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Abstract

The mammalian respiratory system or lung is a tree-like branching structure, and the main
site of gas exchange with the external environment. Structurally, the lung is broadly classified
into the proximal (or conducting) airways and the distal alveolar region, where the gas
exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with
large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar struc-
tures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung
development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway
is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor
capable of regulating unique biological processes. Dysregulation of the NOTCH pathway
has been associated with development and pathophysiology of multiple adult acute and
chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signal-
ling plays an important role in the development and pathogenesis of chronic obstructive pul-
monary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial
hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signal-
ling in regulating repair/regeneration of the adult lung, its association with development of
lung disease and potential therapeutic strategies to target its signalling activity.

Introduction

The mammalian respiratory system or lung is one of the most critical organ systems, and the
main site of gas exchange with the external environment (Refs 1, 2, 3, 4, 5, 6, 7, 8). Structurally,
the human lung is a tree-like branching structure which is broadly classified into the conduct-
ing airways (proximal and distal), which terminate at the respiratory bronchioles and form a
connection with the alveolar region, where the gas exchange occurs (Fig. 1a) (Refs 1, 2, 3, 4, 5,
6, 7, 8). Similar to the respiratory tree, the pulmonary circulation subdivides rapidly and
branches into capillaries that surround the alveolar compartment, allowing for a large surface
area for gas exchange (Ref. 9). However, contrary to the airway tree, segments of the pulmon-
ary artery branch off early at irregular but frequent intervals to enter the lung parenchyma.
This results in the pulmonary arterial tree having more branches than the bronchial one
(Refs 10, 11). Following gas exchange in the capillary beds, oxygenated blood is returned to
the heart by pulmonary veins (Ref. 9).

The conducting airway, comprising of the nasal cavity, trachea, bronchi and bronchioles,
functions as a conduit of air to and from the alveoli and is the foremost physical barrier
and first line of defence against inhaled pathogens (e.g., viruses and bacteria) and particulates
(Refs 1, 2, 3, 4, 5, 6, 7, 8). This efficient barrier is formed by the pseudostratified mucociliary
airway epithelium, a continuous single layer of epithelial cells, with each cell having a direct
contact to the basement membrane (Fig. 1b) (Refs 1, 2, 3, 4, 5, 6, 7, 8). Located underneath
the basement membrane are a large number of non-epithelial cell populations required to
maintain proper structure and function of the respiratory system, including cartilage rings (tra-
chea and large airways only), smooth muscle, fibroblasts, blood vessels, nerves and immune
cells (e.g., lymphocytes and dendritic cells) (Fig. 1b) (Refs 1, 2, 3, 4, 5, 6, 7, 8). The mucociliary
epithelium consists of several cell types, such as basal cells (BCs), intermediate, multi-ciliated,
secretory (mucus producing ‘goblet’; or non-mucus producing ‘club’ cells), neuroendocrine
and many other rare cell types, such as pulmonary ionocytes and brush/tuft (Fig. 1b)
(Refs 1, 2, 3, 4, 5, 6, 7, 8, 12). Both multi-ciliated and secretory cells are critical to the barrier
function of the mucociliary epithelium, as they form the mucociliary escalator system, which
helps cleanse the airways (Refs 1, 2, 3, 4, 5, 6, 7, 8). In this process, the inhaled particulates and
pathogens trapped on the apical surface of the epithelium by secretory cell-derived mucins and
defence-related molecules are removed from the airways in a retrograde manner by the action
of multi-ciliated cells. In addition to the luminal secretory cell populations, the trachea and
large airways also harbour submucosal glands which contain additional specialised epithelial
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Fig. 1. The human respiratory system. (a) Structure of the human respiratory system. (b) Structure of the human pseudostratified mucociliary epithelium. The
pseudostratified mucociliary airway epithelium is a continuous single layer of epithelial cells with each cell having direct contact with the basement membrane.
The mucociliary epithelium consists of several cell types which can be identified by expression of specific markers. These include, basal cells (KRT5 + , TP63 + ),
intermediate (KRT8 + , KRT13 + ), multi-ciliated (FOXJ1 + , DNAI1 + ), goblet secretory (MUC5AC + , MUC5B + ), club secretory (SCGB1A1 + , SCGB3A2 + ), neuroendo-
crine (CALCA + , ASCL1 + ), pulmonary ionocytes (FOXI1 + , CFTR + ) and brush/tuft (TSLP + , IL-25 + ). The trachea and large airways also harbour submucosal glands
which contain additional specialised epithelial cell populations including, serous (LTF + , DCCP1 + ), mucous (MUC5B + , TFF2 + ) and myoepithelial (EPCAM + ,
ACTA2 + ). Located underneath the basement membrane are a large number of non-epithelial cell populations required to maintain proper structure and function
of the respiratory system, including cartilage rings (trachea and large airways only), smooth muscle, fibroblasts, blood vessels, nerves and immune cells (e.g., lym-
phocytes and dendritic cells). (c) Structure of the human respiratory bronchiole and alveolar epithelium. Terminal respiratory bronchioles are lined predominantly
with cuboidal secretory cells (SCGB1A1 + , SCGB3A2 + ) which contain the recently identified progenitor populations termed respiratory airway secretory (RAS) or
terminal and respiratory bronchiole secretory cells (TRB-SCs). In contrast, the alveoli consist of alveolar type 1 (AGER + , AQP5 + ) and type 2 (SFTPC + , ABCA3 + )
cells. Type 1 cells are the predominant epithelial cell type in the alveolus and comprise approximately 95% of the gas exchange surface with the underlying vas-
culature in the lung.
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cell populations including, serous, mucous and myoepithelial that
contribute to the production of luminal mucus (Fig. 1b) (Refs 1, 2,
3, 4, 5, 6, 7, 8). BCs are the resident stem/progenitor cells of the
adult mucociliary airway epithelium that are responsible for the
normal turnover of airway epithelial cells during homeostasis,
and the repair and regeneration of the airway epithelium follow-
ing injury (Refs 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15). In contrast to the
conducting airways, the terminal respiratory bronchioles are pre-
dominantly lined with cuboidal secretory cells which contain the
recently identified progenitor populations termed respiratory air-
way secretory or terminal and respiratory bronchiole secretory
cells (Fig. 1c) (Refs 16, 17). Upon transition to the alveoli, barrier
function is mediated by the alveolar type 1 (AT1) and type 2
(AT2) cells (Fig. 1c) (Refs 1, 2, 3, 4, 5, 6, 7, 8, 18). AT1 cells
are the predominant epithelial cell type in the alveolus and com-
prise approximately 95% of the gas exchange surface of the lung,
with their flattened, squamous morphology providing an ideal
interface for gas exchange with the underlying vasculature
(Refs 1, 2, 3, 4, 5, 6, 7, 8, 18). The cuboidal AT2 cells are respon-
sible for production of surfactant which helps reduce surface ten-
sion in the alveolar region during respiration (Ref. 19). In
addition, AT2 cells function as progenitor cells for AT1 cells,
thus maintaining normal turnover of the alveolar epithelial cells
during homeostasis and replenish cells which are lost after injury
(Ref. 18). Despite the ability of both the mucociliary and alveolar
epithelium to repair and regenerate via the action of a resident
adult stem/progenitor cells (i.e., BCs and AT2, respectively), the
underlying ‘niche microenvironment’ (i.e., non-epithelial cell
populations and extracellular matrix) of the lung plays an import-
ant role in regulating the cell differentiation and regeneration
response of the epithelium via the production of key paracrine sig-
nals (Refs 1, 2, 3, 4, 5, 6, 7, 8, 18). Most of our current understand-
ing of the mechanisms by which the lung responds to and
regenerates post-injury comes from using murine lung-injury
models. Despite the high conservation of lung structure and cel-
lular composition between the human and mouse respiratory sys-
tem, there are important differences (Refs 1, 2, 3, 4, 5, 6, 7). These
include restriction of BC in the cartilaginous rings and submuco-
sal glands up to the trachea of the mouse lung as compared to
humans, where these features extend to the distal airways. In add-
ition, there is a reduced number of branches and complete lack of
respiratory bronchioles in the mouse lung, which are the site of
injury in many human lung diseases and contain distinct secre-
tory cell populations that function as progenitors for AT2 cells
(Refs 16, 17). Therefore, under certain conditions these differ-
ences may limit the translation of lung repair and regeneration
mechanisms identified in mouse to the human lung. However,
the abundance of genetic mouse models and the development
of new technologies to assess cellular composition and the
molecular responses (i.e., transcriptional and epigenetic) of spe-
cific cell types post-injury have yielded critical information and
advanced our understanding of the basic mechanisms regulating
lung homeostasis and regeneration (Refs 1, 2, 3, 4, 5, 6, 7).

Adult human lung disease inflicts a large socio-economic bur-
den and is a leading cause of morbidity and mortality worldwide
(Refs 20, 21, 22, 23). This includes acute lung disease in response
to viral (e.g., influenza, rhinovirus (RV), SARS-CoV-2) or bacter-
ial (e.g., Streptococcus, Haemophilus, Pseudomonas) infections
and chronic respiratory diseases, such as chronic obstructive pul-
monary disease (COPD), asthma, idiopathic pulmonary fibrosis
(IPF), pulmonary arterial hypertension (PAH) (Refs 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42).
Many of these diseases have mortality rates comparable to most
types of lung cancer (Ref. 43). Development of both acute and
chronic lung disease is associated with injury and alteration of
the underlying architecture of the lung which disrupts its normal

function (Refs 2, 3, 44). In the context of chronic lung disease,
aberrant regeneration mechanisms lead to a failure to restore
the normal architecture and cellular composition of the lung,
which can eventually result in long-term lung function decline
(Refs 2, 3, 44). Therefore, understanding the lung’s response to
injury and the mechanisms that regulate tissue repair and regen-
eration may help identify new therapeutic strategies to treat both
acute and chronic lung disease.

The NOTCH signalling pathway plays an important role in
lung development and regeneration of the adult lung post-
injury (Refs 45, 46, 47, 48). Signalling via the NOTCH path-
way is mediated through activation of four NOTCH receptors
(NOTCH1–4), with each receptor capable of regulating
unique biological processes (Ref. 49). Dysregulation of the
NOTCH pathway has been associated with development and
pathophysiology of multiple adult lung diseases including
COPD, lung cancer, asthma, IPF and PAH (Refs 45, 48, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68).
However, the specific focus of this review will be to provide
a comprehensive summary of the role of NOTCH3 receptor
signalling in regulating repair/regeneration of the adult lung, its
association with development of lung disease and potential thera-
peutic strategies to target its signalling activity.

NOTCH signalling pathway

NOTCH signalling is a highly conserved cell-cell interaction sig-
nalling pathway that plays crucial roles in the development, repair
and regeneration processes in the embryonic and adult lung
(Refs 45, 46, 47, 48), as well as other organ systems (Ref. 49).
The mammalian NOTCH signalling pathway consists of four
transmembrane receptors (NOTCH1–4) and five ligands of the
Jagged (Jagged1,2 – orthologues to fly Serrate) and Delta-like
(Dll1,3,4 – orthologues to fly Delta) families (Refs 49, 69). The
four NOTCH receptors share a common structure consisting of
a transmembrane domain and a NOTCH extracellular domain
(NECD) that is non-covalently associated with a NOTCH intra-
cellular domain (NICD) which creates a hetero-dimeric, single-
pass, transmembrane receptor (Fig. 2a) (Refs 49, 69). The
NECD contains approximately 29–36 epidermal growth factor-
like domains (which enables ligand interactions) and a negative
regulatory region (NRR) consisting of three Lin Notch repeats
and receptor heterodimerisation domains (HD) (Refs 49, 70).
Similarly, the NICD contains multiple domains which regulate
its transcriptional activity including an RBP-Jκ-association mod-
ule domain, ankyrin repeats, a transactivation domain (TAD) and
a C-terminal domain rich in proline, glutamic acid, serine and
threonine domain (Refs 49, 70). Full length NOTCH receptors
are produced in the endoplasmic reticulum, and before trafficking
to the plasma membrane they are proteolytically cleaved by the
furin-like convertase (Site 1 or S1 cleavage) in the Golgi compart-
ment to form a processed heterodimer (Fig. 2a) (Refs 49, 70).
Canonical NOTCH signalling transduction is relayed via
cell-to-cell contact by the direct binding of cell-bound ligand to
the NECD of a receptor on a neighbouring cell (Fig. 2b)
(Refs 49, 70). Ligand binding results in activation of the
NOTCH receptor on the signal-receiving cell via multiple enzym-
atic cleavage events at site 2 (S2) and site 3 (S3) on the NOTCH
receptor (Fig. 2a and b) (Refs 49, 70). S2 cleavage and release of
the NECD occur via the ADAM protease, whereas S3 cleavage
by the γ-secretase enzyme releases the NICD from the receptor
(Ref. 49). This NICD translocates to the nucleus and interacts
with other inactive transcriptional complexes (RBP-Jκ and
MAML1-3) resulting in the transcription of multiple NOTCH
downstream target genes. These include the HEY and HES gene
families which encode basic helix-loop-helix transcription factors
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that typically act as repressors of transcription (Fig. 2b) (Refs 49, 71).
The large combination of ligand–receptor interactions and cell
type-specific expression of pathway components makes the

canonical NOTCH signalling pathway an exceptionally versatile
system that can lead to highly dynamic and diverse downstream
signalling responses (Ref. 49). In addition to canonical signalling,

Fig. 2. The NOTCH signalling pathway. (a) Structure of the full-length human NOTCH receptors. The four NOTCH receptors share a common structure consisting of a
NOTCH extracellular domain (NECD), transmembrane domain (TD) and a NOTCH intracellular domain (NICD). The NECD contains approximately 29–36 epidermal
growth factor (EGF)-like domains, a negative regulatory region (NRR) consisting of three Lin Notch repeats (LNR) and receptor heterodimerisation domains (HD).
Following the TD, the NICD contains a RBP-Jκ-association module (RAM) domain, ankyrin (ANK) repeats, a transactivation domain (TAD) and a C-terminal domain
rich in proline, glutamic acid, serine and threonine (PEST) domain. The locations of the S1, S2 and S3 cleavage sites are indicated. (b) Schematic of the canonical
NOTCH signalling pathway. Canonical NOTCH signalling transduction is relayed via cell-to-cell contact by the direct binding of cell-bound ligand to the NECD of a
receptor on a neighbouring cell. Ligand binding results in activation of the NOTCH receptor on the signal-receiving cell via enzymatic cleavage at site 2 (S2) and site
3 (S3) on the NOTCH receptor via the ADAM protease and γ-secretase enzyme, respectively. Following cleavage of the NICD from the receptor and its release into the
cytoplasm, the NICD translocates to the nucleus and interacts with transcriptional complexes (RBP-Jκ and MAML1–3) on the promoters of NOTCH target genes,
resulting in their transcription.
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non-canonical NOTCH signalling has been reported whereby
signalling occurs either independent of ligand interaction or
RBP-Jκ activation (Ref. 72). However, the role of non-canonical
NOTCH signalling in lung development, repair and regeneration
is poorly understood.

The human NOTCH3 gene is located on chromosome
19p13.12 and encompasses 33 exons which encode for a protein
composed of 2321 amino acids (Refs 56, 73, 74 75). Expression
of NOTCH3 has been found in multiple tissue types including
the vasculature, smooth muscle, central nervous and immune sys-
tem (Refs 56, 73, 74, 75). Relevant to the adult human and mouse
lung, NOTCH3 is expressed in vascular smooth muscle cells
(VSMCs), pulmonary artery smooth muscle cells (PASMCs),
pericytes, fibroblasts and specific cell types of the airway epithe-
lium (e.g., basal-intermediate and club) (Refs 48, 51). While dele-
tion of Notch1 and Notch2 is embryonic lethal in mice, deletion of
Notch3 does not affect embryo viability (Refs 45, 56). However,
mice with deletion of Notch3 have impairment of VSMC differen-
tiation and maturation (including the lung) that leads to altera-
tions in the vascular structure (Refs 45, 56). In addition, the
tracheal pseudostratified airway epithelium of Notch3−/− mice
have increased numbers of KRT8+ undifferentiated progenitor
cells (i.e., intermediate cells) compared to wild-type mice suggest-
ing that NOTCH3 signalling in the murine airway epithelium was
critical for priming of BC differentiation into club cells (Ref. 51).
In support of this, recent work from our lab demonstrated that
NOTCH3 receptor signalling regulates BC to club cell dif-
ferentiation in the human airway epithelium in vitro (Ref. 58).
Lentivirus-mediated overexpression of the active NICD3 in
primary human bronchial epithelial cells (HBECs) on in vitro
air-liquid interface (ALI) culture promoted club cell differenti-
ation. Furthermore, we demonstrated the NOTCH3 downstream
target HEYL was important for regulating this process since
siRNA-mediated knockdown of HEYL reduced club (SCGB1A1+),
goblet (MUC5AC+) and ciliated cell (FOXJ1) differentiation, but
lead to an increase in the number of KRT8+ intermediate cells.
While mice with deletion of Notch3 display no defects in the alveolar
epithelium, over-expression of NICD3 during development inhibits
terminal differentiation of the alveolar epithelium (Ref. 76). Despite
sharing a similar structure to the NOTCH1 and NOTCH2 receptors,
NOTCH3 displays a number of structural differences that may
explain the unique aspects of NOTCH3 signalling and its regulation
of lung biology compared to other NOTCH receptors (Fig. 2a)
(Ref. 77). These include differences in the NOTCH3 ECD which
potentially make the receptor more vulnerable to cleavage and acti-
vation in the absence of ligand (Ref. 77). In addition, the lack of a
TAD in the NOTCH3 ICD may account for a weaker transactivation
activity compared to other NOTCH ICDs.

Despite the knowledge NOTCH3 signalling is not essential for
murine lung development, there is emerging evidence that dysre-
gulation of NOTCH3 signalling in the adult human lung plays an
important role in the development and pathogenesis of acute and
chronic lung disease. Therefore, the remainder of this review will
summarise recent new findings from ours and other groups,
which highlight the pathogenic role of NOTCH3 in mediating
severe respiratory diseases such as COPD, viral infections, lung
cancer, asthma, IPF and PAH. Finally, we debate the potential
and means of targeting NOTCH3 signalling as a therapeutic strat-
egy for treatment of lung disease.

NOTCH3 signalling and acute or chronic lung disease

COPD and emphysema

COPD is a preventable, but life-threatening lung disease, and is
the third leading cause of death in the United States (Ref. 20).

Exposure to first and/or second-hand cigarette smoke (CS) is
the leading risk factor for the initiation and progression of
COPD pathophysiology, which is broadly classified into chronic
bronchitis and emphysema (Refs 36, 78, 79). Chronic bronchitis
is characterised by increased inflammation of the airways and
excess mucus production which leads to airflow obstruction
(Refs 36, 78, 79), whereas emphysema is a disease of the alveoli
characterised by damage and permanent enlargement of the
alveolar airspace, which reduces the surface area available for
gas exchange (Refs 36, 78, 79).

CS exposure is known to mediate significant changes in the
cellular architecture of the mucociliary airway epithelium (termed
epithelial remodelling), including BC hyperplasia, squamous
metaplasia, loss of club cells and increased numbers of
mucus-producing goblet cells termed ‘goblet cell metaplasia or
hyperplasia’ (GCMH) (Refs 14, 78, 79). Prior studies have identi-
fied alterations at the mRNA, protein and epigenetic level for
multiple NOTCH signalling pathway components in the in vivo
airway epithelium of smokers with and without COPD relative
to that of non-smokers (Refs 50, 51, 52, 53). This includes
decreased NOTCH3 mRNA in the airway epithelium of smokers
versus non-smokers (Ref. 52), and decreased NOTCH3 protein
levels in the airway epithelium of COPD versus non-COPD con-
trols (Ref. 51). While protein levels of activated NOTCH3 recep-
tor (i.e., NICD3) were not assessed in these studies, these data
suggest that reduced levels of NOTCH3 receptor (and its down-
stream signalling) may contribute to the development of airway
epithelial remodelling associated with CS exposure and COPD
(Refs 14, 78, 79). In support of this, our recent study observed
decreased expression of the NOTCH3 downstream target HEYL
in HBECs from COPD versus normal (non-COPD) donors
which correlated with the impaired differentiation capacity of
COPD HBECs on in vitro ALI culture (Ref. 58). Furthermore,
we demonstrated that lentivirus-mediated overexpression of
HEYL in COPD HBECs promoted differentiation into club, gob-
let and ciliated cells. Combined, these data suggest the impaired
capacity of COPD cells to generate a normal airway epithelium
is a reversible phenotype that can be regulated by the NOTCH3
target HEYL.

In contrast to the above findings that suggest decreased
NOTCH3 signalling may contribute to the development of airway
epithelial remodelling associated with CS exposure and COPD,
our recent study demonstrated that in vitro CS exposure activates
NOTCH3 signalling to promote development of GCMH in both
non-smoker and COPD airway epithelial cells (Ref. 59).
Cigarette smoke extract (CSE) exposure of in vitro ALI cultures
of differentiated human mucociliary airway epithelium generated
from primary non-smoker and COPD smoker human HBECs
resulted in a decrease in the number of SCGB1A1+ club cells
with a parallel increase in MUC5AC+ goblet cells, characteristic
of GCMH (Ref. 59). Development of CSE-dependent GCMH cor-
responded with increased activation of the NOTCH3 receptor
(i.e., increased NICD3 levels and nuclear localisation) with no
change in the expression of NOTCH3 mRNA, suggesting that
CSE regulates NOTCH3 protein levels post-transcriptionally.
Importantly, inhibition of NOTCH3 signalling via treatment
with the γ-secretase inhibitor dibenzazepine (DBZ) or
siRNA-mediated knockdown of NOTCH3 expression suppressed
CSE-induced GCMH phenotype. In support of our findings, CS
exposure increased the activation of NOTCH3 protein in
human lung adenocarcinoma both in vitro and in vivo
(Ref. 80). Furthermore, Gomi et al. (Ref. 81) demonstrated that
long-term (28 days) over-expression of NICD3 in normal
HBECs on in vitro ALI culture induced a phenotype characteristic
of GCMH. Therefore, targeting NOTCH3 activity could be a
novel therapeutic strategy to control GCMH in smokers with
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and without COPD. However, based on the knowledge that air-
way epithelium of smokers and COPD patients contain reduced
levels of NOTCH3 mRNA and protein relative to healthy controls
(Ref. 52), future work is required to better understand the cell
type-specific expression pattern of NOTCH3 and the mechanisms
regulating its activation state and kinetics in the context of
COPD-associated airway epithelial remodelling.

Although, there is no report showing the direct role of
NOTCH3 signalling in COPD-associated emphysema, a recent
study described that enhanced NOTCH3 signalling contributes
to Marfan syndrome-associated pulmonary emphysema in mice
(Ref. 82). Marfan syndrome is a genetic disorder caused by muta-
tions in the fibrillin-1 gene (Refs 82, 83, 84). Apart from other
systemic effects, one of the major disease manifestations is altered
lung function and pulmonary emphysema (Refs 82, 85, 86). The
mouse model of Marfan syndrome (mgR mice) shows a progres-
sive development of airspace enlargement (emphysematous
changes), which correlates with an increase in NOTCH3 activa-
tion (but not NOTCH1, 2 or 4). Moreover, treatment with
DAPT, a γ-secretase inhibitor which blocks global NOTCH sig-
nalling, prevented emphysema development in mgR mice, while
decreasing NOTCH3 activation, thereby suggesting that
NOTCH3 activation drives emphysema development in mgR
mice (Ref. 82). However, the use of a global NOTCH signalling
inhibitor questions the specificity of the NOTCH3-dependent
effects. Therefore, future studies using strategies to specifically
block NOTCH3 signalling in the mgR mouse model are required
to strengthen and confirm the pathogenic role of NOTCH3
activation in driving emphysema development in Marfan
syndrome.

Viral exacerbations and COPD

Acute exacerbations caused by viral infections can result in sig-
nificant morbidity, mortality and hospitalisations in COPD sub-
jects (Refs 37, 38, 39, 87). RV is a common respiratory
pathogen associated with increased GCMH in COPD subjects,
resulting in severe and prolonged respiratory distress and airflow
obstruction (Refs 40, 41, 42, 60). These symptoms are attributed
to an increase in both virus-induced mucin production, and an
increase in number of mucus-producing secretory (goblet) cells
(Refs 40, 41, 42, 60, 87). A recent study by Jing et al. (Ref. 60)
showed that in vitro RV infection of COPD cells differentiated
on ALI culture resulted in the activation of NOTCH3 and its
downstream target, HEY1. This NOTCH3-HEY1 activation corre-
lated with increased mucin gene expression, with a parallel
increase in the numbers of goblet cells (i.e., GCMH).
Furthermore, they demonstrate that inhibition of NOTCH3 sig-
nalling via treatment with the γ-secretase inhibitor DAPT or
shRNA-mediated knockdown of NOTCH3 expression suppressed
RV-induced GCMH in COPD cells. Interestingly, RV infection of
ALI differentiated epithelium from normal cells did not lead to
increased NOTCH3 signalling, and development of GCMH,
suggesting that COPD cells have inherent or intrinsic changes
that make them susceptible to RV-dependent induction of
NOTCH3 signalling. In contrast to our findings with CSE
(Ref. 59), Jing et al. do not observe a change in the number of
club cells upon RV infection, suggesting that the increase in
the number of goblet cells may result from direct differentiation
of BC into goblet cells, whereas CSE exposure leads to dif-
ferentiation of club to goblet cells. Therefore, future studies,
which could include lineage tracing experiments, are required
to better understand the context-dependent mechanisms driv-
ing NOTCH3 activation in response to environmental stimuli
(i.e., CS and viral) and the specific cell types involved in the
development of GCMH.

Lung cancer

Lung cancer is among the predominant causes of death worldwide
and takes the top spot in cancer-related deaths (Refs 88, 89). Both
COPD and lung cancer are CS-related diseases and are described
as risk factors of each other, while commonly occurring as
co-morbid conditions (Refs 90, 91, 92). Since NOTCH signalling
is one of the key regulators of cell fate, with intricate control over
cell proliferation, survival, differentiation and apoptosis, it is
unsurprising that NOTCH is strongly related to lung cancer
(Refs 54, 93, 94, 95, 96). Although NOTCH signalling is impli-
cated in both small cell lung cancer (SCLC) and non-small cell
lung carcinoma (NSCLC), NOTCH3 is primarily over-expressed
in NSCLC (Ref. 97), which constitutes almost 85% of all lung
cancer cases (Ref. 93). Furthermore, CS exposure increased the
activation of NOTCH3 protein in human lung adenocarcinoma
(a subtype of NSCLC) both in vitro and in vivo (Ref. 80).
Interestingly, NOTCH3 plays a tumour-promoting role in
NSCLC, while it acts as a tumour-suppressor in SCLC, suggesting
cell type-specific functional roles of NOTCH3 in lung cancer
(Ref. 93). A 5-year study to evaluate NOTCH3 expression in
NSCLC patients undergoing surgical treatment showed that
NOTCH3 was highly expressed in 51% of the NSCLC patients
(Ref. 98). Moreover, survival of patients with higher expression
of NOTCH3 was shorter as compared to patients with normal
NOTCH3 levels, suggesting a direct correlation of NOTCH3
expression with lung cancer-related mortality (Ref. 98).
Mechanistically, NOTCH3 signalling has been implicated in
lung cancer metastasis (Refs 93, 96, 99). Activation of WNT sig-
nalling via Wnt3a ligand treatment upregulated the mRNA and
protein expression of NOTCH3, and its downstream targets
HEYL and HES1, while promoting cell invasion and
anchorage-independent growth (Ref. 100). Additionally, knock-
down of NOTCH3 abrogated the effects of Wnt3a treatment on
cell invasion and epithelial mesenchymal transition (EMT)-like
morphological changes, suggesting NOTCH3 is required for
Wnt3a-mediated metastatic effects in NSCLC cells (Ref. 100).
Overall, these studies provide strong clinical and mechanistic evi-
dence of the pathogenic role of NOTCH3 signalling in NSCLC,
and strengthen the rationale for therapeutically targeting its activ-
ity to treat the disease.

Asthma

Asthma is an allergen-induced chronic lung condition marked by
chronic airway inflammation, mucus hypersecretion, airway
remodelling and obstruction, and increased airway hyper-
reactivity (Refs 101, 102). A recent study by Reid et al. (Ref. 61)
identified a potential role of NOTCH3 hyperactivation in
mucus production associated with asthma. The authors found
that NOTCH3 protein levels and nuclear staining (i.e., indicative
of NOTCH3 activation) were increased in human bronchial sec-
tions from asthma subjects as compared to non-asthma. In sup-
port of this, NOTCH3 levels (mRNA and NICD3 protein
levels) were similarly elevated in the in vitro ALI-differentiated
airway epithelium generated from HBECs of asthmatics as com-
pared to HBECs from non-asthmatics. In addition, increased
NOTCH3 levels in asthmatic epithelium appeared more intense
around areas of MUC5AC+ goblet cells. The authors further dem-
onstrate that inhibition of NOTCH signalling using DBZ reduced
in vitro MUC5AC expression and secretion in ALI cultures and
subsequent siRNA-mediated knockdown of NOTCH3 expression
showed a decrease in MUC5AC production. Combined, these data
suggest that NOTCH3 activation in the airway epithelium drives
MUC5AC expression and secretion and thus contributes to the
increased mucus production in asthmatic airways. However, in
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contrast to the above study, a recent paper by Carrer et al.
(Ref. 103) showed that blocking NOTCH2 (but not NOTCH3)
activation using antisense oligonucleotides (ASOs) reduced
house dust mite (HDM) induced GCMH in adult mouse lungs.
The differences observed between these studies may reflect differ-
ences in the underlying mechanisms driving asthma-associated
GCMH versus HDM-associated GCMH, and species-specific dif-
ferences between the human and mouse airway epithelium,
including the cell type-specific expression of NOTCH receptors
and ligands (Refs 3, 45).

In addition to its role in regulating the airway epithelium,
NOTCH signalling also regulates the balance of T-helper (Th) 1
and Th2 immune cells, which plays a crucial role in the pathogen-
esis of allergic asthma (Refs 48, 55, 104, 105). Global suppression
of NOTCH signalling using γ-secretase inhibitors reduces airway
inflammation in the ovalbumin (OVA)-induced murine model,
suggesting that NOTCH signalling may play a pro-pathogenic
role in asthma (Ref. 104). A later study identified that the imbal-
ance of Th17/Treg (regulatory) cells in children with allergic
asthma correlated with an increase in NOTCH1 activity
(Ref. 106). Furthermore, in a murine model of OVA-induced
asthma, NOTCH signalling inhibition using γ-secretase inhibitors
suppressed Th17 cell responses along with decreasing asthma
features, suggesting the direct role of NOTCH signalling in regu-
lating Th17 cell differentiation (Ref. 107). However, the under-
lying complexity in the role of NOTCH signalling in asthma is
evident by the findings that constitutive activation of NOTCH3
signalling promotes the generation and expansion of asthma-
protective Treg cells (Refs 48, 108). Additionally, over-activation
of NICD3 in activated CD4 + T cells promoted Th1 dif-
ferentiation, which is known to elicit a protective T cell response
in asthma (Ref. 109). Overall, these studies highlight the complex-
ity of NOTCH signalling in asthma pathogenesis, where it is evi-
dent that different NOTCH receptors (including NOTCH3)
regulate pathogenic or asthma-protective responses in a context-
dependent manner.

IPF

IPF is a progressive, irreversible chronic lung disease with a high
fatality rate (Refs 110, 111, 112). The disease is caused in response
to repeated injury which leads to damage and subsequent destruc-
tion of the alveolar compartment which reduces the gas exchange
capabilities of the lung (Refs 111, 112). Pathological features of
IPF include impaired alveolar re-epithelisation, elevated extracel-
lular matrix (ECM) deposition, increased myofibroblast prolifer-
ation, parenchymal remodelling and the appearance of
honeycomb cysts (composed of airway epithelial BC and mucin
producing secretory cells) in the distal airways, which ultimately
combine to cause life-threatening destruction of lung architecture
(Refs 62, 113, 114, 115).

In general, activation of NOTCH signalling via different recep-
tors is associated with factors that promote pulmonary fibrosis,
such as myofibroblast differentiation, EMT, activation of TGFβ
and Wnt/β-catenin signalling, and increased proliferation and
de-differentiation of alveolar epithelial type II cells (Refs 62,
116, 117, 118, 119, 120). However, a recent study by Carraro
et al. (Ref. 63) characterizing the transcriptome of single cells
from normal human lung versus lung tissue of patients with end-
stage IPF identified alterations in the subsets of airway BCs, with
expansion of a secretory primed population of BCs in the IPF
lung that is capable of differentiating into mature
mucus-producing goblet cells. The authors further demonstrate
that NOTCH3 signalling activity is required to maintain this
population of secretory primed BCs, and inhibition of
NOTCH3 signalling with a NOTCH3-specific blocking antibody

promoted their differentiation into goblet cells. These findings
contrast with the previous studies from our lab demonstrating
that inhibition of NOTCH3 signalling prevented CSE-mediated
induction of goblet cell differentiation (Ref. 59). Potential reasons
for the discrepancy between these studies maybe related to
differences in the in vitro ALI culture systems and time points
analysed, the method of inhibiting NOTCH3 activity (i.e., block-
ing antibody versus siRNA) and HBEC populations (i.e., cell
sorted for specific populations versus no cell sorting) used for
ALI culture which may respond differentially to either
NOTCH3 inhibition or CSE treatment. Therefore, further studies
are required to clarify the role of NOTCH3-dependent differenti-
ation of individual airway epithelial cell populations and the tim-
ing of NOTCH3 signalling events that regulate these processes. In
addition to its role in regulating airway epithelial cell differenti-
ation in the context of IPF, a recent report by Vera et al.
(Ref. 62) showed the specific role of NOTCH3 in fibroblast acti-
vation and development of pulmonary fibrosis. The authors dem-
onstrate that bleomycin treated Notch3−/− mice have much
smaller numbers of myofibroblasts and were protected from
development of pulmonary fibrosis. More importantly, Notch3−/
− mice showed less collagen deposition and improved lung func-
tion post bleomycin treatment, suggesting that targeting
NOTCH3 might be a useful strategy to mitigate the lung function
decline in IPF. Although this study provides significant evidence
of the role of NOTCH3 in IPF development, it does not delve
into the possible upstream causes of NOTCH3 activation.
However, a previous study by Lai et al. (Ref. 121) demonstrated
that reactive oxygen species-dependent activation of p38, JNK1/
2 and NOTCH3 promoted basal and TGF-β1 induced dif-
ferentiation and expression of ECM proteins in primary human
lung fibroblasts (IMR-90 cells) in vitro. Moreover, TGF-β1
induced the expression of α-smooth muscle actin (a marker of
myofibroblasts) and NOTCH3, both of which were suppressed
by treatment with DAPT or NOTCH3-specific siRNA. Overall,
these studies provide a strong rationale for targeting NOTCH3
signalling as a potential therapeutic strategy in controlling IPF.

PAH

PAH is a rare, progressive and devastating disease in which there
is high blood pressure due to thickening and narrowing of the
small arteries in the lungs (Refs 122, 123). The blockage in the
pulmonary vessels may progress to right-side heart failure
which is the primary cause of high morbidity and mortality asso-
ciated with PAH (Refs 124, 125, 126). At the cellular level, the
main changes in PAH include proliferation of fibroblasts, infiltra-
tion of immune cells and proliferation of PASMCs (Refs 125, 127,
128, 129, 130). The above factors mediate the development of a
vascular remodelling phenotype, called ‘neointimal lesions’,
resulting in the elevation of pulmonary vascular resistance and
ultimately heart failure (Refs 64, 131, 132, 133). There have
been several studies investigating the role of NOTCH3 signalling
in PAH, which are reviewed in detail by Morris et al. (Ref. 56). A
report by Li et al. (Ref. 65) showed that PAH is characterised by
elevated expression of NOTCH3 in PASMCs, and the severity of
disease in both humans and rodents correlates with the amount of
NOTCH3 present in the lungs. The development of neointimal
lesions observed in PAH is thought to originate from the massive
clonal expansion of a small number of smooth muscle cells,
termed as the neointimal founder cells (Ref. 64). A recent and
interesting study found that a minor subpopulation of
NOTCH3 + VSMCs acts as the neointimal cell of origin in mul-
tiple mouse models of PAH (Ref. 64). Furthermore, studies dem-
onstrate that overexpression of NOTCH ligand JAGGED-1
(JAG1) in human small PASMCs promotes their proliferation
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through activation of NOTCH3 signalling (Ref. 66). Inhibition of
NOTCH signalling using DBZ abrogates the selection of this
NOTCH3-marked neointimal founder cell subpopulation, result-
ing in significant improvement in pulmonary artery pressure in
mouse models of PAH (Ref. 64). Therefore, identification of a dis-
tinct subpopulation of NOTCH3+ cells among normal tissues,
which specifically generates neointimal lesions, provides novel
avenues for therapeutic development in PAH.

Exposure to chronic hypoxia results in development of the vas-
cular remodelling phenotype implicated in PAH (Refs 134, 135).
In sync with the disease promoting role of NOTCH3 in PAH,
Notch3+/− and Notch3−/− mice were resistant to PAH develop-
ment compared to wild-type mice after 6 weeks of chronic hyp-
oxia (Ref. 65). Furthermore, over-expression of the activated
intracellular domain of NOTCH3 (NICD3) led to proliferation
of PASMCs, which correlated with increased expression of the
NOTCH downstream target Hes1, and decreased p27Kip1 expres-
sion (Ref. 65). The authors also confirmed that HES1 lies down-
stream of NOTCH3 signalling, as siRNA-mediated knockdown of
HES1, prevented the proliferative effects of NICD3 over-
expression. A more recent study (Ref. 67) provides evidence
that elevated levels of NOTCH3 in PAH are regulated by
sphingosine-1-phosphate-dependent signalling via the
sphingosine-1-phosphate receptor 2. Moreover, a genetic basis
of NOTCH3 activation in PAH was demonstrated by a recent
study which showed that only the male mice with CADASIL
(cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy) causing mutation R169C
(TgNotch3R169C), demonstrate gain-of-function NOTCH3 acti-
vation and develop PAH-like features (Ref. 68). Thus, the
NOTCH3 R169C mutation may be associated with PAH suscep-
tibility in males.

The above studies provide substantial evidence of the patho-
genic role of NOTCH3 activation in PAH, thus making it a poten-
tial therapeutic target to control PAH. In support of this, a recent
study by Zhang et al. (Ref. 66) using both mouse and rat models
of PAH demonstrated that treatment with anti-NOTCH3 anti-
body (Ab 28042) which inhibits JAG1-dependent activation of
NOTCH3 signalling, reversed PAH. Furthermore, treatment of
animals with the anti-NOTCH3 antibody did not lead to local
or systemic toxicity, suggesting that blocking JAG1-dependent
activation of NOTCH3 signalling could be a promising thera-
peutic strategy for treating patients with PAH.

Therapeutic strategies for targeting NOTCH3 signalling

Evidence provided in this review highlights the involvement of
NOTCH3 signalling in the development of acute and chronic
lung disease. Therefore, strategies to specifically target NOTCH3
signalling provide an attractive therapeutic option to treat and
control lung disease pathogenesis (Refs 59, 60, 61, 62, 63, 64,
65, 68, 136). Several clinical studies have used γ-secretase inhibi-
tors to block NOTCH signalling in various human diseases
(Refs 137, 138, 139, 140), but the strategy lacks specificity for indi-
vidual receptors, which can lead to global suppression of signal-
ling and toxic side effects (Refs 141, 142, 143, 144). Therefore,
more specific strategies to target NOTCH3 are required.
Antibody-based inhibition is a clinically proven therapeutic strat-
egy to selectively inhibit specific NOTCH receptor signalling
(Refs 144, 145). To this end, blocking antibodies which suppress
NOTCH3 activation via targeting the NOTCH3 NRR and HD
(Ref. 146), or NOTCH3 ligand interactions (Ref. 66) have been
successfully developed. These antibodies have been shown to pro-
vide anti-cancer activity and reverse pathology associated with IPF
and PAH using in vitro and in vivo pre-clinical models of disease
(Refs 66, 144). While blocking NOTCH ligands maybe less

specific than directly targeting the receptor, this approach has
proved successful in a pre-clinical murine asthma model, whereby
blocking antibodies targeting the JAG1 and JAG2 ligands reversed
OVA-induced GCMH (Ref. 147).

In addition to blocking antibodies, targeting of NOTCH3
expression with ASOs may provide an alternative strategy to
specifically inhibit NOTCH3 signalling (Refs 103, 148, 149).
Down-regulation of Notch3 expression via systemic administration
of Notch3-specific ASOs in a Notch3 gain-of function mutation
(Notch3em1Ecan) mouse model of lateral meningocele syndrome ame-
liorates cortical osteopenia associated with the mice (Ref. 149).
Therefore, while targeting of Notch3 expression with ASOs failed
to reduce HDM-induced GCMH in adult mouse lungs (Ref. 103),
this therapeutic approach may be more applicable for lung diseases
like IPF and PAH where the role of NOTCH3 signalling in disease
pathogenesis is more clearly defined.

Conclusions

In summary, there is rapidly accumulating evidence that alteration
of NOTCH3 signalling in the adult human lung plays an import-
ant role in the development and pathogenesis of multiple acute
and chronic lung diseases, including COPD, viral infections,
lung cancer, asthma, IPF and PAH. Furthermore, both in vitro
and in vivo pre-clinical models of lung disease have been utilised
to successfully demonstrate the potential of targeting NOTCH3
signalling activity as a viable therapeutic strategy for treatment
of human lung disease. However, it is important to study, modu-
late and target NOTCH3 signalling in a cell-specific manner in
order to prevent off-target effects. Thus, further investigations
are required to better understand at the disease and cell-specific
level, the precise mechanisms whereby dysregulation NOTCH3
signalling leads to pathogenic outcomes. Success in these studies
should lead to further improvement of existing therapeutic strat-
egies to target NOTCH3 signalling and ultimately facilitate the
development of new treatments for human lung disease.
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