times, and then annotate the
operations of the enriched .̂-calculus accordingly.

4.1 2-level syntax

We use the types of functions to record when their parameters will be available and
their results produced. For sum it is clear that the list parameter is not available at
compile-time, and we record this by underlining the corresponding component of the
type

Sumt = In t l i s t -> In t
The fact that the list argument is not available at compile-time will have consequences
for when the parameters are available for reduce. Again, we record this by
underlining parts of the type

Reducet = (Int-> Int->Int)-> I n t - > I n t l i s t - * I n t

Sumt and Reducet are examples of 2-level types.
We interpret an underlined type as meaning that values of that type cannot be

expected to be available until run-time. On the other hand, a type that is not
completely underlined will denote values that definitely will be available at compile-
time. With this intuition in mind, we claim that Sumt and Reducet are unacceptable
annotations because they denote functions that operate on actual run-time data, but
at compile-time. Our point of view shall therefore be that Sumt and Reducet are
incomplete annotations, and that we need to make them well-formed.

To motivate our definition of a well-formed 2-level type we need to take a closer
look at the interplay between the compile-time level and the run-time level. Thinking
in terms of a compiler, it is quite clear that at compile-time we can manipulate pieces
of code (to be executed at run-time), but we cannot manipulate entities computed at
run-time. Hence, at compile-time we cannot directly manipulate objects of type
In t l i s t , whereas we can manipulate objects of type In t l i s t - > In t . because the
latter type may be regarded as the type of code for functions (to be executed at run-
time). So, In t -> In t l i s t ->• In t will be the type of a function that, given an integer
at compile-time, will produce a piece of code that has to be executed at run-time.
Similarly, In t -»Int l i s t ->• In t will be the type of a function to be executed at
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Reduce^ = (Int —> Int —> Int) —>

Reduce2 = (Int —> Int =i Int) —>

Reduce3 = (Int —> Int —» Int) —>

Reduce4 = (Int =» Int z± Int) —»

Reduce5 = (Int —> Int >̂ Int) —»

Reduceg = (Int —> Int —> I n t ) —»

Reduce7 = (Int >̂ Int => Int) ->

Reduce8 = (Int —> Int => Int) —>

Reduceg = (Int z± Int => Int) —>

Reduce10= (Int z± Int —> I n t ) —»

Fig. 1. Well-formed 2-level

run-time, whereas I n t - » I n t l i s t ->• I n t will be the type of a function to be
executed at compile-time.

To be a bit more precise, we shall say that an ' all underlined' function type is well-
formed, and we shall call it a run-time type. A type that does not contain any
underlinings will also be well-formed, since it will be the type of values fully computed
at compile-time. Well-formed types can then be combined using the type constructors
->, x and l i s t .

Corresponding to the type of sum we have two well-formed 2-level types

j = In t l i s t -> In t
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Int

Int

Int

Int

Int

Int

int

Int

int
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—>

—»

->

—>

—>

—»

—>

—>
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for

Int
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Int

Int
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Int

Int

list

list

list

list

list
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list

list

list

list

reduce.

—> Int

-> Int

=± Int

-> Int

=± Int.

=± Int

=> Int

=± Int

=> Int

=> Int

Sum2 = I n t l i s t I n t

For r e d u c e we have the ten well-formed 2-level types shown in fig. 1.
We shall say that two 2-level types have the same underlying type if they are equal

Reduce

Reducet

Reducef

Reduce9

Reduce10

Fig. 2. Compatible 2-level types for reduce.
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except for the underlinings. One 2-level type is then compatible with another if they
have the same underlying type, and if underlined occurrences in the latter are also
underlined in the former. Thus the intention is that compatible types may be obtained
by 'moving' data, computations or results from compile-time to run-time, but not
vice versa. As an example, Reduce3 is compatible with Reduce,, but Reduce2 is not.
This is expressed by the Hasse diagram of fig. 2.

We shall say that the best completion of Reducet is Reduce3, because all other
well-formed 2-level types that are compatible with reduce, also will be compatible
with Reduce3. (Shortly we shall see that the actual definition of reduce will impose
further restrictions upon the type.) Similarly, the best completion of Sumt is Sum2. A
formal account may be found in Nielson and Nielson (1988a).

4.2 Binding time analysis

We now annotate complete programs so that it becomes explicit which computations
should be performed at compile-time (namely, those that are not underlined), and
which should be postponed until run-time (namely, those that are underlined). The
resulting program is called a 2-level program and similarly, an annotated expression
is called a 2-level expression.

The above discussion suggests that the annotation of reduce should reflect the
binding time information given by Reduce3. However, it is not possible to annotate
the definition of reduce so that it is both well-formed and will have type Reduce3.
The reason is that the binding times do not match: according to Reduce3, the
function argument f has type I n t - > I n t - > I n t , and the list argument xs has type
In t l i s t , so f ( h d x s ) will supply f with a run-time argument even though it
expects a compile-time argument. This will be formalized by defining a well-
formedness condition on 2-level expressions (Nielson and Nielson , 1988/))*. There are
two ingredients in this: one is that the underlying expression (obtained by removing
the underlinings) must type-check properly; the other is that the binding times must
agree. Thus a function with a run-time type must be given a run-time argument and
we express this by underlining the ^.-abstraction of the function definition, as in
X,xs[]. ..., and by underlining the parentheses in the function application, as in
f (_...). Similarly, a function with a compile-time type must be supplied with a
compile-time argument, and in that case we neither underline the ^.-abstraction nor
the parentheses of the function application.

Given an incomplete annotation sum, of sum

DEF reduce = Xf [ Int -» Int -> Int ].Xu[ Int ].
fix (X,g[Int list-* Int]. A,xs[Int list],

if isnil xs then u
else f(hd xs) (g(tl xs)))

VAL reduce (X.x[Int ]. Xy [Int ]. + [Int x Int -> Int ] (<x,y>))

(O[Int])
HAS Int list ̂-Int

* Alternative well-formedness conditions are studied by Nielson (1988), Nielson and Nielson (1988a,
1990) and Schmidt (1988).

https://doi.org/10.1017/S0956796800000204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000204


466 Hanne Ms Nielson and Flemming Nielson

the binding time analysis (Nielson, 1988; Nielson and Nielson, 1988ft; Schmidt, 1988)
will complete the annotation so that the resulting 2-level program is

• well-formed (as explained above);
• postpones as few computations as possible to run-time; and
• is compatible with the incomplete annotation (where compatibility for

expressions is very much as for types).

The program obtained* from sum, is sum9

DEF reduce, = Xf \ In t -> In t -> In t ] . Xu[ In t 1.
f ix (2tg[Int l i s t ^ I n t l . X,xs[Int l i s t ] .

i f i s n i l xs then u
e l se f (hd xs) ( g f t l xsji.)

VAL reduce9 (A.x[Intl. X,y[Int]. + [ In t x In t -> I n t i (<x,y)) )
i O [ I n t ] l

HAS In t list->• In t

where reduce,, has type Reduce,,. Note that we cannot use tai [Int . ] . . . . instead of
. . . . as the well-formedness conditions (Nielson and Nielson, 1988 ft) on

types only allow us to manipulate run-time function types at compile-time, and not
run-time data types like In t .

The remaining well-formed 2-level programs are less interesting. Corresponding to
the 2-level type Reducej we have a program with no underlinings at all, and
corresponding to Reduce10 we have a program where all operations are underlined.
These are the only well-formed 2-level programs with sum as the underlying
programf. Note that in each of these programs the binding times for reduce is fixed,
and this is possible because there is only one application of reduce in the program.
Otherwise, we may have to duplicate the definition of the function.

4.3 Improving the binding time analysis

The annotation obtained from the binding time analysis is optimal in the sense that
as few computations as possible are postponed until run-time. However, it is often the
case that a slight rewriting of the program will produce an even better distinction
between the binding times. As an example, the order of the parameters of a function
may be changed or the representation of data types may be modified. To illustrate this
consider the function lookup of type

(Name x In t ) l i s t ->Name -» Int

where we assume that the second components of all pairs in the first argument are
unknown at compile-time. We then have a situation where known and unknown data

* Actually, we apply an adapted version of the binding time analysis algorithm of Nielson and Nielson
(1988a) in order to comply with the well-formedness predicate of Nielson and Nielson (19886).

t This statement holds for the well-formedness predicate of Nielson and Nielson (19886). If the predicate
of Nielson (1988) and Nielson and Nielson (1988a) is used, then there will be two more well-formed
programs.
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are mixed, and the binding time analysis of Nielson and Nielson (1988a) will return
a function with the annotated type

(Name x I n t ) 1 i s t -> Name -> I n t

so that all computations will be postponed until run-time. However, we may split the
list of pairs into two lists and rearrange the order of the parameters so that the type
becomes

Name list -^Name -> Int list-» Int

We then get a much better distinction between the binding times, because now only
the elements of the second list will be unknown at compile-time, and the binding time
analysis will return a function with the annotated type

Name list-*Name ->Int list -> Int

Hence, some of the computations can be performed at compile-time, and this idea is
further explored in Nielson and Nielson (1990ft).

The above example is rather involved in that it changes the overall type of the
function. However, it may also be useful to perform some more local transformations.
Consider the program sum, of the previous subsection. Here the fixed point operation
of r educe 9 is underlined, and intuitively this means that we cannot use the recursive
structure of its body at compile-time, e.g., during abstract interpretation and when
generating code. We may therefore want to replace the run-time fixed point by a
compile-time fixed point. Since sum9 is the best completion of sum, we cannot obtain
this effect by simply changing the annotation. The idea is therefore first

• to transform the underlying program; and then
• to repeat the binding time analysis.

In our case we shall apply the transformation

t,]. fix(Xf[t2^t3].e)^> fixilglt^t,^Q.XxlQ.elgix)/f])

that replaces the first pattern with the second. Here e\g (x) / / ] is e with all occurrences
of/ replaced by g (x ) , and g is assumed to be a fresh identifier. We then repeat the
binding time analysis with Sum, as the 'goal' type and get

DEP reduce9a = Xf \ Int -> Int -> Int 1.
fix (kg' [Int ;± Int list]. X,u[Int]. X,xs [Int list].

if isnil xs then u
else f(hd xs)(g'(u)(tl xsJJJ

VAL reduce9b f Xx \ Int ].Xy\ Int ]. + \ Int x Int -> Int ] (<x. y)) )

10[Int]l
HAS Int. list->• Int

where the fixed point now is computed at compile-time and the function g ' is bound
at compile-time.

As a side-effect the functionality of the fixed point has been changed and, in
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particular, g' has become a higher-order function. For some stack-based
implementations it is expensive to handle higher-order functions, and we may
therefore want to transform the program further to change the functionality of g ' .
To do that we first apply the following transformation to the underlying program of
sum9a

t3]. XxfrJ. Xy[t2]. e) =>

J.Xy[t2].(f ixiXgl^ xt2^ t3].Xz[t^ x /J.

i^y)) /f][fst z/x][sndz/y}))

Here g and z are assumed to be fresh identifiers. Next we apply the p-transformation

(Xx[t].e){e')^e[e'/x]

(recalling that our semantics is non-strict). The binding time analysis is then applied
to the resulting program with Sumt as the overall annotated type and we get the
program sum9b

DEF reduce9b = Xf [ Int -> Int -> Int ]. Xu [ Int 1. Xxs f Int list!.
(fix (kg [Int _x_ Int list-*-Int].

X,z[Int _x_ Int list 1.
if isnil (snd z) then fst z
else f (hd (snd z)J_

Xg (<fst z, tl (snd z)>))V)
K u , xs>i

VAL reduce9b (lx[Int]. X,y[Int 1. + [Int x Int -> Int] (<fx,y>))
10[Int]l

HAS Int list->-Int

Note, however, that the motivation for this transformation is not that fewer
computations are postponed until run-time. Rather, the transformation will allow us
to specify a backward abstract interpretation in Section 8. Also note that the two
transformations preserve total correctness.

4.4 Remarks

We have experimented with different ways in which the two binding levels may
interact (Nielson, 1988; Nielson and Nielson, 1988 a, b), but the restrictions have
always been rather conservative. As an example, we have not allowed values
computed at compile-time to be used directly at run-time because of the
computational consequences of allowing this for function types. Also, our binding
time analysis does not change the underlying program. Flexibility is introduced by
allowing arbitrary (semantics-preserving) program transformations, e.g., expressed as
simple pattern matching templates, or as in Nielson and Nielson (19906) within the
unfold/fold framework of Burstall and Darlington (1977).

There are alternative approaches to binding time analysis that allow greater
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interaction between the levels, and which incorporate certain program trans-
formations (e.g., see Jones et ah, 1985; Jorring and Scherlis, 1986; Montenyohl and
Ward, 1988). The price to be paid is that it becomes harder to reason about the
correctness properties. Our approach gives a better separation of concerns: it is fairly
straightforward to prove the correctness and optimality of our binding time analysis
algorithm, and at the same time we are not restricted in the kind of program
transformations that can be made (Nielson and Nielson, 1988 ft).

Our approach to binding time analysis is purely syntactic whereas, e.g., Mogensen
(1989) takes a more semantic approach using projections. In fact, our approach is
strongly motivated by the (syntactic) approach to polymorphic type inference of
Milner (1975). The structure of our binding time analysis algorithm is very close to
Milner's (1975) algorithm if, the main difference being that we have no counterpart
of substitutions, and therefore have to perform some extra recursive calls to ' unify'
the binding time annotations.

Finally, we should point out that we only allow explicit monotypes in Section 3
because it is unclear how to do binding time annotations for type variables. In
particular, the identity function Xx. x might have type a ^ a and oc^a, depending
upon the kind of 2-level types that a may range over.

5 Combinators made explicit

The binding time information of a 2-level program clearly indicates which
computations should be carried out at compile-time and which should be carried out
at run-time. The compile-time computations should be executed by a compiler, and
it is well-known how to do this. The run-time computations should give rise to code
instead. We may also want to perform some data flow analyses either in order to
validate some program transformations or to improve the efficiency of the code
generated. It is important to observe that it is the run-time computations, not the
compile-time computations, that should be analysed, just as it is the run-time
computations, not the compile-time computations, that should give rise to code. This
then calls for the ability to interpret the run-time constructs in different ways,
depending upon the task at hand.

It is not straightforward to do so when the run-time computations are expressed in
the form of ^.-expressions. As an example, the usual meaning of

X-xTInt x I n t l . f ig JXU_

is Xv.flgv). However, we may be interested in an analysis determining whether both
components of x are needed in order to compute the result. This is an example of a
backward data flow analysis and, as we shall see later, the natural interpretation of
the expression will then be Xv.g(fv). It is not straightforward to interpret function
abstraction and function application so as to be able to obtain both meanings. The
idea is therefore to focus on functions and functionals (expressed as combinators, as
in Backus, 1978; and Curien, 1986) rather than values and functions. We then write

f D g
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for the expression above, and the effect of both Xv.Jlgv) and Xv.gifv) can be obtained
by suitably reinterpreting the functional • •

This observation calls for transforming the run-time computations into combinator
form. Similar considerations motivate the use of combinators in the implementation
of functional languages (Turner, 1979; Cousineau et al., 1987; Hughes, 1982), and the
use of categorical combinators when interpreting the typed .̂-calculus in an arbitrary
cartesian closed category (Lambeck and Scott, 1986). However, it is important to
stress that we shall leave the compile-time computations in the form of ̂ .-expressions,
and only transform the run-time computations into combinator form.

5.1 Combinator introduction

A 2-level program (or 2-level expression) is in combinator form whenever all the run-
time computations are expressed as categorical combinators. For the program sum9b

the corresponding program sum9B in combinator form will be

DEF reduce,,, = X.f[ ] . Curry (fix(A,g[].
Cond(Isnil[ ] DSnd[ ] , F s t [ ] ,

Apply[ ] DTuple(f DHd[ ] DSnd[ ] ,
gDTuple (Ps t [ ] , T l [ ]DSnd[] ) ) ) ) )

VAL Apply[ ] DTuple((reduce9B (Curry + [ ] ) ) D (Const [ ] 0[ ]),
Id[ ])

HAS In t l i s t - » I n t

as we will explain below. For the sake of readability we have omitted the type
information (in square brackets).

The conditional of reduce9B has been replaced by the combinator Cond where the
intention is that

Cond(/,g,/0 = Xx. ±t_fi_xX then gJ_xX e l s e hlx±

Within the conditional the test i s n i l (snd z) is replaced by I s n i l [ ] n Snd[]
because the run-time parameter will be implicit. Similarly, the true-branch f s t z is
replaced by Fst[]. Here I s n i l , Fst and Snd are combinators corresponding to
i s n i l e, f s t e and snd e, respectively. To understand the transformation of the
false-branch, note that the intention with the combinators Apply and Tuple is given
by

Apply = Uf,

Tuple(/,g) = Xx

and that Hd and Tl correspond to hd e and t i e, respectively.
The function reduce takes its arguments one at a time, and this is achieved using

the combinator Curry

Curry/ = Xx. Xy .fi£x, y}±

In the expression part of the program we use the additional combinators Id and
Const, and the intention is that Id is the identity function and Const/equals Xx.f.
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To transform well-formed 2-level programs into combinator form we may use the
algorithm of Nielson and Nielson (1988 b)*. It is an extension of the usual algorithm
for translating the typed .̂-calculus into categorical combinators (Curien, 1986). Thus
for each of the programs sun^, sum,, sum9a, sum9b and sum10 we will have equivalent
programs in combinator form. In the remainder of this paper we shall restrict our
attention to sum9B.

5.2 Partial evaluation

The program sum9B can be further simplified because we can supply the occurrence
of reduce with its first parameter which is known at compile-time. For this we need
the two transformations

DEP/ = e VAL e' HAS t => VAL e\e/f\ HAS t

(kx.e')(e)=>e'[e/x]

which preserve total correctness (due to the use of a non-strict semantics). This sort
of program transformation is often called partial evaluation (Ershov, 1982; Jones
et al., 1985; Nielson, 1988), and in our case it gives rise to the program

VAL Apply [ ] • Tuple((Curry (fix(X.g[ ] .
Cond(Isnil[ ] DSnd[ ] , F s t [ ] ,

Apply [ ] • Tuple((Curry + [ ]) Q Hd [ ] Q Snd [ ] ,
gDTuple(Ps t [ ] , T 1 [ ] D Snd[])))))

• (Const[] 0 [ ] ) , I d [ ] )
HAS Int l i s t ^ I n t

This transformation could equally well have been performed before the combinators
were introduced.

5.5 Algebraic transformation

The run-time counterpart of partial evaluation is called algebraic transformation
(Backus, 1978). An example is the transformation

Apply[] • Tuple((Curry e) • e\ e") => e Q Tuple(e', e")

If we apply this transformation twice to the above program then we get the program
sum'9B

VAL f ix (X,g[ ] .Cond(Isni l [ ] DSnd[ ] ,
+ [ ] • Tuple(Hd[ ] • Snd[ ] ,
gDTuple(Ps t [ ] , Tl[ ] • Snd[

DTuple(Const[ ] 0 [ ] , Id[ ])
HAS I n t l i s t - * In t

* The algorithm in Nielson and Nielson (1990a) may also be used if the more general well-formedness
predicate of Nielson and Nielson (1988 a, b) is used (in Section 4), but unfortunately it uses a rather
unnatural combinator in certain cases.

18 FPR 1
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Note that by now all higher-order run-time functions have disappeared. Also, note
that the transformation preserves total correctness.

The algebraic transformations play an important role in simplifying programs. The
algorithm for combinator introduction proceeds by structural induction, and the
algebraic transformations can be used to reduce certain unnecessarily complicated
expressions that arise in this process. Also, the application of partial evaluation and
algebraic transformations can be intertwined. In Section 8 we shall see how the
algebraic transformations can simplify results obtained from further transformations.

5.4 Remarks

We have used the categorical combinators for mainly two reasons. One is that they
axe functionally complete, meaning that their expressive power is equivalent to that of
the typed ^.-calculus (Curien, 1986). As a consequence of this it is possible to translate
expressions in the typed A,-calculus into expressions of the categorical combinatory
logic. The other reason is that we get a. fixed set of combinators, and this is important
in the next section where we introduce the concept of a parameterized semantics.

We believe that the development of this section can be performed for any fixed set
of combinators that is sufficiently expressive. The traditional algorithms for
combinator introduction must then be extended so that the combinators are
introduced only for the run-time constructs of the notation. The concept of partial
evaluation is unchanged as it does not depend on the run-time level at all, whereas the
algebraic transformations must be modified so as to use algebraic laws that hold for
the actual set of combinators.

Some of the most popular approaches to implementing functional language use
supercombinators (Hughes, 1982; Peyton Jones, 1987). The actual set of combinators
will then depend upon the program at hand so that our approach does not directly
carry over. It should be fairly straightforward to extend the algorithm for introducing
supercombinators (Hughes, 1982) so that supercombinators are generated only for
the run-time constructs. The concept of algebraic transformation will have to be
modified, since we do not have algebraic laws in the same sense as before. For this
one may explore some variant of partial evaluation that only considers how to rewrite
the supercombinators.

6 Parameterized semantics

We want to interpret the run-time constructs in different ways, depending on the task
at hand, and at the same time we want the meaning of the compile-time constructs
to be fixed. To make this possible we shall parameterize the semantics on an
interpretation (Nielson and Nielson, 1986, 1988; Nielson, 1987, 1989) specifying the
meaning of the run-time level. The interpretation will define

• the meaning of the run-time function types; and
• the meaning of the combinators (and the compile-time fixed point).

Relative to an interpretation one can then define the semantics of all well-formed
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2-level types, of all well-formed 2-level programs and of all well-formed 2-level
expressions in combinator form. In the next sections we give some example
interpretations that specify forward and backward data flow analyses and code
generation. The correctness of these interpretations will be expressed relative to a non-
strict (i.e., lazy) standard interpretation, to be given below.

6.1 The type part of an interpretation

The type part of an interpretation J will specify a set Jt^t, of values for each well-
formed type f ;±?'. (Technically, this set is extended with a partial ordering expressing
when one value is less denned than another, but we shall dispense with this in the
present paper.) For the standard interpretation SP we have

where \t\ {&) and \f\ (Sf) are the sets of values of type t and f, respectively, and
constructs the appropriate function space. We can then define

j ln t i ( y ) = Z (the set of integers)

fBoolJ (9) = T (the set of truth values)

and more interestingly

1/ =t t3] {? ) = {t\(Sr) + m (Sf) (functions)

ltxjf\ (Sf) = [t] (9) x [/'] (9) (pairs of values)

[t l i s t j ( 9 ) = [/J (9)* (sequences of values)

so that ft] (9) is defined for all run-time types.
Given the meaning of the run-time function types it is straightforward to extend it

to all well-formed compile-time types. In general, the set ft] {J) of values associated
with the type t will be defined by structural induction, and we have

[Bool]G/) =

[ / l i s t ] ( . / ) = [*](./)•

As an example, [SumJ (£f) = ISum2] {9) = Z* -> Z so that the distinction between
the compile-time function type and the run-time function type disappears (as must be
expected in a standard semantics).
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6.2 The expression part of an interpretation

The expression part of an interpretation specifies a value or a function for each of the
combinators Q, Tuple, Fs t , etc. In Fig. 3 we give parts of the specification of Sf
using an appropriate mathematical notation (shown in boldface). The meaning of the
compile-time constructs is predetermined except for that of f ix e. Here the
interpretation «/ specifies a function ,/£lx for each type / of f ix e. In fig. 3 we write
FIX for the (least) fixed point operator.

Given the meanings of the combinators and of f ix it is now straightforward to
extend it to expressions and programs. For expressions we define a value \e\ {J) in
[t\ (J) for every well-formed expression e of type /. To cater for the free variables we
need an environment env that associates the variables with their values. We shall not
give all the details here, but some of the more interesting clauses are

[Xx[t] .e\{J) env = \e\ (J) env[v/x]

le (e') ] (J) env = (|[e] {J) env) ([<>'] {J) env)

\x\ {J) env = env(x)

where env[v/x] is as env except that x has the value v. The next example clauses
illustrate the use of the interpretation J

\e • e'J {J) env = Jn(\e\ {J) env, [e'J {J) env)

ITuple(e, £>'

{f±xe](J)env = S'ti%(le](S)) where f ix e has type t

To summarize, \e\{J)env is defined by structural induction on e, and in order to
compose the results obtained for the subexpressions we will either consult the
interpretation J (if the constructor is a combinator or fix), or we will use a standard
approach.

d% (f,g)v=f(gv)
^Tuple (f,g) V = <f V,g V)

s^ s t (u,v) = u
S^Snd (U,V) = V

mi 1 = (•=[ ])-»true I (l=v:P)->false
(<">g,h) v = (f v=true)->g v I (f v=false)->h v

<^Id V = V

d^(u,v) = u+v

3°'fix f = FIXf for all r

Fig. 3. Fragments of the expression part of «9".
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Finally, the semantics of a program is defined to be that of the expression after
'VAL'. The specification of £f given in fig. 3 is sufficient to determine that

6.3 Remarks

In the previous sections we have presented type inference, binding time analysis and
combinator introduction as purely syntactic manipulations of programs. We have
only referred to (a vague and unspecified notion of) semantics when talking about
program transformations, and the extent to which they are correctness preserving.
Having introduced the parameterized semantics and the standard interpretation y
we can now take at least two approaches.

One approach is to view the parameterized semantics as the ultimate semantics for
the original enriched X-calculus of Section 2. Taking sum as an example we thus have
to

• transform it into an explicitly typed program (i.e. sum,);
• then into an explicitly annotated program without doing any program

transformations (i.e., sum9 rather than sum9b); and
• finally into combinator form without doing any partial evaluation or algebraic

transformations (much as sum9B was obtained from sum9b).

The semantics of sum then amounts to the parameterized semantics of the resulting
program, say sumc. We can then express the correctness of the program
transformations, partial evaluations and algebraic transformations as the condition
that they do not change the final semantics regardless of the interpretation
considered.

Another approach is to give a direct definition of the semantics of the enriched "K-
calculus. Then one must ensure that the semantics of an untyped program (e.g., sum)
corresponds to the parameterized semantics with respect to Sf of the combinator
version of the program (e.g., sumc). We shall not go deeply into this issue here, but
we favour the first approach above, as our ultimate interest is in non-standard
interpretations, e.g., interpretations for code generation.

The combination of using a denotational as well as a parameterized semantics
facilitates the development of various meta-theories, i.e., frameworks for correctness
proofs of abstract interpretations (Nielson, 1987, 1989) and code generation (Nielson
and Nielson, 1988 c). Also, note that the notion of a parameterized semantics would
have been a very challenging task to define if we had not restricted our attention to
a fixed set of combinators.

7 Forward abstract interpretation

In the previous sections we have seen some very simple program transformations that
are universally applicable. This means that whenever the left-hand side pattern
matches an expression one may replace the expression by the right-hand side pattern.
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However, in other cases it is necessary to analyse the expression to ensure that certain
conditions are fulfilled before the transformation can be applied. This can be
illustrated by sum'gB, where the first component of g's parameter will have the value
0 always, and therefore we may want to replace the true-branch of the conditional by
Const[] 0[]. In the program so obtained it will then be possible to remove the first
component of the parameter, since it will never be used. So for the sum'9B example
we shall proceed in two stages

• apply a forward analysis, called constant propagation, to verify that the true-
branch always will return 0—this will enable a program transformation that
replaces it by Constf] 0[]; and then

• apply a backward analysis, called liveness analysis, to verify that the fixed point
expression of the program only needs the second component of its parameter in
order to compute the result—this will enable a program transformation that
removes the first component of the parameter.

7.1 Constant propagation: the type part of 3*

The purpose of constant propagation (Aho et ah, 1986) is to determine whether an
expression will always evaluate to a constant, and to determine that constant. The
analysis will be specified as an interpretation 9 following the pattern described in the
previous section. So we shall define

• the meaning ^(_,(. of the run-time types tztt'; and
• the meanings &a, ^Tuple, etc., of the combinators and the fixed point.

The details of 0* will be very much as for £f, except that 8P will operate on properties
of values rather than the ' real' values computed by Sf. An expression of type I n t will
evaluate to an integer in y, but in & it will evaluate to one of the properties

• n, an integer, meaning that the ' real' value always will be equal to n (unless it
is undefined);

• T, meaning that we cannot determine a constant that the ' real' value always will
be equal to, or

• 1, meaning that the 'real' value always will be undefined.

We shall write ZT for this selection of properties, and a pictorial representation is
given in fig. 4. We next define the type part of 3P by

so that the meaning of a run-time function will map properties of the argument type
W ( ^ ) to properties of the result type \C\i8P). The properties of values of type t are
defined according to the structures of /, and we have
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T

- 2 - 1 0 1 2

1

Fig. 4. Hasse diagram for ZT.

Thus the properties of pairs of values are pairs of properties. The properties of lists
of values will be lists of properties, but may also be the special value T that will be
used as a property of lists with different lengths. With this definition it turns out that
for all run-time types t the set [f] ( ^ ) will contain an element (ambiguously denoted
T) representing that nothing can be determined about the 'real' value. It will also
contain an element (ambiguously denoted _L) representing that the 'real' value
definitely will be undefined. In fact, each ft} {&) will be a complete lattice whenever t
is a run-time type. As in the standard semantics we have [SumJ {8P) = Z* ->• Z,
whereas [Sum2] ( ^ ) = ((ZT)*)T -> ZT, reflecting the difference between the annotations
of Sum1 and Sum2.

7.2 Constant propagation: the expression part of 0*

The expression part of & will specify how to operate on these properties. In fig. 5 we
give a few illustrative clauses. The clauses for D , T u p l e , F s t , Snd, Cons t and
Id are as in y. The clauses for Hd, T l , I s n i l and -I- are as in £f, but extended
to cope with the special properties T and _L In the clause for the conditional we
distinguish between whether the test evaluates to true, false, T or _L. In the first two
cases we choose the property of the appropriate branch. If the test evaluates to T then
the ' real' value may be true, or it may be false, and we shall therefore combine the

W>n (f,g)p = f(gp)

^Tuple (f.g) P = <f P>g P>

d <p>q> = q
P = (P=[ ])-> -11 (P=q:p')^q I (p=T)-»T LL

P = (P=[ ])"> -L I (P=q:p')->P' I (P=T)^T LL
mi P = (P=[ ] ) ^ true | (p=q:p')^false I (p=T)-»T LL
nd (f,g,h) p = (f p=true)^g p I (f p=false)^h p I

(f p=T)->(gp)Ui(h p) I -L

+ <P?q> = (P=-L v q=±) ->± I (p=T v q=T)^T I p+q
a ' f i x f=f (T) for «=/'=*/"

Fig. 5. Fragments of the expression part of 9.

https://doi.org/10.1017/S0956796800000204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000204


478 Hanne Riis Nielson and Flemming Nielson

properties obtained from the two branches using the least upper bound operation u .
For ZT, p u q is defined to be T if p and q are distinct integers, whereas it is p if they
are equal. Furthermore, p u T = T u p = T and p U 1 = 1 U p = p for all p. Finally,
the specification of ^"fix will determine how the fixed point is approximated. We
shall take a rather crude approach, and assume that all recursive calls in the fixed
point return non-constant values (i.e., T).

If we apply 3P to sum'9B we then get

7.3 The enabled program transformation

We cannot deduce very much from [sum'9B](^) about the values arising internally in
sum'9B. We shall therefore need a sticky variant of the analysis (Nielson, 1985, 1987;
Hudak and Young, 1988) that will record the environments and the arguments
supplied to le\(&) for the various subexpressions e of sum'9B. For the true-branch
Fst[] of the conditional we then get that [Ps t f ] !^) is called with one environment
and two different parameters, namely <0,[]> (if the test evaluates to true) and <0, T>
(if the test evaluates to T). In both cases, [Fst[]I(^) will evaluate to 0, so we see that
the analysis gives the expected result.

The constant propagation analysis enables a program transformation called
constant folding (Aho et al, 1986)

Assume that e has a subexpression e' such that during the computation of
{e\(0>)env all calls of le'K^9) with the possible environments return the
constant v.

Then e can safely be changed to the expression e" obtained by replacing the
subexpression e' by Const[] v[].

Applying this transformation to sum'9B we get the program sum2B

VAL fix(Xg[ ] .Cond(Isn i l [ ] DSnd[ ] , Const [ ] 0 [ ] ,
+ [ ] • Tuple(Hd[ ] • Snd[ ] ,

gDTuple (Fs t [ ],T1[ ]DSnd[
DTuple(Const[ ] 0[ ] , I d [ ])

HAS In t l i s t - > I n t

In a similar way, the remaining occurrence of Pst[] could be replaced by
Const[] 0[], but this is not necessary for the next transformation to take place. This
transformation only preserves partial correctness in the sense that the original
program may loop in situations where the transformed program will not loop.

7.4 Remarks

The interpretation 2? has been presented as a non-standard interpretation. However,
in order to be sure that the transformation enabled by & is correct it is crucial to make
sure that 9 only collects safe (i.e., correct) information. Because of decidability issues
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3P will, in general, not collect precise information, and the remedy then is to err on the
safe side.

Safety can be formulated by specifying 2? as an abstract interpretation. There are
several approaches to how to achieve this. One possibility is to define a concretization
function mapping abstract values (i.e., those used by ^ ) to sets of concrete values
(i.e., those used by if). Another possibility is to use a representation function
mapping concrete values to abstract values. The main use of these functions is to
express safety which then must be proved to hold. In our case the proof will amount
to verifying safety for all expressions in our notation (using structural induction), and
thereby the result will follow for all programs.

We have developed this approach into a meta-theory that will ease the specification
of the analyses and their safety proofs (Nielson, 1987, 1989). The idea is that
representation functions are specified for the run-time base types, together with ways
to pass between the run-time type constructors. This is sufficient to specify the type
part of the interpretation and the representation functions for the various domains.
The representation functions may be used to express safety, but they also provide
means for constructing 'best induced analyses', i.e., safe analyses that are as precise
as possible among all safe interpretations with the same type part. As these analyses
are not decidable, in general, the meta-theory also studies certain 'expectedforms' that
may be used instead of the ones generated automatically and without compromising
safety. It still remains to incorporate sticky analyses into this meta-theory.

To overcome the absence of total correctness in the program transformation
enabled by constant propagation, one may investigate formulations of constant
propagation based upon the approach given by Mycroft and Nielson (1983). This
would allow us to let a property like n stand for the integer n without the need to allow
undefinedness. The theory, however, becomes much more complex.

8 Backward abstract interpretation

In liveness analysis (Aho et al., 1986) we want to know whether or not values are live,
i.e., may be needed in future computations, or dead, i.e., definitely will not be needed
in future computations. This analysis differs from the previous one in two important
aspects. One is that we are not going to talk about properties of values but rather
properties of the future use of values. Another difference is that the information about
liveness propagates through the program in the opposite direction of the flow of
control. Therefore, liveness analysis is often called a backward analysis, whereas
constant propagation is called a forward analysis (Aho et al, 1986).

8.1 Liveness analysis: type part of Z£

The liveness analysis will be specified by an interpretation 3?. A property of a value
of type I n t (or Bool) will either be

• dead if the value is definitely not needed in future computations; or
• live if the value may be needed later.
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The type part of <£ will, e.g., have

[int](j£?) = {dead, live}

= {dead, live}

= {dead, live}

So a property of the future use of a pair of values will be a pair of properties, one for
each component. For the sake of simplicity, the properties of the future use of lists
are denned to be {dead, live} so that it will not be possible to see if only parts of the
list will be needed in future computations. If a more refined analysis is wanted we
may, for example, replace the definition above with [/ list](JS?) = {L | L s \t\(£C)*}
(see, e.g., Nielson, 1989). With the definition above each set itj(SC) will contain an
element JL( (ambiguously denoted dead) representing that the 'real' value will
definitely not be needed in the future computations, and it will contain an element T,
(ambiguously denoted live) representing that the ' real' value may be needed in future
computations. Because the analysis is a backward analysis, a property of functions
will be a function that maps properties in the opposite direction

Then [SumJCif) = Z * ^ Z and [Sum2](J&?) = {dead, live} ^ {dead, live}. The analysis
is only specified for the subset of our notation where only first-order run-time
functions are allowed. In fact, this was one of the motivations for the second
transformation in subsection 4.3.

8.2 Liveness analysis: the expression part of Z£

Turning to the expression part of JS? we shall specify how to operate on the properties
above. In fig. 6 we give a few illustrative cases. The clause for • reflects that functions
have to be composed in the opposite order of the standard one. In the clause for

2b (f,g)p = g(fp)
2 W e (f,g)<p,q) = (fp)U(gq)
•2*Fst P = <p,dead)
^snd P = <dead,p)
^ H d P = P

S"T1 p = p

S'lsnil P = P

S'cond (f,g,h) p = (fp)U(gp)U(hp)
^const fp = dead
Sm P = P
2VP = <P,P>
S'fix f = FIX (f) for all?

Fig. 6. Fragments of the expression part of !£'.
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Tuple we are given a pair <p,q> of properties for the future uses of the result of
Tuple(. . . , . . . ) and we use the least upper bound operation U to join the results.
On the set {dead, live} the operation is defined by dead U live = live U dead =
live u live = live and dead U dead = dead. (This corresponds to the least upper bound
in a partially ordered set where dead E live). The clauses for Fs t , Snd, Hd, Tl,
I s n i l , Const, Id and + should be straightforward. For the conditional we
simply combine the properties obtained from the test and the two branches. Finally,
the meaning of the fixed point is defined to be the least fixed point as in the standard
interpretation if.

We can now apply Z£ to the program sum,B and get

[sum9
p
B](J*f)p = P

which simply states that if we need the sum of the elements of the list then we also
need the list.

8.3 The enabled program transformation

As in the case of constant propagation, we shall need a sticky variant of this analysis.
In the invocation of IsumP

B](.S?)p we then get that

only is applied to the property p and always evaluates to <dead,p>. This shows that
the first component of the argument never is used.

Live variable analysis enables the following transformation on fixed points

Assume that e has a subexpression f ix(kg[t1x^t2ztt3]-e') such that during the
computation of {e](SC)env each call of lfix(Xg[t1xL_t2^Lt3].e'')l(SC) with the
possible environments return the property <dead,p> for some p.
Then e can safely be changed to e" obtained by replacing the subexpression

by
2^t3].e'[g' • Sndftjaj/S] •

Tuple(Fix[] • (Curry Snd[f2_x_fJ), Id[f2])) •

where g' is a fresh identifier.

Here Fix[] • (Curry Snd[/2_x_<1]) is a function that transforms the argument of type
t2 to an ('unneeded') value (_L) of type t±. Applying this transformation to sumP

B we
get the program

VAL fix(X.g' [ ] . Cond(Isnil[ ] Q S n d [ ] , Const [ ] 0 [ ] ,
+ [ ] D T u p l e ( H d [ ] D S n d [ ] , ,

g' DSnd[ ] D T u p l e ( r s t [ ] , Tl[ ] DSnd[
Tuple(Pix[ ] • (Curry Snd[ ]), Id[ ]))

• Snd[ ] DTuple(Const[ ] 0 [ ] ,
HAS In t l i s t ^ I n t
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At this stage it is worth applying a few algebraic transformations (Section 5)

Snd[] • Tuple(e, e") => e"

C ond(e1; e2, e3) • e => Condfo D e, e2 Q e, e3 Q <?)

(Const[]0[])De=>Const[]0[]

Tuplefo, e2) D e => Tuplefo D e, e2 • e)

and the resulting program is sunigB

VAL fix(A,g' [ ] . Cond(Isnil[ ] , Const [ ] 0 [ ] , + [ ] Q Tuple(Hd[ ] ,
g' DT1[ ])))

HAS In t l i s t ^ I n t

These transformations preserve the total correctness of the program.

8.4 Remarks

As in the previous section the analysis «S? is only specified as a non-standard
interpretation, so nothing has been said about its safety properties. Unfortunately,
only some of the techniques mentioned in Section 7 can be applied to if. The main
reason is that if is not concerned with properties of values but, as we mentioned
earlier, properties of their future use. Thus it does not make sense to define
representation functions as before. It is worth noticing that it is not the fact that if
is a backward analysis that limits the applicability of the previous approach—indeed
there are forward analyses (e.g., available expressions, Aho et ai, 1986) that cannot
be proved safe with these techniques either. We refer to Neilson (1989) for further
details about the correctness of if'.

It is also worth pointing out the relationship to the ' strictness continuations' used
by Nielson and Nielson (1990c) and to the 'evaluators' of Burn (1987). There also
appears to be a close relationship to the ' demand analysis' of Bjerner and Holmstrom
(1989).

9 Code generation

One of the motivations behind the 2-level notation is that we should only generate
code for run-time computations, not compile-time computations. We illustrate this by
showing how to reinterpret the combinators so as to specify code generation for a
simple abstract machine.

9.1 An abstract machine

The abstract machine we consider is closely related to the categorical abstract
machine (Cousineau et al., 1987), and the abstract machine of Nielson and Nielson
(1986). The configurations of the machine has two components

• a control stack cs containing the code to be executed; and
• an evaluation stack ST containing the intermediate results.
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(ENTER:CS,I;:ST) - » E N V (CS,D:D:ST)

(SWITCH:CS,I;:U:ST)->ENV (cs,w:i;:ST)

(TUPLE:CS,(;:M:ST)->ENV(CS,(U,M):ST)

(FST:CS,<I;,M):ST)->ENV (cs,i;:ST)

(SND:CS,(U,M>:ST)->ENV (CS,M:ST)

(HDICSJ^UJISTO-^ENV (CS,u:ST)

(TL:CS,[U:M]:ST)->ENV (CS,U:ST)

(ISNIL:CS,[ ] :ST)-> E N V (cs,true:ST)

(lSNlL:CS,[i;:«]:ST)->ENV(CS,false:ST)

(BRANCH(c,c'):CS,true:ST)->ENV(c:cs,ST)

(BRANCH(c,c'):CS,false:ST)-^ENV(c':cs,ST)

(CONST(I;):CS,M:ST)->ENV (CS,i;:ST)

(SKIP:CS,ST)->E N V (CS,ST)

(ADD:CS,<I>,M):ST)-»ENV(CS,(I>+M):ST)

(CALL(/):CS,ST)->ENV (ENV(/):CS,ST)

(DELAY(C):CS,t;:ST)->ENV (CS,{C,V} :ST)

(RESUMEICS,{C,i;} :ST)->ENV (C:CS,l> :ST)

(RESUME:CS,(;:ST)-^ENV (CS,D:ST) otherwise

Fig. 7. Abstract machine instructions.

In addition there is an environment ENV containing named pieces of code. During the
execution of a program the configurations (CS,ST) will be modified, whereas the
environment will remain unchanged. We write

(CS,ST)^E N V(CS' ,ST')

if one execution step of the machine will change the configuration from (CS,ST) to
(CS',ST').

In fig. 7 we list some of the instructions of the machine, together with their
operational meaning. The control stack is a list of instructions and we shall
(ambiguously) write ' : ' for appending two lists and for prepending an element to a list.
The evaluation stack is a list of values, and we distinguish between three different
kinds of values

• primitive values such as the truth values and the integers;
• composite values such as pairs (denoted by < . . . , . . . » and lists (denoted by [...]);

and
• delay closures (denoted by {...,...}) containing a list of instructions and a value.

A delay closure {c,v} is used to delay the execution of the code c on the stack with v
on its top. The instruction DELAY(...) constructs a delay closure, whereas RESUME

initiates the execution of the code of a delay closure on the given argument.
The overall operation of the machine upon input v and with program c is to start

in the configuration (c,v: nil). It will then repeatedly execute the instructions of c and
update the configuration accordingly. If at some state there is no next configuration
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then the machine stops. If one of the stacks of the configuration becomes empty or
it calls a name not defined in the environment, then the machine also stops. It is, of
course, also possible that the machine will continue executing instructions forever.
However, if it stops and the configuration has the form (nil,u: nil) then we say that
the machine has terminated with output u. In all other cases where the machine stops
we shall say that it has terminated with failure.

As an example, consider the program ENTER:TUPLE:ADD. Assuming that the input
is 7, the initial configuration will be

(ENTER : TUPLE : ADD : nil,7: nil)

Execution of the program with the empty environment 0 will modify the
configuration as follows

(ENTER : TUPLE : ADD : nil,7: nil)

-*-0 (TUPLE : ADD : nil,7:7: nil)

^ 0 (ADD : nil,<7,7>: nil)

The machine has now terminated with output 14. The same effect is obtained by
executing the program DELAY(ENTER : TUPLE : ADD) : RESUME

(DELAY(ENTER : TUPLE : ADD) : RESUME : nil,7: nil)

^ 0 (RESUME : nil,{ENTER: TUPLE : ADD : nil,7}: nil)

^ 0 (ENTER : TUPLE : ADD : nil,7: nil)

- * 0 (TUPLE : ADD : nil,7:7: nil)

^ 0 (ADD : nil,<7,7>: nil)

9.2 Coding interpretation: the type part of 3f

Recall that to specify the semantics it is sufficient to specify the meaning of the run-
time function types, the combinators and the compile-time fixed point. Let Code be
the set of instruction sequences for the stack machine. The type part of the
interpretation Jf" will then have

Jf^( = Code

for all types tz±t\ since we want to generate a sequence of instructions for any run-
time function. Note that we do not use structural induction to define the meaning of
the run-time types as in the previous sections. As an example, we have [SumJKJf)
= Z* -> Z and [Sum2] (JT) = Code. Perhaps more interestingly we have
[Reduce 9 Jpf ) = Code -> Code, reflecting that given the code for the function
argument of r e d u c e we obtain the code for the specialized function. Intuitively,
Code -> Code is the type of code fragments with holes for where the argument code
should be inserted.
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9.3 Coding interpretation: the expression part of 3C

The expression part of $f will specify how to generate code for the combinators and
the fixed point. So, for example, JfFst will specify the code to be generated for
Ps t [ ] and Jfn will specify how to compose the two pieces of code for the arguments
of • •

The clauses of fig. 8 reflect that our language has a non-strict semantics in that the
execution of the various operations are postponed (using the DELAY instruction) until
they are really needed. We use a simple-minded approach where everything is
enclosed in a delay closure whenever the result might possibly not be needed. As an
example, the code for e1 • e2 will contain the code for e2, but encapsulated in a DELAY

instruction because it is not known whether it needs to be executed. On the other
hand, the code for e1 needs to be executed in order to get a result, and is therefore not
encapsulated. Similarly, we do not know whether the subexpressions ex and e2 of
Tuple(e15e2) need to be evaluated, and therefore the corresponding fragments of
code are enclosed in DELAY instructions.

Whenever we want to recover a value that may be a delay closure we use the
instruction RESUME. AS an example, the code for jTP3t reflects that we must first
evaluate the argument to a pair, and then we select the first component. The actual
pair could very well be a pair of delay closures, and in that case the result will be
further evaluated. The code for Jf+ shows how the RESUME instruction is used to force
the evaluation of the argument to a pair, and then to force the evaluation of each of
the components to an integer such that the addition instruction can be applied.

Finally, the code generated for the fixed point is simply CALL(/) where/is a labelled
piece of code specified in the environment. The argument f of X*tix is intuitively a code

(f,g) = DELAY (g):f

ple (f,g) = ENTERtDELAY (g):SWTTCH:DELAY (f):TUPLE

s t = RESUME:FST:RESUME

d = RESUME:SND:RESUME

d = RESUME:HD:RESUME

! = RESUME:TL:RESUME

nil = RESUME:ISNIL

ond (f,g,h) = ENTER:f:BRANCH(g,h)

Q^ o n s t f=CONST(f )

d7Cld = RESUME

d?f+ - RESUME:ENTER:SND:RESUME:

SWITCH:FST:RESUME:TUPLE:ADD

d^flxf=CALL(/)

where t is t'^t" and ENV is extended with
ENV ( / ) = f(CALL (/))

and where / is a fresh identifier

Fig. 8. Fragments of the expression part of Jt.
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fragment with holes in it for where the recursive calls have to be inserted, and in
f(CALL(/)) the holes have been rilled with CALL(/) .

We can now apply J f to the program sunigB and we obtain the code

The environment ENV will associate the label sum with the code

ENTER: RESUME: ISNIL:

BRANCH(CONST(0),

DELAY(ENTER :

DELAY(DELAY(RESUME : TL : RESUME) : CALh(sum)):

SWITCH :

DELAY (RESUME: HD: RESUME):

TUPLE):

RESUME: ENTER: SND: RESUME: SWITCH: FST: RESUME: TUPLE: ADD)

9.4 Peephole optimization

The code generated by the coding interpretation Jf is rather inefficient, and we shall
therefore show that a few optimization rules can be used to improve the quality of the
code.

We shall use the following transformation rules, often called peep-hole opti-
mizations, in order to reduce the number of delay closures

DELAY(C) : RESUME => c

ENTER : c2: SWITCH : Cj: TUPLE : ENTER : SND : c\: SWITCH : FST :C\: TUPLE

=> ENTER : c2: c\: SWITCH : c1: c\: TUPLE

Applying these transformations to the code of ENV(JMW) we get

ENTER: RESUME: ISNIL:

BRANCH(CONST(0),

ENTER : DELAY(RESUME : TL : RESUME) : CALL(sum):

SWITCH: RESUME: HD : RESUME: TUPLE: ADD)

Before each recursive call of the function the argument has been encapsulated in a
delay closure. This is because the code generation reflects the non-strict semantics,
and in the next section we shall see how a strictness analysis can be used to avoid
generating these delay closures.

9.5 Remarks

The abstract machine has been chosen so as to make code generation straightforward.
In our previous work (Nielson and Nielson, 1986, 1988 c) we have used a more
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complicated machine where the code is linearized and the flow of control is modified
by jumping between (uniquely generated) labels. However, the non-standard
interpretation can also be used to generate code for full-fledged abstract machines like
FAM (Cardelli, 1983) and the G-machine (Peyton Jones, 1987).

The semantics of the abstract machine is specified operationally, and when proving
the correctness of the code generation we therefore have to relate a denotational
semantics (specified by Sf) to this operational semantics. Such a correctness proof is
given by Nielson and Nielson (1988 c) for the slightly more complicated machine
mentioned above, and with a strict semantics (and thereby a code generation avoiding
the generation of delay closures).

When the actions of the abstract machine are specified operationally it may be
more convenient to prove the correctness of the code generation with respect to an
operational semantics. This has been done by Cousineau et al. (1987) and Despeyroux
(1986) for the categorical abstract machine, and it is interesting to note that the
overall structure of that proof and the one in Nielson and Nielson (1988 c) have much
in common.

10 Optimization of the code generation

A closer inspection of the program sum shows that it is strict in its parameter. This
is not reflected in the code generated in the previous section, so we shall want to
improve the code generation. The idea is now

• to specify a strictness analysis; and
• to modify the coding interpretation to generate special code for strict functions.

A strictness analysis is just another forward abstract interpretation. Thus we shall
proceed very much as in Section 7 when we studied the constant propagation
analysis.

10.1 Strictness analysis

The purpose of strictness analysis (Mycroft, 1980, 1981; Burn et al., 1986; Hughes,
1986; Nielson, 1987 b; Wadler, 1987) is to determine whether an expression always
will need its argument, i.e., whether it needs to be evaluated. The technical details of
how 3T is specified are very much as those of 0> (and y), except that the domains of
properties are even simpler. An expression of type I n t will now have one of two
properties

• 1 meaning that the value may be defined or undefined (much as T in
[ In t ] (<?)); or

• 0 meaning that the value is undefined (much as 1 in [I

We shall write A for this set of properties. The type part of 3~ will now define

so that the meaning of a run-time function will map properties of the argument type
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c£Tu (f,g)p=f(gp)

= P
nd <p>q> = q

P = P
(f,g,h) P = (f P) A ((g P) V (h P))

<p,q> = p A q

Fig. 9. Fragments of the expression part of $~.

to properties of the result type [?1G^")- The properties of values of type r are
defined according to the structure of t

= A

with the exception that the list types are interpreted as the simple domain A. This
means that the analysis will not be sufficiently precise to determine whether some
function is strict in, say, the head of the list or the spine of the list. This restriction
is merely for the sake of simplicity.

The expression part of &~ will specify how to compute with these properties. In
fig. 9 we give some of the more interesting cases. The operation p v q is defined on A
to be 1 if either p or q is 1 and otherwise 0. In general, it is the least upper bound
operation on the complete lattice \i\(&") for t a run-time type. Similarly, pAq is
defined on A to be 0 if either p or q is 0 and otherwise 1. In general, it is the greatest
lower bound operation. In the clause for 9~\ix we exploit that the complete lattice has
a greatest element T (ambiguously denoted 1).

If we apply 2T to sunigB we then get the expected

and taking p to be 0 this shows that suirijB is strict in its argument.

10.2 Modifying the coding interpretation

The idea is now to combine the strictness information and the code generation. We
shall do that by defining an interpretation <& that will compute the strictness
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((f,f),(g',g)) = (Ap . f (g ' p),
(Pfl = 0)-> g:f I DELAY(g):f)

pie «r,f)(g',g)) = Op •<r P , g ' P>,
ENTER:DELAY(g):SWITCH:DELAY(f):TUPLE)

• P, RESUME:FST:RESUME)

• q. RESUME:SND:RESUME)

%d = (Ap,p, RESUME:HD:RESUME)

%Y - (kp,p, RESUME:TL:RESUME)

^ i s n i l = (^P>P> RESUME:ISNIL)

^Cond ((f,f), (g',g), (h',h)) = (Ap . (F P ) A «g ' P ) V (h' P)),
ENTER:f:BRANCH(g,h))

%onstf=(Xp.l, CONST f)

^Id = $ P • p,RESUME)

% = (k(p,q) p A q,
RESUME:ENTER:SND:RESUME:SWITCH:FST:RESUME:TUPLE:ADD)

r f i x F = let (f,f) = F ( 1 , C A L L ( / ) )

in (r,CALL(/) where E N V ( / ) = f)

for t=t'zl t" and where/is a fresh identifier

Fig. 10. Fragments of the expression part of (€.

information at the same time as it computes the code to be generated. The type part
of # will have

I'l C O x Code

where Code is as in the previous section. Thus the meaning of a run-time function will
be a pair where the first component contains the strictness information and the second
component is the code for the function.

The expression part of the interpretation will combine the clauses for the strictness
analysis with those for the coding interpretation. In the clause specifying the code to
be generated for ex • e2 we use that if ex is strict, then e2 has to be computed, and so
we can dispense with the DELAY instruction. The clauses are shown in fig. 10.

We can now apply the coding interpretation to the program sunigB and we get the
code

The environment ENV will now associate the label sum with the code

ENTER : RESUME : ISNIL :

BRANCH(CONST(0),

ENTER : DELAY(RESUME : TL : RESUME : CALL(sum)):

SWITCH : DELAY(RESUME : HD : RESUME) :

TUPLE:

RESUME : ENTER : SND : RESUME : SWITCH : FST : RESUME : TUPLE : ADD)
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We can apply the peephole optimizations of the previous section together with the
transformations

TUPLE : RESUME => TUPLE

ENTER : c: c t : SWITCH : c: c2 => c: ENTER : c^: SWITCH : c2

and the result is

ENTER: RESUME: ISNIL:

BRANCH(CONST(0),

RESUME : ENTER: TL: RESUME: CALL(IMW):

SWITCH: HD : RESUME: TUPLE: ADD)

10.3 Remarks

The code generation above can be further improved by introducing a test for totality
(Mycroft, 1981). In the case of e1de2 we can then dispense with the DELAY

instruction both in the case where e2 is total and in the case where e1 is strict.
Furthermore, the DELAY instructions encapsulating the code generated for ei for
Tuple(e1,e2) can be avoided if ei is total. However, such an improvement will not
affect the code generated for our example program because the relevant functions will
not be total. The formulation of the totality analysis is along the lines of the strictness
analysis.

It has been shown how even better code can be generated (Nielson and Nielson,
1990c). One scheme amounts to using 'strictness continuations' and another scheme
amounts to using 'evaluation degrees'.

We have taken the approach of combining two interpretations into one and then
using results obtained by one part when denning the other part. An alternative
approach would be to annotate the programs with strictness information and then
extend the coding interpretation of Section 9 to cope with the annotated constructs.

11 Conclusion

To assess the applicability of our approach to the implementation of functional
languages one will need to investigate the following aspects

• efficiency: the extent to which the code is comparable in efficiency (e.g., time or
space) to that of code produced by other means;

• correctness: that the generated code behaves as expected, i.e., as the program
being compiled; and

• automation: the extent to which the analyses and transformations can be
performed without user interaction.

11.1 Efficiency

To obtain efficient code we have borrowed techniques for program analysis (or data
flow analysis) and program transformation (or code optimization) from traditional
compiler technology (Aho et al., 1986). The functional programming style introduces
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an implicit distinction between binding times, as higher-order functions are typically
supplied with some but not all of their arguments. This kind of distinction is often
explicit in imperative languages, and the efficient implementations of these languages
rely on this distinction. However, using a binding time analysis we can make this
distinction explicit in a functional language as well, and then use it in the analysis and
transformation of the programs. Following our approach the transformations at the
source level may be grouped into four categories

• Transformations aiding the binding time analysis: the purpose is to get an
appropriate distinction between binding times. A similar problem has been
discussed in the context of semantic specifications (Nielson and Nielson, 1988 c;
Jorring and Scherlis, 1986).

• Transformations at the compile-time level: the purpose is to carry out some of the
compile-time computations once and for all. These transformations are closely
related to the partial evaluation described by Ershov (1982), and a restricted
form of the transformations described in the unfold/fold framework of Burstall
and Darlington (1977).

• Transformations at the run-time level that are universally applicable: the run-time
level of our notation is converted into combinator notation, and we apply
transformations similar to those developed for FP (Backus, 1978; Bellegarde,
1986; Harrison, 1988).

• Transformations at the run-time level that are enabled by certain program
analyses: The enabling analyses are expressed as abstract interpretations
(Nielson, 1987a, 1989), and they may express properties obtained by forward or
backward analyses (Aho et ai, 1986). The use of transformations enabled by
program analyses is discussed by Aho et al. (1986) and Nielson (1989).

The translation of the source program into target code is specified by a rather simple
scheme, and to improve the efficiency of the code generated we need to analyse and
transform the program

• Analyse the program: the purpose is here to collect information that can be used
to select more appropriate code. The analyses may be specified as abstract
interpretations (as in Section 10).

• Transform the generated code: we may use peephole optimizations to remove
some of the superfluous instructions generated.

The example developed throughout this paper demonstrates that substantial
improvements in the overall performance can be obtained using these techniques.

11.2 Correctness

Correctness involves

• validating that the (simple-minded) code generation scheme is correct;
• validating that the results of the program analyses are correct; and
• validating that the program transformations preserve the semantics of programs.
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As we have seen, the analyses and transformations can be applied both at the source
level and at the target level, i.e., one can perform analyses and transformations on the
original functional program and on the code generated for it. As in traditional
compiler technology, this means that the actual code generation is often kept rather
simple-minded because the program may have been transformed so as to facilitate
code generation, and any shortcomings in the generated code may be alleviated by
subsequent transformations. This is important when one is arguing about the
correctness issues, since it reduces the number of special cases to consider.

From the point of view of compiler construction, one is particularly interested in
program transformations that are not semantics-preserving in general, but only in
certain contexts. Information about the 'contexts' is provided by program analyses,
and this motivates a close relationship between the program transformations and
their enabling program analyses. An underlying principle of abstract interpretation is
to approximate perfect information by 'erring on the safe side'. A number of abstract
interpretations have been developed for functional languages (Burn et ai, 1986;
Hughes, 1986, 1989; Nielson, 19876) and a framework for developing abstract
interpretations is described by Nielson (1987a, 1989) and Nielson and Nielson
(1988 c). The theoretical aspects of using information obtained from abstract
interpretation to enable program transformations and to improve the code generation
is discussed by Nielson (1985) and Hudak and Young (1988).

11.3 Automation

In an implementation of a programming language it is important that the user does
not have to be concerned with the choice of analyses and transformations to be
performed and the order in which to perform them. At the current stage our approach
is certainly not amenable to automation. We have experimented with binding time
analyses, combinator introduction, algebraic transformations and the concept of
parameterized semantics in our PSI-system, and we expect that the system can be
extended to include specific analyses and transformations. However, the range of
analyses and transformations that one would want to perform is so broad that much
more research is needed to determine which analyses and transformations should be
built into an intelligent compiler for a functional language, and in which order they
should be performed. We hope to look further into this using more general, but semi-
automatic, systems such as those of Darlington and Pull (1988) and Feather (1982).
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