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0. In [O-1] it was proved that for any bounded hyperconvex domain D in (o4
the Bergman kernel function K(z, w) of D satisfies

lim K(z, z2) = oo,
z—-dD

In case » = 1, this is due to a behavior of sublevel sets of the Green function.
The general case then follows by the extendability of L holomorphic functions.

1. After the author finished typing the manuscript of [O-1], H. Tanigawa
suggested to him an alternative proof of the one variable case. Her argument con-
sisted of an observation that the logarithmic capacity ¢ (2) of any bounded hyper-
convex domain in C is exhaustive and an assertion that K(z, z) is exhaustive
whenever so is ¢;(2). Unfortunately, her proof of the latter statement was too dif-
ficult for the author to follow, and seemingly not to be published anywhere. There-
fore, he decided to fix her idea by giving a straightforward proof to the following.

TuEOREM. There exists a constant A € [m, 7507] such that, for any
Riemann surface S and for any local coordinate z on S, VAK(z, 2) = ¢4(2) holds.

2. N. Suita [S] conjectured that 7 can be taken as the above A. In fact he
showed that

VrK(z, 2) = ¢;(2)
if S={z€ Cl|z| <1}, and that
VK (z, 2) > c;(2)

if S={z€Clr<|z| <1} for some < (0,1). The author hopes that our
method may give a new insight into this subtle question.
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3. Let S be any Riemann surface, and let z be any local coordinate of S
defined on a coordinate neighborhood, say U. If S admits the Green function g, the
logarithmic capacity ¢;(2) (= ¢5(2(p))) is defined by

— log ¢, (2(p)) = lir? (g(p, @) +loglz(p) — z(p |)

for any p € U. Otherwise we set ¢4,(2) =0. The Bergman kernel function
K(2) (= K(z, 2)) is defined by

log K(z) = suplog| Q(2) .

Here @ runs through the set {Q| Q(2) is holomorphic on U and there exists a
holomorphic 1-form f on S of L* norm 1 such that Q(z)dz = f | UJ.

4. For the proof of theorem we may assume that ¢;(2) # 0, since the result
is trivial otherwise. For any point p € U, we shall prove that there exists a holo-
morphic 1-form B, on S such that

B,|p=c,(2) dz|p
and
IB, | <750 .

Here || || denotes the L* norm.
5. Let x : R— R be any C” function satisfying x(®) =1 on (— o, 1],
x(® =0o0n (2, ©) and | ¥’ () | < 2log 2 everywhere. For simplicity we put

& =g0,).
Then we put

— g, —loge
f= X( log 2

0 on S\ U.

)cﬁ(z(jl)) on U

Clearly, for sufficiently small ¢, f, is a C” function satisfying £, () = ¢4(2(p)) and
| £dz|—0ase—0.

6. We assert that there exists a ¢, > 0 such that, for any ¢ € (0, ¢,) one
can find 4 square integrable (1, 0) form &, on S satisfying

(1) da, = 0f. A dz

@) | [lel?a,na|<e
U

and
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(3) | e, I < 750 7.

This suffices, since the required 1-form B, will be obtained by putting B, = f, A
dz — a, for sufficiently small e.

7. For that, givin &€ we look for a positive number 4, a C” function o:
S— (0, ) and a conformal metric ds” on S satisfying the following conditions (i)
through (iii).

. . -2 /\__+ /\_g . /\_
(i) zﬁfvlzl ala zf;a a Szlpa a

for any square integrable (1, 0) form & on S.
(i) For any C” (1,1) form B on S\{p} with supp B < {log2 < g, +loge <
21og 2}, there exists a solution to da = 8 satisfying

z‘fspaAasfse”*’lmzdvoz.

Here | B| denotes the pointwise norm of B and dvol denotes the volume form, both
with respect to ds’.

(iif) [ ¢ 6%, A dz|* dvol < 150 7.
s
8. Obviously, we are through if there exist §, 0 and ds2 as above.
9. Itis easy to see that (iii) is satisfied if we put
ds’ = 4e ¢ (™ + ¢°) *0g, g,

On the other hand, a general nonsense of elementary functional analysis tells us
that (ii) is satisfied provided that there exists a C~ positive function  on S such

that,

(4) — (80 + n7%0m A On) = dic%e T (e + &%) Cog, A dg,
and

(5) o< ™ (n+nH7

(cf. [O-2] Theorem 1.7).

10. Therefore our problem was reduced to finding 0 and 7 satisfying (4), (5)
and (i) for some 0 > 0.

11. For that, we put

p=— log(e_Z(g’H) + &) + log(— log(e_Z(g’H) + &%)
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1

for e € (0, ¢”" — ¢7%). To simplify the computation, let
¢ = log(e "’ + &%),
Then
— 90 = 00¢ — ¢'0d¢Y + ¢"°9¢p A 3¢
and

n'on A On = (¢ +log(— o)A~ ¢’ A 5.
Hence
— i(@0n + n"%on A 0n) = i60¢.
But a straightforward computation shows that
i 00¢ > 4ic’ (e + %)% ™* 9g,0g,.
Thus (4) is satisfied by the above 1. As p, we have only to put
o=e*m+ )"
In fact, since

sup e (= log(e "™ + &%) + log(— log(e """ + ¢%))

t>0

< sup T 2T + log T + log 2)

t>0

<supTBT—1+log2)

t>0

3
<§€<5,

one has (i) for sufficiently small §, in view of the behavior of p near p.
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