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Abstract
Let G be a real Lie group, Λ < 𝐺 a lattice and 𝐻 � 𝐺 a connected semisimple subgroup without compact factors
and with finite center. We define the notion of H-expanding measures 𝜇 on H and, applying recent work of Eskin–
Lindenstrauss, prove that 𝜇-stationary probability measures on 𝐺/Λ are homogeneous. Transferring a construction
by Benoist–Quint and drawing on ideas of Eskin–Mirzakhani–Mohammadi, we construct Lyapunov/Margulis
functions to show that H-expanding random walks on 𝐺/Λ satisfy a recurrence condition and that homogeneous
subspaces are repelling. Combined with a countability result, this allows us to prove equidistribution of trajectories
in 𝐺/Λ for H-expanding random walks and to obtain orbit closure descriptions. Finally, elaborating on an idea
of Simmons–Weiss, we deduce Birkhoff genericity of a class of measures with respect to some diagonal flows
and extend their applications to Diophantine approximation on similarity fractals to a nonconformal and weighted
setting.
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1. Introduction

Originally motivated by applications to number theory, the rigidity properties of subgroup actions on
a homogeneous space 𝑋 = 𝐺/Λ, where G is a real Lie group and Λ < 𝐺 a discrete subgroup, have
been an active field of research over the last 50 years. Among the first striking results was Margulis’
resolution of the Oppenheim conjecture [64, 66] via a reformulation into an orbit closure problem for
the action of SO(2, 1) on SL3 (R)/SL3 (Z) noticed by Raghunathan. Raghunathan had conjectured, more
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generally, that orbit closures for unipotent subgroups are closed orbits of larger subgroups. After more
partial results by Dani, Margulis and Shah, Raghunathan’s conjecture was settled in full generality in
celebrated work of Ratner [81, 82, 83, 84].

In absence of unipotent elements, the dynamics of subgroup actions are harder to understand—
already the case of actions on a torus T𝑑 = R𝑑/Z𝑑 by nonamenable subgroups of SL𝑑 (Z) poses serious
challenges. The very first difficulty arising in this setup is the potential lack of invariant measures. What
has proved to be a fruitful approach for overcoming this issue is taking a probabilistic viewpoint of
random walks and stationary measures, techniques mainly pioneered by Furstenberg starting in the 1960s
[38, 40, 41, 42]. Using this random walks approach, Guivarc’h–Starkov [44] made first contributions
to understanding the action of Γ < SL𝑑 (Z) on T𝑑 , and Bourgain–Furman–Lindenstrauss–Mozes [19]
proved a quantitative result which answered many remaining questions.

For subgroup actions on a general homogeneous space 𝑋 = 𝐺/Λ, a major breakthrough came with a
series of papers by Benoist–Quint [6, 8, 9, 10]. Applying several novel techniques, they were able to give
a complete classification of stationary measures, descriptions of orbit closures and prove equidistribution
statements for random walks under the assumption of semisimplicity of the Zariski closure of the acting
group Γ. One crucial new ingredient in the proof of their measure classification result is the so-called
‘exponential drift’ argument (as compared to the ‘polynomial drift’ argument of Ratner), which was
further developed in the seminal work of Eskin–Mirzakhani [33] on stationary measures for the SL2 (R)-
action on moduli space. Bringing back to homogeneous dynamics ideas from the setting of random
walks on moduli space, Eskin–Lindenstrauss [30] have recently obtained a theorem which generalizes
the measure classification results of Benoist–Quint.

The aim of this paper is to further advance the study of subgroup actions and random walks on
homogeneous spaces, systematically dropping the assumption that the Zariski closure of the acting
group Γ is semisimple. We will introduce and study a new class of measures 𝜇 supported on a connected
semisimple subgroup 𝐻 � 𝐺 without compact factors and with finite center that we call H-expanding
measures. These are defined by an expansion condition in nontrivial irreducible finite-dimensional
representations of H resembling the conclusion of the fundamental result of Furstenberg on the positivity
of the top Lyapunov exponent. In particular, this class contains the Zariski dense measures underlying the
work of Benoist–Quint. After deducing a measure classification result based on the progress by Eskin–
Lindenstrauss [30], we will prove orbit closure descriptions, as well as recurrence and equidistribution
results for the random walk on 𝐺/Λ given by an H-expanding probability measure 𝜇. Finally, taking
advantage of the generality of H-expanding measures, these main results will be used to also obtain new
equidistribution statements for diagonalizable flows, which in turn have implications for Diophantine
approximation problems on fractals.

To introduce the notion of H-expansion, we say that a Borel probability measure 𝜇 on GL𝑑 (R) is
uniformly expanding if for every nonzero 𝑣 ∈ R𝑑 , we have

lim inf
𝑛→∞

1
𝑛

log‖𝑔𝑛 · · · 𝑔1𝑣‖ > 0

for 𝜇N-almost every (a.e.) sequence (𝑔1, 𝑔2, . . . ). A probability measure 𝜇 on H is said to be H-expanding
if for every finite-dimensional representation (𝜌,𝑉) of H without nonzero H-fixed vectors, the measure
𝜌∗𝜇 is uniformly expanding, where 𝜌∗𝜇 denotes the pushforward of 𝜇 by 𝜌. We are going to elaborate
on this definition and give nontrivially equivalent formulations in §2.

Ranging over all finite-dimensional representations, the H-expansion property of a probability mea-
sure 𝜇 on H is a universal condition and as such ensures validity of our results for an arbitrary embedding
𝐻 ↩→ 𝐺 and any lattice Λ < 𝐺. This universality notwithstanding, the class of H-expanding measures
contains an abundance of interesting examples:

◦ Zariski dense measures (§3.1): If the closed subgroup Γ𝜇 of H generated by the support of 𝜇 has
Zariski dense image in Ad(𝐻) and 𝜇 satisfies a moment condition, then 𝜇 is H-expanding as a
consequence of Furstenberg’s theorem on positivity of the top Lyapunov exponent.
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◦ Measures on parabolic groups (§3.2): We give a general criterion for H-expansion of a measure 𝜇 on
a parabolic subgroup of H and, using the notion of expanding cone introduced by the third-named
author [92], explicitly exhibit a class of examples of such measures. For the sake of concreteness,
let us mention here that, for example, our results directly imply that any probability measure on
𝐻 = SL4 (R) with support consisting of the five matrices
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is H-expanding.

◦ Epimorphic subgroups (§3.3): The closed subgroup Γ𝜇 generated by the support of 𝜇 is necessarily
an epimorphic subgroup of H when 𝜇 is H-expanding. Conversely, thanks to the work of Bien–Borel
[13] and its subsequent developments, we will see that many epimorphic subgroups of H support
H-expanding measures. For example, any R-split simple group H admits distinguished three-
dimensional epimorphic subgroups for which this is the case, showing that H-expanding measures
may live on subgroups which are very small compared to H itself. See also Corollary 4.9.

Under various weaker assumptions than H-expansion, not all of our conclusions hold in full strength.
For instance, requiring uniform expansion only in the adjoint representation, homogeneity of stationary
measures can fail, as an example at the end of [30, §1.2] shows. For unipotent random walks, recurrence
is not always guaranteed [20, §10.2.1]. On the other hand, in the particular case of measures on parabolic
subgroups, slightly weaker expansion properties were first used in the work of Simmons–Weiss [93] and
subsequently in [79] to prove measure rigidity and equidistribution results in a setting corresponding to
the case 𝐻 = 𝐺 in our framework. See also Remark 1.3.

We next introduce the terminology necessary to state our main results. Given a continuous action of
a locally compact second countable group G on a locally compact second countable metrizable space X,
a probability measure 𝜈 on X is said to be 𝜇-stationary if 𝜈 = 𝜇 ∗ 𝜈, where the convolution is defined by∫

𝑋
𝑓 d(𝜇 ∗ 𝜈) =

∫
𝑋

∫
𝐺
𝑓 (𝑔𝑥) d𝜇(𝑔) d𝜈(𝑥)

for nonnegative Borel functions f on X. A 𝜇-stationary probability measure 𝜈 is said to be 𝜇-ergodic if
it is extremal in the convex set of 𝜇-stationary probability measures.

Now, let G be a real Lie group, Λ < 𝐺 a discrete subgroup and 𝑋 = 𝐺/Λ. A probability measure 𝜈
on X is said to be homogeneous if there exists 𝑥 ∈ 𝑋 and a closed subgroup N of G preserving 𝜈 such
that 𝜈(𝑁𝑥) = 1. In this case, the orbit 𝑁𝑥 is automatically closed and is called a homogeneous subspace
of X. It is equivalent to require that 𝜈 assigns full measure to an orbit of its stabilizer group

Stab𝐺 (𝜈) = {𝑔 ∈ 𝐺 | 𝑔∗𝜈 = 𝜈}.

This gives a one-to-one correspondence between homogeneous measures on X and homogeneous
subspaces of X. For a closed subgroup Γ of G, a homogeneous subspace Y of X is said to be Γ-ergodic
if Γ preserves the corresponding homogeneous probability measure 𝜈𝑌 and the action of Γ on (𝑌, 𝜈𝑌 )
is ergodic.

Finally, for 𝑔 ∈ GL𝑑 (R) we set N(𝑔) = max{‖𝑔‖,
		𝑔−1

		} for some choice of operator norm on
Mat𝑑×𝑑 (R). A probability measure 𝜇 on GL𝑑 (R) is said to have a finite first moment if∫

log N(𝑔) d𝜇(𝑔) < ∞,
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and to have finite exponential moments if∫
N(𝑔) 𝛿 d𝜇(𝑔) < ∞

for 𝛿 > 0 sufficiently small. These definitions are independent of the choice of operator norm. We say
that a probability measure 𝜇 on a connected semisimple Lie group H with finite center has a finite
first moment or finite exponential moments if its image in a finite-dimensional representation of H
with finite kernel has the corresponding property. This does not depend on the choice of such a linear
representation (see Lemma 2.9). Both moment conditions are automatically satisfied, for example, if 𝜇
has compact support.

1.1. Measure rigidity

We start with the classification of stationary measures. Recall that given a measure 𝜇 on H, we denote
by Γ𝜇 the closed subgroup generated by the support of 𝜇.

Theorem 1.1. Let Λ be a discrete subgroup of a real Lie group G. Let 𝐻 � 𝐺 be a connected semisimple
subgroup without compact factors and with finite center. Let 𝜇 be a probability measure on H that is
H-expanding and has a finite first moment. Then any 𝜇-ergodic 𝜇-stationary probability measure 𝜈 on
𝐺/Λ is Γ𝜇-invariant and homogeneous. Moreover, the connected component of Stab𝐺 (𝜈) is normalized
by H.

Using the properties of H-expanding measures, the above theorem is deduced by an iterative ap-
plication of the recent measure classification results of Eskin–Lindenstrauss [30]; see §4.1. The proof
is similar to the argument Eskin–Lindenstrauss use to show that their result implies Benoist–Quint’s
measure classification.

In certain cases, the last conclusion of Theorem 1.1 allows us to show that 𝜈 is actually H-invariant;
see Proposition 8.2 and also the corollary below. For its statement, recall that a discrete subgroup Λ is
said to be a lattice in G if 𝑋 = 𝐺/Λ admits a G-invariant probability measure 𝑚𝑋 . In this case, we refer
to 𝑚𝑋 as the Haar measure on X. A lattice Λ in a connected semisimple Lie group G without compact
factors is said to be irreducible if Λ∩ 𝑆 is not a lattice in S for every nontrivial proper connected normal
subgroup S of G. Equivalently, 𝑆Λ is dense in G for every such S.

Corollary 1.2. Let G be a connected semisimple Lie group without compact factors and with finite
center, and let Λ < 𝐺 be an irreducible lattice. Let H be a connected normal subgroup of G of positive
dimension, and let 𝜇 be an H-expanding probability measure on H with finite first moment.

(i) If 𝐻 ≠ 𝐺, then the Haar measure 𝑚𝑋 on 𝑋 = 𝐺/Λ is the unique 𝜇-stationary probability measure
on X.

(ii) If 𝐻 = 𝐺, then the only 𝜇-ergodic 𝜇-stationary probability measures on X are uniform measures on
finite Γ𝜇-orbits and the Haar measure 𝑚𝑋 on X. Moreover, 𝑚𝑋 is the only nonatomic 𝜇-stationary
probability measure on X.

We note that finite Γ𝜇-orbits do only occur when Γ𝜇 is virtually contained in a conjugate of Λ. The
proof of part (i) of the corollary above relies on Margulis’ arithmeticity theorem and a careful analysis
of stationary measures charging an orbit of the centralizer of Γ𝜇, which is carried out in §4.2. The last
statement in part (ii) additionally requires countability of finite Γ𝜇-orbits, which follows from a general
countability result for homogeneous subspaces in §5.

Remark 1.3. As mentioned before, the H-expansion condition is universal so that all our results hold
for an arbitrary embedding 𝐻 ↩→ 𝐺. For a fixed Lie group G, it suffices to impose uniform expansion
on 𝜌∗𝜇 only for a finite collection of representations (𝜌,𝑉) of H (which depends on G), as the proofs
show. In §4.3, we track which representations are needed in the case of measure classification; see
Theorem 4.8 for the precise statement. Our countability result (Proposition 5.1) will also be phrased
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using only this finite collection of representations, allowing us to prove it without an assumption of
compact generation (cf. [10, Proposition 2.1]).

1.2. Recurrence and Lyapunov functions

Now, we assume in addition that Λ is a lattice and that 𝜇 has finite exponential moments. Under certain
assumptions including semisimplicity of the noncompact part of the Zariski closure of Γ𝜇, Eskin–
Margulis [31] and later Benoist–Quint [8] have shown that the random walk on 𝑋 = 𝐺/Λ given by 𝜇
satisfies strong recurrence properties. If 𝛿𝑥 denotes the Dirac measure at 𝑥 ∈ 𝑋 and 𝜇∗𝑛 is the n-fold
convolution power of 𝜇, these recurrence statements take the general form that 𝜇∗𝑛 ∗ 𝛿𝑥 (𝑀) is close
to 1 for large n, where 𝑀 ⊂ 𝑋 is a certain compact set. We obtain analogous results for H-expanding
measures.

Theorem 1.4. Let Λ be a lattice in a real Lie group G. Let 𝐻 � 𝐺 be a connected semisimple subgroup
without compact factors and with finite center. Let 𝜇 be an H-expanding probability measure with finite
exponential moments on H. Let Y be a Γ𝜇-ergodic homogeneous subspace of 𝑋 = 𝐺/Λ or the empty
set. Finally, let 𝐾𝐿 be any compact subset of the centralizer L of Γ𝜇 in G, and set N = 𝐾𝐿𝑌 . Then for
any compact subset 𝑍 ⊂ 𝑋 \N and 𝛿 > 0 there exists a compact subset 𝑀𝑍, 𝛿 of 𝑋 \N such that

𝜇∗𝑛 ∗ 𝛿𝑥 (𝑀𝑍, 𝛿) ≥ 1 − 𝛿

for every 𝑛 ≥ 0 and 𝑥 ∈ 𝑍 .

Loosely speaking, the basic case (with 𝑌 = ∅) implies that the random walk does not spend too
much time in the cusp. The general case ensures that the random walk also does not accumulate near
lower-dimensional homogeneous subspaces.

This result will be proved in §7.1 using height functions on 𝑋 = 𝐺/Λ satisfying a contraction
property with respect to the averaging operator 𝐴𝜇 defined by

𝐴𝜇 ( 𝑓 ) (𝑥) =
∫
𝐺
𝑓 (𝑔𝑥) d𝜇(𝑔)

for nonnegative Borel functions f on X. Heuristically, if 𝛽 is a function on X with values in [0,∞] such
that

𝐴𝜇 (𝛽) ≤ 𝑎𝛽 + 𝑏 (1.1)

for constants 𝑎 ∈ (0, 1) and 𝑏 ≥ 0, then, with high probability, the dynamics of the random walk are
driven towards the part of the space where 𝛽 takes values below a certain threshold, and 𝑋∞ = 𝛽−1 ({∞})
acts as a repeller. Putting this heuristic into quantitative terms yields strong recurrence properties of the
random walk away from 𝑋∞, which play a key role not only in the proof of Theorem 1.4, but also for
orbit closure and equidistribution results to be described in what follows.

Ideas of this kind have a rich history in the theory of stochastic processes and dynamical systems and
trace back to the work of Foster [35] and Lyapunov [63] (see also [68, §15]). In homogeneous dynamics,
they first appear in Eskin–Margulis–Mozes’ work on a quantitative version of the Oppenheim conjecture
[32]. In the study of random walks on homogeneous spaces, height functions were first systematically
used by Eskin–Margulis [31] to establish recurrence properties. Functions satisfying the contraction
property (1.1) are therefore often referred to either as Lyapunov functions or Margulis functions.

To obtain our results, we will need to construct two types of Lyapunov functions.

◦ Height functions with respect to the cusps (§6.1): First, corresponding to the case 𝑌 = ∅ in Theorem
1.4, we require a Lyapunov function 𝛽∞ that stays bounded on a prescribed compact subset Z of X
and tends to infinity when leaving compact parts of the space into the cusps of X. Its role is to rule out
escape of mass, that is, ensure that the random walk does not escape to infinity. For this case, we will
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show that we can use the height function constructed by Benoist–Quint [8]. Indeed, as it turns out, the
algebraic condition that is imposed in their paper on the Zariski closure of Γ𝜇 is only crucially used
to ensure an expansion property in representations of H, so that the proof also goes through under
our H-expansion assumption.

◦ Height functions with respect to singular subspaces (§6.2): Secondly, corresponding to the case of
a lower-dimensional homogeneous subspace Y in Theorem 1.4, we also need Lyapunov functions
which blow up near the singular subspace Y. These are used to ensure that random walk trajectories
do not accumulate near Y when starting outside of it. Here, we give a construction inspired by the
work of Eskin–Mirzakhani–Mohammadi [34] for random walks on moduli space. This will allow us
to avoid the use of the first return cocycles and operators appearing in [9, 10], and to obtain a height
function 𝛽N which satisfies the contraction property (1.1) with respect to 𝐴𝜇 itself.

Remark 1.5. After finishing the first version of our article, Bénard–de Saxcé improved the Markov-
chain theoretic ingredient of the proofs concerning the moment assumption. Namely, using their result
[5, Theorem D], one can now relax the exponential moment assumption in our work (in Theorems 1.4
and 1.6) to a finite first moment assumption. Bénard–de Saxcé prove this in the particular (compared to
H-expansion) setting of Benoist–Quint, using logarithmic versions of our height functions ([5, Theorems
A,B,C]).

1.3. Orbit closures and equidistribution

Measure classification and recurrence properties at hand, the next step is the question of equidistribution
of random walks with respect to a homogeneous probability measure, which, once established, yields
orbit closure descriptions analogous to Ratner’s theorems in unipotent dynamics.

Let Γ+
𝜇 be the closed semigroup generated by the support of 𝜇. If Γ𝜇 has Zariski dense image in

Ad(𝐻), then it is proved in [10] that the orbit closure Γ+
𝜇𝑥 is a homogeneous subspace of X inside which

the random walk equidistributes. Our next result is a generalization of this and other rigidity results for
the random trajectory of points proved in [10, 79, 93].

Theorem 1.6. Let Λ be a lattice in a real Lie group G. Let 𝐻 � 𝐺 be a connected semisimple subgroup
without compact factors and with finite center. Let 𝜇 be an H-expanding probability measure with finite
exponential moments on H. Then for every 𝑥 ∈ 𝑋 = 𝐺/Λ there is a Γ𝜇-ergodic homogeneous subspace
𝑌𝑥 ⊂ 𝑋 with corresponding homogeneous probability measure 𝜈𝑥 such that the following hold:

(i) The orbit closure Γ+
𝜇𝑥 equals 𝑌𝑥 .

(ii) One has

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜇∗𝑘 ∗ 𝛿𝑥 = 𝜈𝑥 .

(iii) For 𝜇N-a.e. (𝑔1, 𝑔2, . . . ) ∈ 𝐻N one has

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝛿𝑔𝑘 · · ·𝑔1𝑥 = 𝜈𝑥 .

In statements (ii) and (iii) of the theorem above, convergence is understood with respect to the weak*
topology, where weak* convergence of a sequence of probability measures 𝜈𝑛 on X to a finite measure
𝜈 on X is defined to mean that

lim
𝑛→∞

∫
𝑋
𝑓 d𝜈𝑛 =

∫
𝑋
𝑓 d𝜈 (1.2)
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for every compactly supported continuous test function f on X. In case the limit measure 𝜈 is a probability
measure, weak* convergence 𝜈𝑛 → 𝜈 implies that equation (1.2) holds for any bounded continuous
function f on X.

Theorem 1.6 will be proved in §7.2. It has the nontrivial topological consequence that any infinite
Γ+
𝜇-orbit in X is dense in a homogeneous subspace of positive dimension. In the G-expanding case with

an irreducible lattice Λ < 𝐺, this means that every infinite Γ+
𝜇-orbit in 𝑋 = 𝐺/Λ is dense.

Remark 1.7. Using auxiliary constructions, our results can be applied in certain cases where the
connected semisimple group H is invisible. For example, they cover random walks by automorphisms
on a compact nilmanifold 𝑁/Λ′ by considering 𝐺 = Zcl(Aut(Λ′)) � 𝑁 and Λ = Aut(Λ′) � Λ′, where
Zcl(Aut(Λ′)) denotes the Zariski closure of Aut(Λ′) inside Aut(𝑁); see §7.4.

1.4. The space of homogeneous measures

Given a closed subgroup Γ of the Lie group G, we consider

S (Γ) = {Γ-invariant Γ-ergodic homogeneous subspaces 𝑌 ⊂ 𝑋},

where, as before, 𝑋 = 𝐺/Λ is the quotient of G by a lattice Λ. By definition, associated to each𝑌 ∈ S (Γ)
is a Γ-invariant and ergodic probability measure 𝜈𝑌 with support Y. This defines an embedding of S (Γ)
into the space of probability measures on X, which we use to endow S (Γ) with the weak* topology.
In the unipotent case, Mozes–Shah [73] proved that convergence of homogeneous subspaces in this
topology behaves in a very rigid way. Benoist–Quint [10, §1.3] later obtained a version of this result for
a subgroup Γ that is Zariski dense in a semisimple group. Following their strategy, we obtain similar
results in our setup.

Given a subset Z of X, let us write S𝑍 (Γ) = {𝑌 ∈ S (Γ) | 𝑌 ∩ 𝑍 ≠ ∅} and denote by 𝛿∞ the Dirac
measure at ∞ in the one-point compactification 𝑋 = 𝑋 ∪ {∞} of X.

Proposition 1.8. Retain the notation and assumptions of Theorem 1.6. Then we have:

(i) For every compact subset 𝑍 ⊂ 𝑋 , S𝑍 (Γ𝜇) is compact, and S𝐻𝑍 (Γ𝜇) is relatively compact inside
S (Γ𝜇). Moreover, the set S (Γ𝜇) ∪ {𝛿∞} is compact.

(ii) If 𝑌𝑛 → 𝑌∞ in S (Γ𝜇), then there exists a sequence 𝑙𝑛 ∈ 𝐶𝐺 (Γ𝜇) with 𝑙𝑛 → 𝑒 and 𝑌𝑛 ⊂ 𝑙𝑛𝑌∞ for
every 𝑛 ∈ N large enough.

This proposition is a manifestation of strong rigidity of the Γ𝜇-invariant and ergodic homogeneous
subspaces. For example, given a compact subset 𝑍 ⊂ 𝑋 and 𝑌∞ ∈ S (Γ𝜇) with 𝑍◦ ∩ 𝑌∞ ≠ ∅, if for a
sequence 𝑌𝑛 ∈ S (Γ𝜇) we have 𝑌𝑛 ∩ 𝑍 → 𝑌∞ ∩ 𝑍 in the Hausdorff metric, then one can conclude that
𝑌𝑛 → 𝑌∞ in S (Γ𝜇). In particular, the weak* topology on S (Γ𝜇) coincides with the restriction to S (Γ𝜇)
of the Fell topology on closed subsets of X.

Another consequence of Proposition 1.8 is the following equidistribution result for sequences of
homogeneous subspaces in the case that Γ𝜇 has discrete centralizer in G.

Corollary 1.9. Retain the notation and assumptions of Theorem 1.6, and assume in addition that the
centralizer 𝐶𝐺 (Γ𝜇) of Γ𝜇 in G is discrete. Let 𝑌∞ ∈ S (Γ𝜇), and consider the set

S (Γ𝜇, 𝑌∞) = {𝑌 ∈ S (Γ𝜇) | 𝑌 ⊂ 𝑌∞}

of ergodic homogeneous subspaces of 𝑌∞. Suppose that (𝑌𝑛)𝑛 is a sequence in S (Γ𝜇, 𝑌∞) such that
for every fixed 𝑌 ∈ S (Γ𝜇, 𝑌∞) \ {𝑌∞} one has 𝑌𝑛 ⊄ 𝑌 for all but finitely many n, and such that no
subsequence of (𝑌𝑛)𝑛 escapes to infinity. Then 𝑌𝑛 → 𝑌∞ in S (Γ𝜇).

Here, by ‘escape to infinity’ we mean weak* convergence towards the Dirac measure 𝛿∞ at infinity.
The proofs of both statements above will be given in §7.3.
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1.5. Birkhoff genericity

We still assume thatΛ is a lattice in the Lie group G. Let (𝑎(𝑡))𝑡 ∈R be a one-parameter Ad-diagonalizable
subgroup of H and 𝜈 a probability measure on 𝑋 = 𝐺/Λ invariant under 𝑎(𝑡) for every 𝑡 ∈ R. We say
that a Radon measure 𝜂 on H is 𝑎(𝑡)-Birkhoff generic at 𝑥 ∈ 𝑋 with respect to 𝜈 if

1
𝑇

∫ 𝑇

0
𝛿𝑎 (𝑡)ℎ𝑥 d𝑡 → 𝜈

in the weak* topology as 𝑇 → ∞ for 𝜂-almost every ℎ ∈ 𝐻. It was first noticed by Simmons–Weiss
[93] that, in certain situations, pathwise equidistribution of random walks as in Theorem 1.6(iii) can
be used to deduce Birkhoff genericity of fractal measures 𝜂 on unipotent subgroups of H with respect
to the Haar measure on X, which has consequences in Diophantine approximation thanks to the Dani
correspondence principle. Recently, more results were obtained in this direction in [79]. Both of these
papers only deal with cases corresponding to 𝐻 = 𝐺 in our setup. We are going to extend the existing
results by removing this restriction. Even in the case where 𝐻 = 𝐺, we obtain Birkhoff genericity
for more general one-parameter subgroups and fractal measures, which will also give new results on
Diophantine approximation (see §1.6).

The one-parameter subgroups to which our results apply are required to satisfy certain expansion
condition with respect to a unipotent subgroup of H. To phrase it, we use the concept of an a-expanding
subgroup of H introduced in [91]. Namely, given an Ad-diagonalizable element 𝑎 ∈ 𝐻, a connected Ad-
unipotent subgroup U of H normalized by a is said to be a-expanding if for any nontrivial irreducible
representation of H on a finite-dimensional real vector space V, the subspace 𝑉𝑈 of U-fixed vectors is
expanded by a, that is, lim𝑛→∞ 𝑎−𝑛𝑣 = 0 for any 𝑣 ∈ 𝑉𝑈 . If the projection of a to each simple factor of
H is nontrivial, then certain horospherical subgroups of H are a-expanding. For example, this holds for
the unstable horospherical subgroup

𝐻+
𝑎 � {ℎ ∈ 𝐻 | lim

𝑛→∞
𝑎−𝑛ℎ𝑎𝑛 = 1𝐻 },

of a; see §3.2.
Now, let U be an 𝑎(1)-expanding subgroup contained in the unstable horospherical subgroup 𝐻+

𝑎 (1)
of 𝑎(1). We wish to introduce a family of measures on U which are generated by random walks, in a
sense to be made precise in what follows. Let 𝐴′ = {𝑎(𝑡) | 𝑡 ∈ R}, K be a maximal compact subgroup
of H, and 𝐾 ′ = 𝐶𝐾 (𝐴′) ∩ 𝑁𝐻 (𝑈). Here and hereafter, 𝐶𝐾 (𝐴′) denotes the centralizer of 𝐴′ in K and
𝑁𝐻 (𝑈) the normalizer of U in H. We set 𝑃 � 𝐾 ′𝐴′𝑈 ⊂ 𝐻 and denote by 𝜆 the function which associates
to 𝑔 ∈ 𝑃 the real parameter of its 𝐴′ component in its 𝐾 ′𝐴′𝑈 factorization; that is, 𝜆(𝑔) = 𝑡 ∈ R for
𝑔 = 𝑘𝑎(𝑡)𝑢 ∈ 𝐾 ′𝐴′𝑈. Finally, given 𝜔 = (𝑔1, 𝑔2, . . . ) ∈ 𝑃N and 𝑛 ∈ N, let 𝑘𝜔,𝑛 ∈ 𝐾 ′, 𝑎𝜔,𝑛 ∈ 𝐴′ and
𝑢𝜔,𝑛 ∈ 𝑈 be such that

𝑔𝑛 · · · 𝑔1 = 𝑘𝜔,𝑛𝑎𝜔,𝑛𝑢𝜔,𝑛.

With this notation, we are ready to define the class of measures on U we shall be interested in.
Definition 1.10. Let (𝑎(𝑡))𝑡 ∈R � 𝐻 be a one-parameter Ad-diagonalizable subgroup of H and U an
𝑎(1)-expanding subgroup of H contained in 𝐻+

𝑎 (1) . A probability measure 𝜂 on U is said to be generated
by 𝑎(1)-expanding random walks if there is a probability measure 𝜇 on H with finite exponential
moments satisfying the following properties:
(1) 𝜇(𝑃) = 1 and

∫
𝑃
𝜆(𝑔) d𝜇(𝑔) > 0,

(2) the Zariski closure of the image of Γ𝜇 in Ad(𝐻) contains Ad(𝑈), and
(3) 𝜂 is equivalent to the pushforward of 𝜇N by the map 𝜔 ↦→ 𝑢𝜔 � lim𝑛→∞ 𝑢𝜔,𝑛.

The existence of the limit in condition (3) above will be proved in Lemma 8.1. Moreover, we will
see as part of our discussion in §8 that conditions (1) and (2) imply that 𝜇 is H-expanding which will
allow us to employ our main measure classification and equidistribution results discussed above.
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For the statement of our result on Birkhoff genericity, recall that by Ratner’s theorems the orbit closure
𝐻𝑥 is homogeneous for any 𝑥 ∈ 𝑋 . We denote the homogeneous probability measure corresponding to
𝐻𝑥 by 𝜈𝐻𝑥 .

Theorem 1.11. Let Λ be a lattice in a real Lie group G and let 𝐻 � 𝐺 be a connected semisim-
ple subgroup without compact factors and with finite center. Let (𝑎(𝑡))𝑡 ∈R be a one-parameter Ad-
diagonalizable subgroup of H and U an 𝑎(1)-expanding subgroup of H contained in 𝐻+

𝑎 (1) . Suppose
that 𝜂 is a probability measure on U generated by 𝑎(1)-expanding random walks. Then for every 𝑥 ∈ 𝑋 ,
𝜂 is 𝑎(𝑡)-Birkhoff generic at x with respect to 𝜈𝐻𝑥 .

Theorem 1.11 extends the main results of [91], which used the method of Chaika–Eskin [22]
developed for the Teichmüller geodesic flow to prove Birkhoff genericity for the Haar measure on U.
The same method was employed in [37] to obtain Birkhoff genericity for volume measures on curves.
The proof of Theorem 1.11 will be given in §8, using the connection to random walks observed in [93].

Probability measures generated by expanding random walks include a piece of Haar measure on
U and, under irreducibility conditions, self-similar measures on R𝑚 as well as natural self-affine
measures on Bedford–McMullen carpets. The latter example is crucial for our application to Diophantine
approximation problems on fractals described next. In §9.2, we will also discuss a more general class
of fractal measures covered by Definition 1.10.

1.6. Diophantine approximation

By virtue of a correspondence principle going back to the work of Dani [25] and Kleinbock [59],
Theorem 1.11 on Birkhoff genericity has consequences for problems in Diophantine approximation,
which we shall now describe.

Let 𝑚 ∈ N be a positive integer, v = (𝑣1, . . . , 𝑣𝑚)𝑡 a (column) vector in R𝑚, and r = (𝑟1, . . . , 𝑟𝑚) ∈
(0, 1]𝑚 such that

∑𝑚
𝑖=1 𝑟𝑖 = 1. The vector v is called r-badly approximable if there exists a constant

𝐶 > 0 such that

max
1≤𝑖≤𝑚

|𝑣𝑖𝑞 − 𝑝𝑖 |1/𝑟𝑖 · |𝑞 | ≥ 𝐶 (1.3)

for every p = (𝑝1, . . . , 𝑝𝑚) ∈ Z𝑚 and 𝑞 ∈ Z \ {0}. When 𝑟𝑖 = 1/𝑚 for every 𝑖 = 1, . . . , 𝑚, such a vector
is simply called badly approximable. In the case 𝑚 = 1, the latter corresponds to the classical definition
of a badly approximable number. It is easily seen by Dirichlet’s principle that for any vector v ∈ R𝑚,
the left-hand side of equation (1.3) is ≤ 1 for infinitely many pairs (p, 𝑞) ∈ Z𝑚 × (Z \ {0}).

The existence of badly approximable vectors was observed by Perron [76] a century ago. It follows
from Schmidt’s results [88] that such vectors constitute a subset of R𝑚 of everywhere-full Hausdorff
dimension. This was strengthened in more recent works [55, 62] to the statement that badly approximable
vectors contained in a sufficiently regular fractal K form a subset of full Hausdorff dimension in K. For
a general weight r, the results of [57, 62, 77] imply that r-badly approximable vectors have everywhere-
full Hausdorff dimension in R𝑚. For r-badly approximable vectors on a fractal set K, the full-dimension
statement is known to hold whenK has a certain product structure (see [55, Theorem 8.4], [62, Theorems
11,13]).

The results outlined above can be summarized by saying that (r-)badly approximable vectors are
abundant from the viewpoint of Hausdorff dimension. On the Lebesgue measure side, however, Khint-
chine’s theorem [54] implies that badly approximable vectors have zero Lebesgue measure. Using a
generalization of Khintchine’s theorem [87], the same is seen to be true for r-badly approximable vec-
tors. The question whether badly approximable vectors on a given fractal K also form a null set with
respect to a natural measure on the fractal proved to be rather more delicate. The first results in this di-
rection are due to Einsiedler–Fishman–Shapira [29], who proved that badly approximable vectors have
zero Hausdorff measure on certain fractals invariant under toral endomorphisms (in case the dimension
is 𝑚 = 1) or toral automorphisms (in case 𝑚 = 2). For example, their results apply to the middle-third

https://doi.org/10.1017/fms.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.56


10 R. Prohaska, C. Sert and R. Shi

Cantor set. This was vastly generalized by Simmons–Weiss [93], who established the same statement
for general self-similar fractals satisfying a separation condition. To the best of our knowledge, for gen-
eral weights r or on fractals which are not strictly self-similar, the question of the measure of badly
approximable vectors is open. Our methods allow us to make an initial contribution in this direction.
For simplicity, here in the introduction we will describe only the special case of Bedford–McMullen
carpets; see §9 for the discussion in full generality.

Bedford–McMullen carpets are two-dimensional self-affine fractals, introduced independently by
Bedford [2] and McMullen [67], which admit a particularly simple construction. Let 𝑎, 𝑏 ≥ 2 be distinct
integers and divide the unit square [0, 1]2 into an 𝑎 × 𝑏-grid parallel to the coordinate axes. Choose an
arbitrary subcollection S of the 𝑎𝑏 rectangles created and discard the remaining ones. Iteratively proceed
in the same way for each of the rectangles that remain, using the same pattern S. The points remaining
after infinite iteration form a Bedford–McMullen carpet K. If (𝑐𝑖 , 𝑑𝑖)𝑘𝑖=1 denote the coordinates of the
bottom-left corners of the rectangles kept in the first construction step and we define the affine maps
𝜙𝑖 : R2 → R2 by

𝜙𝑖 (𝑥, 𝑦) =
( 1
𝑎

1
𝑏

) (
𝑥
𝑦

)
+

(
𝑐𝑖
𝑑𝑖

)
,

then K is the unique nonempty compact subset of R2 satisfying
⋃𝑘
𝑖=1 𝜙𝑖 (K) = K. The Hausdorff

dimension of fractals of this type was explicity calculated by Bedford and McMullen. Except for special
cases, it turns out that their Hausdorff measure in the correct dimension is infinite [75]. However, there
exists another natural measure 𝜈K on K, known as the McMullen measure: It is the unique T-invariant
ergodic probability measure on K of full Hausdorff dimension, where T is the toral endomorphism
corresponding to ( 𝑎 𝑏 ) [52, 67]. For further background on the fractal geometry of Bedford–McMullen
carpets, we refer to the survey article [36].

The following is a specialization of our Theorem 9.3 to the case of weighted badly approximable
vectors on Bedford–McMullen carpets (see Corollary 9.5).

Theorem 1.12. Let 𝑎, 𝑏 be positive integers satisfying min{𝑎2, 𝑏2} > max{𝑎, 𝑏} and let K ⊂ R2 be a
Bedford–McMullen carpet invariant under the toral endomorphism 𝑇 = ( 𝑎 𝑏 ). Suppose that K is not
contained in any straight line. Then for the choice of weights

r =

(
2 log 𝑎 − log 𝑏
log 𝑎 + log 𝑏

,
2 log 𝑏 − log 𝑎
log 𝑎 + log 𝑏

)
,

the set of r-badly approximable vectors on K has measure zero with respect to the McMullen measure
𝜈K on K.

The requirement above that K is not contained in any straight line plays the role of an irreducibility
condition. It is satisfied when, in the construction of the Bedford–McMullen carpet described above,
the kept rectangles in the pattern S do not all belong to a single line or column in the 𝑎 × 𝑏-grid.

As mentioned before its statement, the above theorem will follow from a much more general result
about Diophantine properties of ‘(r, s)-matrix sponges’ (Theorem 9.3)—a class of fractals that we will
introduce in §9.2.3. In fact, the latter result will imply a version of Theorem 1.12 for higher-dimensional
analogues of Bedford–McMullen carpets, which are called ‘self-affine Sierpiński sponges’ in [52]; see
Corollary 9.5.

2. H-expansion: Definition and basic properties

We start by properly stating the definition of uniform expansion and giving alternative formulations
thereof.

https://doi.org/10.1017/fms.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.56


Forum of Mathematics, Sigma 11

Definition 2.1. Let 𝜇 be a probability measure on GL𝑑 (R). A vector 𝑣 ∈ R𝑑 is said to be 𝜇-expanded if

lim inf
𝑛→∞

1
𝑛

log‖𝑔𝑛 · · · 𝑔1𝑣‖ > 0 (2.1)

for 𝜇N-almost every sequence (𝑔𝑖)𝑖 of elements of GL𝑑 (R). The measure 𝜇 is said to be uniformly
expanding if every nonzero 𝑣 ∈ R𝑑 is 𝜇-expanded. If equation (2.1) holds with ≥ in place of > for every
nonzero 𝑣 ∈ R𝑑 , we call 𝜇 noncontracting.

The above definition is the most general, but it can be hard to verify in practice. The characterization
in the following proposition is often simpler to check. Moreover, it will also play an important role in
the height function constructions in §6. Recall that a probability measure 𝜇 on GL𝑑 (R) is said to have
a finite first moment if

∫
log N(𝑔) d𝜇(𝑔) < ∞, where N(𝑔) = max{‖𝑔‖,

		𝑔−1
		}.

Proposition 2.2 [30, Lemma 1.5], [79, Proposition 2.4]. Let 𝜇 be a probability measure on GL𝑑 (R)
with finite first moment. Then 𝜇 is uniformly expanding if and only if there exists 𝑁 ∈ N and a constant
𝐶 > 0 such that for every nonzero 𝑣 ∈ R𝑑∫

GL𝑑 (R)
log

‖𝑔𝑣‖
‖𝑣‖ d𝜇∗𝑁 (𝑔) ≥ 𝐶.

Uniform expansion can also be conveniently understood in light of the following theorem of
Furstenberg–Kifer and Hennion. Recall that given a probability measure 𝜇 on a Lie group G, we denote
by Γ𝜇 the closed subgroup generated by the support of 𝜇.
Theorem 2.3 (Furstenberg–Kifer [39], Hennion [48]). Let 𝜇 be a probability measure on GL𝑑 (R) with
finite first moment. Then there exists a partial flag R𝑑 = 𝐹1 ⊃ 𝐹2 ⊃ · · · ⊃ 𝐹𝑘 ⊃ 𝐹𝑘+1 = {0} of
Γ𝜇-invariant subspaces and a collection of real numbers 𝛽1 (𝜇) > · · · > 𝛽𝑘 (𝜇) such that for every
𝑣 ∈ 𝐹𝑖 \ 𝐹𝑖+1, we have 𝜇N-a.s.

lim
𝑛→∞

1
𝑛

log‖𝑔𝑛 · · · 𝑔1𝑣‖ = 𝛽𝑖 (𝜇).

Moreover, the 𝛽𝑖 (𝜇) are the values of

𝛼(𝜈) �
∫
P(R𝑑)

∫
GL𝑑 (R)

log
‖𝑔𝑣‖
‖𝑣‖ d𝜇(𝑔) d𝜈(R𝑣)

that occur when 𝜈 ranges over 𝜇-ergodic 𝜇-stationary probability measures on the projective space
P(R𝑑).

In this result, the set of exponents {𝛽1(𝜇), . . . , 𝛽𝑘 (𝜇)} is contained in the set of Lyapunov exponents
of 𝜇 and 𝛽1 (𝜇) coincides with the top Lyapunov exponent.

Uniform expansion can now be rephrased as follows.
Lemma 2.4. A probability measure 𝜇 on GL𝑑 (R) with finite first moment is uniformly expanding if and
only if 𝛽𝑘 (𝜇) > 0, where 𝛽𝑘 (𝜇) is the smallest exponent appearing in Theorem 2.3.

Furstenberg–Kifer’s theorem can also be used to see that, in fact, almost sure divergence is enough
to get uniform expansion. It will be useful to denote by 𝐹�0 the largest subspace among 𝐹1, . . . , 𝐹𝑘+1
with nonpositive exponent.
Proposition 2.5. Let 𝜇 be a probability measure on GL𝑑 (R) with finite first moment. Then 𝜇 is uniformly
expanding if and only if for every nonzero 𝑣 ∈ R𝑑 we have

lim
𝑛→∞

‖𝑔𝑛 · · · 𝑔1𝑣‖ = ∞ (2.2)

for 𝜇N-a.e. sequence (𝑔𝑖)𝑖 of elements of GL𝑑 (R).
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Proof. We only need to show that equation (2.2) implies uniform expansion. We apply Theorem 2.3
and consider the space 𝐹�0 defined before the statement of the proposition. This space is Γ𝜇-invariant.
If it is nonzero, its projectivization thus supports an ergodic 𝜇-stationary probability measure 𝜈. Using
the assumed almost sure divergence and Atkinson/Kesten’s lemma (see, e.g., [18, Lemma II.2.2]), it
follows that 𝛼(𝜈) > 0, where 𝛼(𝜈) is as defined in Theorem 2.3, a contradiction. �

For later use, let us also record at this point an immediate restriction that the presence of expansion
puts on 𝜇-stationary measures on finite-dimensional vector spaces.

Lemma 2.6. Let 𝜇 be a probability measure on GL𝑑 (R) and E a measurable subset of R𝑑 such that
every 𝑣 ∈ 𝐸 is 𝜇-expanded. Then every 𝜇-stationary probability measure 𝜈 on R𝑑 satisfies 𝜈(𝐸) = 0.

In particular, if 𝜇 has a finite first moment, then any 𝜇-stationary probability measure 𝜈 on R𝑑 is
supported on the Furstenberg–Kifer subspace 𝐹�0 of subexponential expansion. With a similar argument
for vectors that are contracted instead of expanded, one can more generally show that 𝜈((𝐹�0 \ 𝐹<0) ∪
{0}) = 1, where 𝐹<0 is defined in a way analogous to 𝐹�0.

Proof. Write 𝐺 = GL𝑑 (R) and 𝑉 = R𝑑 . By [11, Proposition 2.14], the forward dynamical system
(𝐺N ×𝑉, 𝜇N × 𝜈, 𝑇𝑉 ) is measure preserving, where

𝑇𝑉 ((𝑔1, 𝑔2, . . . ), 𝑣) = ((𝑔2, 𝑔3, . . . ), 𝑔1𝑣).

Let K be a compact subset of V. Then by Poincaré recurrence applied to 𝐺N × 𝐾 , we know that
𝜈(𝐾 ∩ 𝐸) = 0, and the conclusion follows. �

Now, we come to the central concept of this article: H-expansion.

Definition 2.7. Let H be a connected semisimple Lie group with finite center and 𝜇 a probability
measure on H. Given a representation (𝜌,𝑉) of H we say that 𝜇 is uniformly expanding in (𝜌,𝑉)
if 𝜌∗𝜇 is uniformly expanding. We say that 𝜇 is H-expanding if 𝜇 is uniformly expanding in every
representation of H without nonzero H-fixed vectors, or equivalently, in every nontrivial irreducible
representation of H.

Here and everywhere else, by a ‘representation’ we always mean a continuous homomorphism into
the group of invertible linear transformations of a finite-dimensional real vector space. It is well known
that such representations are automatically smooth. For notational simplicity, we are going to simply
write ℎ·𝑣 for 𝜌(ℎ)𝑣 for ℎ ∈ 𝐻 and 𝑣 ∈ 𝑉 when the representation (𝜌,𝑉) is clear from context. In this
case, we also just say that 𝜇 is uniformly expanding on V to mean that 𝜇 is uniformly expanding in (𝜌,𝑉).

We next recall what the moment conditions mean for a probability measure on a semisimple group
that is not necessarily linear.

Definition 2.8. Let H be a connected semisimple Lie group with finite center. Let 𝜇 be a probability
measure on H. Then 𝜇 is said to have a finite first moment (resp. finite exponential moments) if 𝜌∗𝜇 has a
finite first moment (resp. finite exponential moments) for some representation 𝜌 of H with finite kernel.

Of course, these moment conditions are automatically satisfied when 𝜇 has compact support.

Lemma 2.9 [11, Lemmas 10.6, 10.7]. Let H and 𝜇 be as in Definition 2.8, and suppose that 𝜇 has a
finite first moment (resp. finite exponential moments). Then 𝜌∗𝜇 has a finite first moment (resp. finite
exponential moments) for any representation 𝜌 of H.

We remark that even though in [11], the above lemma is proved for algebraic groups, the given proof
also works for a connected semisimple group H with finite center. Indeed, the argument relies only
on a reformulation of the moment condition into an integrability condition on the Cartan projection
𝜅 : 𝐻 → 𝔞+, which is related to representations of H by virtue of the formula ‖𝜌(ℎ)‖ = 𝑒𝜒 (𝜅 (ℎ)) for
ℎ ∈ 𝐻, where (𝜌,𝑉) is an irreducible representation of H with highest weight 𝜒 and ‖·‖ is the operator

https://doi.org/10.1017/fms.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.56


Forum of Mathematics, Sigma 13

norm associated to a Euclidean norm on V invariant under the maximal compact subgroup K of H used
to define 𝜅.

In the proposition below, we collect some first facts about H-expansion.

Proposition 2.10. Let H be a connected semisimple Lie group with finite center and 𝜇 a probability
measure on H. Then:

(i) Given a representation (𝜌,𝑉) of H, the following are equivalent:
◦ Any vector 𝑣 ∈ 𝑉 that is not 𝜌∗𝜇-expanded is H-fixed.
◦ The measure 𝜇 is uniformly expanding on the quotient 𝑉/𝑉𝐻 .

(ii) If 𝜇 is H-expanding, then H has no compact factors.
(iii) If 𝜇 is H-expanding and 𝜓 : 𝐻 → 𝐺 ′ is a nontrivial continuous homomorphism into a real Lie

group 𝐺 ′, then 𝐻 ′ = 𝜓(𝐻) is a connected, closed, semisimple subgroup of 𝐺 ′ with finite center
and 𝜓∗𝜇 is 𝐻 ′-expanding.

(iv) Suppose H is an almost direct product of connected normal subgroups 𝐻1 and 𝐻2, and let 𝜇𝑖 be
probability measures on 𝐻𝑖 with finite first moments, 𝑖 = 1, 2. If 𝜇𝑖 is 𝐻𝑖-expanding for 𝑖 = 1, 2 and
𝜇 is the pushforward of 𝜇1 × 𝜇2 by multiplication, then 𝜇 is H-expanding.

Proof. For (i), note that by semisimplicity of H, the quotient 𝑉/𝑉𝐻 identifies with an H-invariant
complement 𝑉+ of 𝑉𝐻 in V. Thus, we only need to prove that uniform expansion of 𝜇 on 𝑉+ implies the
statement in the first bullet point. Let 𝑝+ : 𝑉 → 𝑉+ be the projection, and take 𝑣 ∈ 𝑉 which is not 𝜌∗𝜇-
expanded. Then also 𝑝+(𝑣) is not 𝜌∗𝜇-expanded so that uniform expansion on 𝑉+ implies 𝑝+(𝑣) = 0.
Hence, v is H-fixed.

For (ii), suppose H has a compact factor K. Then 𝜇 cannot be uniformly expanding in the represen-
tation of H obtained by composing the projection on K with the adjoint representation of K. Thus, 𝜇 is
not H-expanding.

As H is semisimple and has finite center, 𝐻 ′ is a connected and semisimple immersed Lie subgroup
of 𝐺 ′ with finite center in the setting of (iii). As representations of 𝐻 ′ induce representations of H by
precomposition with 𝜓, the 𝐻 ′-expansion condition is immediate. It only remains to argue that 𝐻 ′ is
closed in 𝐺 ′. As this is in fact a more general statement, we drop the accents and simply show that a
semisimple immersed Lie subgroup H of a Lie group G must be closed when H has finite center. For
this, it suffices to show that if a sequence (ℎ𝑛)𝑛 in H converges to the identity e in the topology of G,
then this convergence holds also in the topology of H. Notice that Ad𝐺 (ℎ𝑛) considered as elements of
Aut(𝔥) converges to the identity map when Aut(𝔥) is endowed with the subspace topology inherited
from Aut(𝔤). However, as linear semisimple Lie algebras are algebraic (see [49, Theorem VIII.3.2]),
this subspace topology coincides with the usual topology of Aut(𝔥). Since near the identity, Ad𝐻 is
a local isomorphism from H to Aut(𝔥), we thus find a sequence (ℎ′𝑛)𝑛 converging to e in H such that
Ad𝐻 (ℎ𝑛) = Ad𝐻 (ℎ′𝑛) for all n. This implies that ℎ−1

𝑛 ℎ′𝑛 is contained in the center of H and converges
to e. As the center is finite, we have ℎ𝑛 = ℎ′𝑛 for all n large enough. We conclude that, indeed, ℎ𝑛 → 𝑒
as 𝑛 → ∞ holds also in the topology of H.

Finally, to prove (iv), let (𝜌,𝑉) be a nontrivial irreducible representation of H. Since 𝐻1 and 𝐻2
commute, for every 𝑛 ∈ N, 𝜇∗𝑛 is the pushforward by multiplication of 𝜇∗𝑛1 × 𝜇∗𝑛2 , and the subspaces
𝑉𝐻𝑖 of 𝐻𝑖-fixed vectors in V are H-invariant. By irreducibility, they are trivial or all of V. It follows that
one of 𝑉𝐻1 , 𝑉𝐻2 is zero. We assume without loss of generality that 𝑉𝐻1 = {0}.

Note that both 𝜌∗𝜇1 and 𝜌∗𝜇2 have a finite first moment by Lemma 2.9. This readily implies that 𝜌∗𝜇
has a finite first moment. By Proposition 2.2, it suffices to show that for N large enough and 𝑣 ≠ 0, the
quantity ∫

𝐻1×𝐻2

log
‖ℎ1ℎ2·𝑣‖

‖𝑣‖ d𝜇∗𝑁1 (ℎ1) d𝜇∗𝑁2 (ℎ2)

=
∫
𝐻2

∫
𝐻1

log
‖ℎ1ℎ2·𝑣‖
‖ℎ2·𝑣‖

d𝜇∗𝑁1 (ℎ1) d𝜇∗𝑁2 (ℎ2) +
∫
𝐻2

log
‖ℎ2·𝑣‖
‖𝑣‖ d𝜇∗𝑁2 (ℎ2)
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is uniformly bounded from below by some 𝐶 > 0. As 𝜌∗𝜇1 is uniformly expanding, Proposition 2.2
gives this lower bound for the first integral above for N large enough. By the same argument, the second
term is either equal to 0 or also bounded below by some 𝐶 > 0, according to whether 𝑉𝐻2 is V or {0},
respectively. �

Remark 2.11. We point out that in part (iii) of the previous proposition, if the target 𝐺 ′ of the
homomorphism 𝜓 is a real algebraic group, then the conclusion can be strengthened to the statement
that the semisimple group 𝐻 ′ = 𝜓(𝐻) is almost algebraic, meaning that it has finite index in a real
algebraic subgroup of 𝐺 ′. Indeed, as already exploited in the proof above, the point is that linear
semisimple Lie algebras are algebraic. In particular, this applies when 𝜓 is a representation (𝜌,𝑉) of H.
This fact is useful to keep in mind.

Combining Proposition 2.10(i) with Lemma 2.6, we immediately obtain the following corollary about
𝜇-stationary measures on vector spaces.

Corollary 2.12. Let (𝜌,𝑉) be a representation of H, and suppose that 𝜇 is uniformly expanding on
𝑉/𝑉𝐻 . Then any 𝜇-stationary probability measure on V is supported on the subspace 𝑉𝐻 of H-fixed
vectors.

3. Examples of H-expanding measures

In this section, we exhibit classes of probability measures on semisimple Lie groups that satisfy the
H-expansion property.

3.1. Zariski dense measures

As already mentioned in §1, the first class of examples of H-expanding measures consists of those
whose support generates a Zariski dense subgroup of H. This is the class of measures considered by
Benoist–Quint [6, 9, 10].

Proposition 3.1. Let H be a connected semisimple Lie group without compact factors and with finite
center. Let 𝜇 be a probability measure on H with finite first moment. Suppose that Ad(Γ𝜇) is Zariski
dense in Ad(𝐻). Then 𝜇 is H-expanding.

For the proof, we need the following lemma, which is used to extend the Zariski density assumption
to arbitrary representations.

Lemma 3.2. Let Γ be a subsemigroup of H and S a connected subgroup of H. Suppose that the Zariski
closure of Ad(Γ) contains Ad(𝑆). Then for every representation (𝜌,𝑉) of H, 𝜌(𝑆) is contained in
Zcl(𝜌(Γ)).
Proof. We consider the product representation 𝜌′ = Ad×𝜌. LetH′ be the Zariski closure of 𝜌′(𝐻) inside
GL(𝔥)×GL(𝑉). Then both Ad and 𝜌 factor through H′. As noted in Remark 2.11, 𝜌′(𝐻) has finite index
in H′. The same holds for the Zariski closure H of Ad(𝐻) so that both H and H′ are Zariski connected
real algebraic groups of dimension dim(𝐻). Thus, projection to the first factor of GL(𝔥) ×GL(𝑉) gives
an isogeny 𝑝 : H′ → H, and we know that Zcl(𝜌′(Γ)) has finite index in 𝑝−1 (Zcl(Ad(Γ))). Since 𝜌′(𝑆)
is connected and Ad(𝑆) is contained in Zcl(Ad(Γ)) by assumption, it follows that 𝜌′(𝑆) is contained in
Zcl(𝜌′(Γ)). By projecting to the second factor, we conclude that 𝜌(𝑆) is contained in Zcl(𝜌(Γ)). �

Proof of Proposition 3.1. Let (𝜌,𝑉) be a representation of H without nonzero H-fixed vectors. By
Lemma 3.2, 𝜌(Γ𝜇) is Zariski dense in 𝜌(𝐻). Now, uniform expansion in (𝜌,𝑉) follows directly from
Furstenberg’s theorem on positivity of the top Lyapunov exponent (see [40, Theorem 8.6]). To see that
the assumptions of Furstenberg’s theorem are satisfied, note that by Lemma 2.9 we know that 𝜌∗𝜇 has
a finite first moment, and using Zariski density of 𝜌(Γ𝜇) together with complete reducibility one may
assume that 𝜌(Γ𝜇) acts irreducibly, which implies strong irreducibility in view of Zariski connectedness
of 𝜌(𝐻). Finally, since the ground field is R, the fact that the Zariski closure of 𝜌(Γ𝜇) is noncompact
implies that 𝜌(Γ𝜇) is not relatively compact, finishing the proof. �
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3.2. Measures on parabolic groups

Our next goal is to exhibit probability measures supported on proper parabolic subgroups of H which are
H-expanding. Combining general criteria with the notion of the expanding cone, which was introduced
by the third-named author in [92] (see also the slightly earlier work [69]) and which traces back to the
works of Shah and Weiss [89, 90, 95], we will obtain another easy-to-verify sufficient condition for
H-expansion.

We start by explaining our general setup. Let H be a connected semisimple real Lie group without
compact factors and with finite center and let a be an Ad-diagonalizable element of H. Then given a
representation (𝜌,𝑉) of H, we have a direct sum decomposition

𝑉 = 𝑉+
𝑎 ⊕ 𝑉0

𝑎 ⊕ 𝑉−
𝑎 ,

where 𝑉+
𝑎 , 𝑉

0
𝑎 , 𝑉

−
𝑎 are the sums of the eigenspaces of 𝜌(𝑎) with eigenvalues >, = or < 1, respectively.

Let U be a connected Ad-unipotent subgroup of H normalized by a. Following [91], we say that U
is a-expanding if for every nontrivial irreducible representation (𝜌,𝑉) of H, the subspace 𝑉𝑈 of U-
fixed vectors is contained in 𝑉+

𝑎 . It is equivalent ([91, Lemma A.1]) to require that in any irreducible
representation of (𝜌,𝑉) of H and for any nonzero 𝑣 ∈ 𝑉 , the 𝜌(𝑈)-orbit of v is not contained in𝑉0

𝑎 ⊕𝑉−
𝑎 .

For example, if a has a nontrivial projection to every simple factor of H, then the unstable horospherical
subgroup 𝐻+

𝑎 = {ℎ ∈ 𝐻 | lim𝑛→∞ 𝑎−𝑛ℎ𝑎𝑛 = 1𝐻 } is a-expanding ([89, Lemma 5.2]). In fact, it can be
shown that U is a-expanding if and only if 𝑈 ∩ 𝐻+

𝑎 is ([91, Lemma A.2]).
Now, let 𝑄 � 𝐻 be a parabolic subgroup with maximal connected R-split torus A. Using the above,

we will give two criteria for a measure on Q to be H-expanding. To state the first, write 𝑄 = 𝑀𝐴𝑐𝑁
for the Langlands decomposition of Q. In particular, this means that N is the unipotent radical of Q,
𝑀𝐴𝑐 = 𝐶𝐻 (𝐴𝑐) is a (reductive) Levi subgroup of Q, and 𝐴𝑐 is a maximal central connected R-split
torus in 𝑀𝐴𝑐 (see, e.g., [60, §VII.7] for details on Langlands decomposition). We may assume that
𝐴𝑐 � 𝐴. Given a probability measure 𝜇 on Q, by using the diffeomorphism 𝑄 � 𝑀 × 𝐴𝑐 × 𝑁 given
by multiplication and projecting to some of the factors, we obtain associated probability measures 𝜇𝑀 ,
𝜇𝐴𝑐 , 𝜇𝑀𝐴𝑐 , etc. Finally, we denote by 𝜆𝑐 : 𝑄 → 𝔞 the composition of the projection to 𝐴𝑐 with the
logarithm map log: 𝐴 → 𝔞, where 𝔞 is the Lie algebra of A.

Proposition 3.3 (H-expanding measures (1)). Let 𝜇 be a probability measure on H with finite first
moment such that 𝜇(𝑄) = 1 for some parabolic subgroup 𝑄 = 𝑀𝐴𝑐𝑁 of H. Denote by 𝑎𝑐,avg (𝜇) =
exp

(∫
𝜆𝑐 (𝑔) d𝜇(𝑔)

)
∈ 𝐴𝑐 the 𝐴𝑐-average of 𝜇. Let U be a connected Lie subgroup of N, and suppose

the following:

(1) supp(𝜇) ⊂ 𝑀𝐴𝑐𝑈 ∩ 𝑁𝐻 (𝑈) and the Zariski closure of Ad(Γ𝜇) contains Ad(𝑈),
(2) U is 𝑎𝑐,avg(𝜇)-expanding, and
(3) 𝜇𝑀 is noncontracting in every representation of H.

Then 𝜇 is H-expanding.

Before proceeding with the preparations for the proof of the above proposition, let us provide a few
brief comments on its hypotheses.

Remark 3.4 (On the hypotheses of Proposition 3.3).

◦ In fact, there is no freedom in the choice of U: Condition (1) implies that it needs to be the Zariski
closure of the projection of Γ𝜇 to N.

◦ When 𝑈 = 𝑁 and the parabolic group Q is absolutely proper, condition (2) can conveniently be
checked using the notion of expanding cone to be discussed in §3.2.1.

◦ The noncontraction requirement on 𝜇𝑀 in condition (3) is satisfied, for instance, when the identity
component of the Zariski closure of Ad(Γ𝜇𝑀 ) is reductive with compact center (for example, the
identity component of Ad(𝑀) itself). Indeed, in this case similar arguments as in the proof of Lemma

https://doi.org/10.1017/fms.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.56


16 R. Prohaska, C. Sert and R. Shi

3.2 can be used to show that Γ𝜇𝑀 acts completely reducibly and by transformations of determinant
±1 in every representation (𝜌,𝑉) of H. Then the Lyapunov exponents of 𝜇𝑀 in any Γ𝜇𝑀 -irreducible
subspace of V sum to 0 and one concludes using Theorem 2.3.

◦ Another useful fact for the verification of condition (3) is that the connected component 𝑀◦ of M
is the almost direct product of its semisimple part 𝑆 = [𝑀◦, 𝑀◦] and a compact center. Provided
𝜇𝑀 is supported on 𝑀◦, one can thus project to the noncompact part 𝑆𝑛𝑐 and is only left checking
noncontraction for 𝜇𝑆𝑛𝑐 . The latter could follow from Zariski density (Proposition 3.1), or by a
recursive application of Proposition 3.3 above to 𝐻 = 𝑆𝑛𝑐 . In the general case, one can obtain from
𝜇𝑀 a probability measure 𝜇◦𝑀 on 𝑀◦ defined as the law of the first return to 𝑀◦ of the random walk
on M induced by 𝜇𝑀 ; see [11, §5.2]. Using [11, Proposition 5.9] and Theorem 2.3, one sees that the
noncontraction property of 𝜇◦𝑀 implies that of 𝜇𝑀 .
For the proof of Proposition 3.3, we require the following lemma, which reduces checking expansion

to vectors fixed by some unipotent subgroup of the image of the algebraic group generated by supp(𝜇).
Lemma 3.5 (A criterion for expansion). Let V be a finite-dimensional real vector space and 𝜇′ a
probability measure on GL(𝑉) with finite first moment. Denote by 𝑄 ′ the Zariski closure of Γ𝜇′ and let
𝑈 ′ be a unipotent subgroup of 𝑄 ′. Suppose that every nonzero vector 𝑣 ∈ 𝑉𝑈

′ is 𝜇′-expanded, where
𝑉𝑈

′ denotes the subspace of 𝑈 ′-fixed vectors. Then 𝜇′ is uniformly expanding.
Proof. Let us suppose for a contradiction that 𝜇′ is not uniformly expanding. Then there exists a vector
𝑣 ∈ 𝑉 \ {0} with lim inf𝑛→∞

1
𝑛 log‖𝑔𝑛 · · · 𝑔1𝑣‖ ≤ 0 for a positive measure subset of (𝑔𝑖)𝑖 ∈ (𝑄 ′)N

with respect to (𝜇′)N. By Theorem 2.3, there exists a nontrivial Γ𝜇′-invariant subspace 𝑊 � 𝑉 such
that for every 𝑤 ∈ 𝑊 , we have lim𝑛→∞

1
𝑛 log‖𝑔𝑛 · · · 𝑔1𝑤‖ ≤ 0 for (𝜇′)N-a.e. (𝑔𝑖)𝑖 ∈ (𝑄 ′)N. Since

𝑄 ′ is the Zariski closure of Γ𝜇′ , the subspace W is stabilized by 𝑄 ′ and hence, by 𝑈 ′. By the Lie–
Kolchin theorem, we have 𝑊𝑈 ′

≠ {0}. This implies that for any nonzero 𝑤 ∈ 𝑊𝑈
′
� 𝑉𝑈

′ , we have
lim𝑛→∞

1
𝑛 log‖𝑔𝑛 · · · 𝑔1𝑤‖ ≤ 0 for (𝜇′)N-a.e. (𝑔𝑖)𝑖 ∈ (𝑄 ′)N, contradicting expansion on 𝑉𝑈 ′ . �

Proof of Proposition 3.3. Let (𝜌,𝑉) be a nontrivial irreducible representation of H. By Lemma 2.9, the
measure 𝜌∗𝜇 has a finite first moment, and Lemma 3.2 implies that 𝜌(𝑈) is a unipotent subgroup of the
Zariski closure of 𝜌(Γ𝜇). In view of Lemma 3.5, to prove uniform expansion of 𝜌∗𝜇 it suffices to show
that for every nonzero 𝑣 ∈ 𝑉𝑈 , we have

lim inf
𝑛→∞

1
𝑛

log‖𝑔𝑛 · · · 𝑔1·𝑣‖ > 0

for 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ 𝐻N. Since condition (1) implies that Γ𝜇 ⊂ 𝑀𝐴𝑐𝑈 and v is U-fixed, it suffices to
prove the above for 𝜇𝑀𝐴𝑐 -a.e. (𝑔𝑖)𝑖 ∈ 𝐻N, where 𝜇𝑀𝐴𝑐 is the 𝑀𝐴𝑐-projection of 𝜇. Writing 𝑔𝑖 = 𝑚𝑖𝑎𝑖
for the 𝑀𝐴𝑐-factorization of 𝑔𝑖 ∈ 𝑀𝐴𝑐 and using that M and 𝐴𝑐 commute, we see that

1
𝑛

log‖𝑔𝑛 · · · 𝑔1·𝑣‖ =
1
𝑛

log
‖𝑎𝑛 · · · 𝑎1𝑚𝑛 · · ·𝑚1·𝑣‖

‖𝑚𝑛 · · ·𝑚1·𝑣‖
+ 1
𝑛

log‖𝑚𝑛 · · ·𝑚1·𝑣‖. (3.1)

The second term above is almost surely nonnegative in the limit by the assumed noncontraction
property of 𝜇𝑀 .

To deal with the first term, let Φ(𝐴𝑐 , 𝜌) be the set of weights of 𝐴𝑐 for the representation (𝜌,𝑉).
Let {𝜒1, . . . , 𝜒𝑡 } be the subcollection of those 𝜒 ∈ Φ(𝐴𝑐 , 𝜌) with 𝜒(𝑎𝑐,avg (𝜇)) > 1 and denote the
corresponding weight spaces by𝑉1, . . . , 𝑉𝑡 . Then by the assumption on U, we have𝑉𝑈 ⊂

⊕𝑡
𝑗=1𝑉 𝑗 � 𝑊 .

Since 𝐴𝑐 and M commute, W is M-invariant. Lemma 3.6 below applied to the space W and 𝜇′ = 𝜇𝐴𝑐
with 𝑣𝑛 = 𝑚𝑛 · · ·𝑚1·𝑣 thus implies that the first term in equation (3.1) has strictly positive limit inferior
𝜇N𝑀𝐴𝑐 -almost surely. This finishes the proof. �

Lemma 3.6. Let V be a finite-dimensional real vector space and 𝐴′ � GL(𝑉) a closed connected
diagonalizable subgroup with Lie algebra𝔞. Write𝑉 =

⊕
𝜒∈Φ(𝐴′) 𝑉

𝜒 for the weight space decomposition
of V with respect to 𝐴′, where 𝑉 𝜒 = {𝑣 ∈ 𝑉 | 𝑎𝑣 = 𝜒(𝑎)𝑣 for all 𝑎 ∈ 𝐴′} and Φ(𝐴′) is the set of
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characters 𝜒 of 𝐴′ such that 𝑉 𝜒 ≠ {0}. Let 𝜇′ be a probability measure on 𝐴′ with finite first moment
and denote 𝑎avg (𝜇′) = exp(

∫
log(𝑎) d𝜇′(𝑎)). Suppose that 𝜒(𝑎avg (𝜇′)) > 1 for every 𝜒 ∈ Φ(𝐴′). Then

for (𝜇′)N-a.e. (𝑎𝑖)𝑖 ∈ (𝐴′)N we have

lim inf
𝑛→∞

1
𝑛

log
‖𝑎𝑛 · · · 𝑎1𝑣𝑛‖

‖𝑣𝑛‖
> 0

for every choice of nonzero vectors 𝑣𝑛 ∈ 𝑉 .

Proof. For convenience, we assume the norm ‖·‖ on V is Euclidean and that the distinct weight spaces
are orthogonal. Given a nonzero 𝑣 ∈ 𝑉 , write 𝑣 =

∑
𝜒∈Φ(𝐴′) 𝑣

𝜒 (𝑣) for the corresponding weight space
decomposition, where 𝑣𝜒 (𝑣) ∈ 𝑉 𝜒. Then for any 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴′ and nonzero 𝑣𝑛 ∈ 𝑉 we have

𝑎𝑛 · · · 𝑎1𝑣𝑛 =
∑

𝜒∈Φ(𝐴′)
𝜒(𝑎𝑛 · · · 𝑎1)𝑣𝜒 (𝑣𝑛).

Choosing for every 𝑛 ∈ N a character 𝜒𝑛 such that ‖𝑣𝜒𝑛 (𝑣𝑛)‖ ≥ 1√
dim(𝑉 )

‖𝑣𝑛‖ and recalling that

𝜒(𝑎avg (𝜇′)) > 1 for all 𝜒 ∈ Φ(𝐴′) by assumption, we conclude that

1
𝑛

log
‖𝑎𝑛 · · · 𝑎1𝑣𝑛‖

‖𝑣𝑛‖
≥ 𝑜(1) + 1

𝑛
log 𝜒𝑛 (𝑎𝑛 · · · 𝑎1) ≥ 𝑜(1) + min

𝜒∈Φ(𝐴′)

1
𝑛

𝑛∑
𝑖=1

log 𝜒(𝑎𝑖)

𝑛→∞−→ min
𝜒∈Φ(𝐴′)

log 𝜒(𝑎avg (𝜇′)) > 0,

where the last convergence holds (𝜇′)N-almost surely by the classical law of large numbers. �

One drawback of Proposition 3.3 is that, in some sense, it requires the M- and 𝐴𝑐-parts of 𝜇 to
both exhibit expansion (or at least noncontraction) individually. It would be natural to only ask the
combination of both to be expanding, a behavior which should be reflected in the A-average of 𝜇. When
𝜇 does not charge M in a too complicated way, we can also prove H-expansion in this case.

To state this second criterion, let𝑈 � 𝐻 be any connected Ad-unipotent subgroup. Then there exists
a parabolic subgroup Q of H containing U in its unipotent radical such that also 𝑁𝐻 (𝑈) � 𝑄 [16].
As before, let 𝐴 � 𝑄 be a maximal R-split torus and denote by K a maximal compact subgroup of Q.
Given a nontrivial subtorus 𝐴′ � 𝐴 normalizing U, set 𝐾 ′ = 𝐶𝐾 (𝐴′) ∩ 𝑁𝐻 (𝑈) and let P be the closed
subgroup 𝐾 ′𝐴′𝑈 of Q. We write 𝜆 : 𝑃 → 𝔞 for the morphism given by 𝜆(𝑘𝑎𝑢) = log 𝑎.

Proposition 3.7 (H-expanding measures (2)). Retain the notation from the paragraph above, and let
𝜇 be a probability measure on H with finite first moment such that 𝜇(𝑃) = 1. Denote by 𝑎avg (𝜇) =
exp

(∫
𝜆(𝑔) d𝜇(𝑔)

)
∈ 𝐴 the A-average of 𝜇. Suppose that:

(1) The Zariski closure of Ad(Γ𝜇) contains Ad(𝑈), and
(2) U is 𝑎avg(𝜇)-expanding.

Then 𝜇 is H-expanding.

We emphasize that, in contrast to Proposition 3.3, here the A-average is considering also the part of
the torus A inside M, if 𝑄 = 𝑀𝐴𝑐𝑁 is the Langlands decomposition of Q.

Proof. Exactly as in the proof of Proposition 3.3, given a nontrivial irreducible representation (𝜌,𝑉) of
H, it suffices to prove that

lim inf
𝑛→∞

1
𝑛

log‖𝑔𝑛 · · · 𝑔1·𝑣‖ > 0
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for 𝜇N𝐾 ′𝐴′-a.e. (𝑔𝑖)𝑖 ∈ 𝐻N and every 𝑣 ∈ 𝑉𝑈 , where 𝜇𝐾 ′𝐴′ is the pushforward of 𝜇 by the map
𝐾 ′𝐴′𝑈 → 𝐾 ′𝐴′, 𝑘𝑎𝑢 ↦→ 𝑘𝑎. As𝐾 ′ is compact and commutes with 𝐴′, we can ignore the𝐾 ′-component
and consider only 𝜇𝐴′ , defined in the analogous way. Now, the statement follows from Lemma 3.6. �

3.2.1. Expanding cone
Now, we present a construction which can be used to ensure the expansion condition on U with respect
to the A- or 𝐴𝑐-average of 𝜇 in the criteria above (condition (2) in Propositions 3.3 and 3.7) in the case
that U is the unipotent radical of an absolutely proper parabolic subgroup Q of H, where ‘absolutely
proper’ means that the projection of Q to each simple factor of H is nonsurjective. As before, we let A
be a maximal connected R-split torus of Q.

The expanding cone of U in A is defined to be

𝐴+
𝑈 = {𝑎 ∈ 𝐴 | 𝑈 is 𝑎-expanding}.

It is proved in [92, Theorem 1.2] that 𝐴+
𝑈 only depends on the Lie algebras 𝔥 � Lie(𝐻) and 𝔲 � Lie(𝑈)

and that it can be described explicitly as follows. Let 𝔞 be the Lie algebra of A, and let Σ(𝔥, 𝔞) ⊂ 𝔞∗ �
Hom(𝔞,R) be the restricted root system of (𝔥, 𝔞). Denote by Σ(𝔲) ⊂ Σ(𝔥, 𝔞) the subset of roots whose
eigenvectors lie in 𝔲. Recall that by semisimplicity, the Killing form 〈·, ·〉 of 𝔥 is positive definite on 𝔞.
So for each 𝛼 ∈ 𝔞∗ we can associate 𝑠𝛼 ∈ 𝔞 by 〈𝑠𝛼, 𝑣〉 = 𝛼(𝑣) for every 𝑣 ∈ 𝔞. Using this isomorphism,
we associate to Σ(𝔲) the following convex cone in 𝔞:

𝔞+𝔲 �
{ ∑
𝛼∈Σ (𝔲)

𝑡𝛼𝑠𝛼

���𝑡𝛼 > 0
}
.

The expanding cone 𝐴+
𝑈 of U is then given by 𝐴+

𝑈 = exp𝔞+𝔲 ; see [92, Theorem 1.2]. By abuse of
language, we shall sometimes also refer to 𝔞+𝔲 as the expanding cone of U.

Using these notions, we get the following immediate corollary of Proposition 3.7.

Corollary 3.8. Let U be the unipotent radical of an absolutely proper parabolic subgroup Q of H,
𝐴 � 𝑄 a maximal connected R-split torus and 𝐴′ � 𝐴 a nontrivial subtorus. Moreover, let K be a
maximal compact subgroup of H, 𝐾 ′ = 𝐶𝐾 (𝐴′) ∩𝑄, set 𝑃 = 𝐾 ′𝐴′𝑈 and let 𝜇 be a probability measure
on H with finite first moment such that 𝜇(𝑃) = 1. Suppose that the Zariski closure of Ad(Γ𝜇) contains
Ad(𝑈) and that

∫
𝜆(𝑔) d𝜇(𝑔) ∈ 𝔞+𝔲 . Then 𝜇 is H-expanding.

3.2.2. Explicit examples
We end this subsection by giving two explicit examples where the criteria developed so far are applicable.

The first of them is the prototypical example of an expanding cone. Although simple, it turns out to
be of significant importance to Diophantine approximation problems on fractals. We will take up this
point and elaborate on the connection in §9.

Example 3.9. Let 𝐻 = SL𝑚+𝑛 (R), and

𝑄 =

{(
𝑝11 𝑝12
0 𝑝22

)
∈ 𝐻 | 𝑝11 ∈ GL𝑚(R), 𝑝22 ∈ GL𝑛 (R), 𝑝12 ∈ Mat𝑚×𝑛 (R)

}
,

𝑈 =

{(
𝐼𝑚 𝑝12
0 𝐼𝑛

)
∈ 𝐻 | 𝑝12 ∈ Mat𝑚×𝑛 (R)

}
,

where we denote by 𝐼𝑑 the 𝑑 × 𝑑-identity matrix. The group A consists of diagonal matrices in H with
positive entries, and we have

𝐴+
𝑈 = {diag(𝑒𝑟1 , . . . , 𝑒𝑟𝑚 , 𝑒−𝑠1 , . . . , 𝑒−𝑠𝑛 ) ∈ 𝐻 | 𝑟𝑖 , 𝑠 𝑗 > 0}

(see [92, Example 1.1]).
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For concreteness, we exemplify a class of H-expanding measures on Q: Fix a Borel subset 𝐵𝑈 of
U not contained in a proper vector subspace of 𝑈 � R𝑚𝑛. For example, 𝐵𝑈 can be taken to be a
nondegenerate curve in U or a collection of 𝑘 ≥ 𝑚𝑛 points in 𝑈 � R𝑚𝑛 that linearly spans U. Let 𝜇 be
a compactly supported probability measure on 𝐴𝑈 such that

◦ its support contains an element of 𝐴+
𝑈 ,

◦ the set of unipotent parts 𝑢𝑔 of elements 𝑔 = 𝑎𝑔𝑢𝑔 in supp(𝜇) ⊂ 𝐴𝑈 contains 𝐵𝑈 , and
◦ its A-average lies in the expanding cone of U, that is,

∫
𝜆(𝑔) d𝜇(𝑔) ∈ 𝔞+𝔲 .

Then 𝜇 can be seen to be H-expanding by Corollary 3.8. Indeed, as we will see in §9 on Diophantine
approximation on fractals, the first two points above imply that the Zariski closure of Γ𝜇 contains U
(see the proof of Theorem 9.3).

Note that the above example covers in particular [79, Example 2.8]. We also point out that, in
Example 3.9, the assumption that supp(𝜇) contains an element of 𝐴+

𝑈 is not strictly necessary. The first
two bullet points could be replaced by a certain ‘irreducibility condition’ of an affine action of the group
generated by the support of 𝜇 (which is what we will do in §9), or, alternatively, by the assumption that
the commutator group [Γ𝜇, Γ𝜇] is Zariski dense in U.

The second example is one where the reductive group M in the Langlands decomposition of Q (see
the paragraph before Proposition 3.3) contributes to expansion in a nontrivial way.

Example 3.10. Let Q be the standard parabolic subgroup of SL4 (R) given by

𝑄 =
�����
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

����� � SL4 (R).

The maximal connected R-split torus A consists of diagonal matrices with positive entries. In the
Langlands decomposition 𝑄 = 𝑀𝐴𝑐𝑁 , we have

𝐴𝑐 =
{
𝑑𝛼,𝛽 � diag

(
(𝛼𝛽)−1/2, (𝛼𝛽)−1/2, 𝛼, 𝛽

) ���𝛼, 𝛽 > 0
}
,

𝑀 =

(
SL2 (R)

𝐼2

)
, and 𝑁 =

�����
1 ∗ ∗

1 ∗ ∗
1 ∗

1

�����.
Using the explicit description of the expanding cone in §3.2.1, one can calculate directly that the
intersection of the expanding cone of 𝑈 = 𝑁 in A with 𝐴𝑐 is given by

𝐴𝑐 ∩ 𝐴+
𝑈 = {𝑑𝛼,𝛽 | 𝛽 < 1, 𝛼𝛽 < 1}.

For 𝑖, 𝑗 ∈ {1, 2, 3, 4}, let 𝑢𝑖, 𝑗 be the unipotent element whose only nonzero off-diagonal term is 1 at the
(𝑖, 𝑗)-entry. Let 𝑔 = ( 1 1

1 ), and consider the element s of Q given by the block diagonal matrix 𝑠 = (𝑔, 𝐼2).
Now, let 𝜇 be any compactly supported probability measure on Q whose support is given by the union
of {𝑠, 𝑠�, 𝑢2,3, 𝑢3,4} and some diagonal matrices 𝑑𝛼,𝛽 in Q. It is not difficult to see that 𝑈 � Zcl(Γ𝜇)
and the 𝐴𝑐-part 𝜇𝐴𝑐 of 𝜇 consists of the latter diagonal matrices. Moreover, M is semisimple and the
M-part of 𝜇 is Zariski dense in M. So, in view of Propositions 3.3 and 3.1, provided that the integral∫
(log𝛼, log 𝛽) d𝜇𝐴𝑐 (𝑑𝛼,𝛽) is in the cone in R2 defined by the inequalities 𝑥 + 𝑦 < 0 and 𝑦 < 0, the

measure 𝜇 is SL4 (R)-expanding.
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3.3. Split solvable epimorphic subgroups

The goal of this part is to discuss a further class of H-expanding measures. They will be supported on
solvable epimorphic subgroups 𝐹 = 𝐴′𝑈 of semisimple real algebraic groups H, where 𝐴′ is a one-
dimensional algebraic R-split torus and U is unipotent. The arguments rely on Proposition 3.7, ideas
going back to Weiss [95] and Shah–Weiss [90], and the work of Bien–Borel [13, 15].

We start with a brief discussion of epimorphic subgroups, which have close connections to the notion
of H-expanding measures.

3.3.1. Epimorphic subgroups
The concept of epimorphic subgroups of algebraic groups was introduced by Bien–Borel [13, 14]. In
[92], this notion was adapted to subgroups of connected semisimple Lie groups without compact factors.

Definition 3.11. A subgroup F of H is said to be epimorphic in H if for every representation of H, the
vectors fixed by F are also fixed by H.

It can be shown that if H is almost algebraic in the sense of Remark 2.11 and 𝐹 � 𝐻 is a connected Lie
subgroup or a Zariski connected algebraic subgroup, it suffices to check the epimorphic property of F
in real algebraic representations of H (see Proposition A.3). Consequently, in the algebraic category the
above definition coincides with that of Bien–Borel. Moreover, it follows that a connected Lie subgroup
F is epimorphic in H if and only if its Zariski closure Zcl(𝐹) is.

Mozes [72] proved that an F-invariant probability measure on 𝐺/Λ is already invariant under H (and
thus homogeneous by Ratner’s theorem) in the case where all of 𝐹, 𝐻, 𝐺 are real algebraic groups. This
measure rigidity result was later generalized by Shah–Weiss [90, Theorem 1.8] to actions of connected
epimorphic Lie subgroups which are not necessarily algebraic.

Examples of epimorphic subgroups include parabolic subgroups of H and Zariski dense subgroups,
in case H is almost algebraic. One may notice that these classes of subgroups also prominently featured
in the previous parts of this section, where we gave our first examples of H-expanding measures. That
this is not a coincidence becomes clear with the following observation.

Proposition 3.12. If 𝜇 is H-expanding, then the closed subgroup Γ𝜇 generated by the support of 𝜇 is
epimorphic in H.

Proof. In any given representation (𝜌,𝑉) of H, a Γ𝜇-fixed vector 𝑣 ∈ 𝑉 cannot be 𝜌∗𝜇-expanded. In
view of Proposition 2.10(i), it follows that v is H-fixed. �

On the other hand, there exist connected epimorphic subgroups of H which do not support any
H-expanding probability measure.

Example 3.13. We take 𝐻 = SL3(R), 𝐴′ = {diag(𝑒𝑡 , 𝑒−
√

2𝑡 , 𝑒 (
√

2−1)𝑡 ) | 𝑡 ∈ R} and U to be as in
Example 3.9 for 𝑚 = 2, 𝑛 = 1. The Zariski closure of 𝐴′𝑈 contains 𝐴𝑈, where 𝐴 � 𝐻 is the diagonal
subgroup with positive entries. It follows that 𝐴′𝑈 is an epimorphic subgroup of H, since 𝐴𝑈 is. On
the other hand, 𝐴′ has empty intersection with the expanding cone 𝐴+

𝑈 which is described explicitly in
Example 3.9. Therefore, for any probability measure 𝜇 on 𝐴′𝑈 with finite first moment, we have

𝑎 � 𝑎avg(𝜇) ∉ 𝐴+
𝑈 ,

where 𝑎avg is as in Proposition 3.7. It follows from the definition of the expanding cone that there is
a nontrivial irreducible representation V of H such that 𝑉𝑈 ∩ (𝑉−

𝑎 ⊕ 𝑉0
𝑎) ≠ {0}. Therefore, 𝜇 is not

H-expanding.

We point out that the phenomenon in the above example crucially depends on the one-dimensional
torus 𝐴′ not being algebraic, as the discussion in the upcoming part will show.
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3.3.2. Expanding rays in one-dimensional algebraic tori
We now state an observation (Lemma 3.14) ensuring the expansion of the unipotent part of a split
solvable group with respect to its one-dimensional torus. Based on this observation, in §3.3.3 we will
outline two constructions due to Bien–Borel–Kollár [15], which, thanks to Proposition 3.7, yield further
classes of H-expanding measures with small support on a semisimple group H.

Let H be a connected almost algebraic semisimple real Lie group without compact factors and F a
connected epimorphic subgroup of H of the form 𝐹 = 𝐴′𝑈, where 𝐴′ is a connected algebraic R-split
torus and U is a unipotent subgroup of H normalized by 𝐴′. It is known that any connected algebraic
epimorphic subgroup of H contains an epimorphic subgroup of this form [13, §10, Theorem 2].

The following lemma can be proved in a similar way as Lemma 3.6 using additionally [95, Lemma
1]. We omit the routine details of the proof for brevity.
Lemma 3.14. Let H and 𝐹 = 𝐴′𝑈 be as above and suppose that 𝐴′ is one-dimensional. Then there
exists a parametrization 𝐴′ = (𝑎(𝑡))𝑡 ∈R as one-parameter subgroup such that for every representation
(𝜌,𝑉) of H and U-fixed vector 𝑣 ∈ 𝑉𝑈 , either v is H-fixed or lim𝑡→∞‖𝜌(𝑎(𝑡))𝑣‖ = ∞. For such a
parametrization, U is 𝑎(𝑡)-expanding in the sense of §3.2 for every 𝑡 > 0.

3.3.3. Examples
Let H be a connected almost algebraic semisimple real Lie group, and denote its Lie algebra by 𝔥. Let Z
be a one-parameter unipotent subgroup of H and z a generator of the Lie algebra of Z. By the Jacobson–
Morozov theorem z is part of an 𝔰𝔩2-triple (𝑎, 𝑧, 𝑧−). Let 𝔰 be the Lie algebra spanned by this triple and
S the corresponding connected subgroup of H. Let 𝐴′ be the one-parameter diagonalizable subgroup
with Lie algebra spanned by a. Via the adjoint representation, write 𝔥 as direct sum of the centralizer 𝔷𝑜
of 𝔰 and of nontrivial irreducible 𝔰-submodules 𝔪1 = 𝔰,𝔪2, . . . ,𝔪𝑘 .
Example 3.15 [15, Proposition 4.5]. Retain the notation from the paragraph above, and suppose that
z has nontrivial projections to each of the simple factors of 𝔥. Let 𝑧𝑖 be highest weight vectors of the
irreducible 𝔰-modules 𝔪𝑖 , with 𝑧1 = 𝑧. Write 𝔲 for the direct sum of their R-spans. Denoting by U the
corresponding unipotent subgroup of H, it follows that 𝐹 = 𝐴′𝑈 is a split solvable algebraic subgroup
of H, which can be seen to be epimorphic in H thanks to [15, Proposition 4.5]. Therefore, by virtue of
Proposition 3.7, we see that any probability measure 𝜇 on F whose 𝐴′-average lies in the expanding ray
given by Lemma 3.14 is H-expanding.
Example 3.16 [15, §4.6]. Retain the notation from above. Suppose that H is an R-split simple real
algebraic group and that the one-parameter unipotent subgroup Z of H contains ‘regular’ unipotent
elements. For example, the generator z can be taken as sum of eigenvectors for all positive simple
roots of 𝔥. Then the subgroup S whose Lie algebra is spanned by the 𝔰𝔩2-triple (𝑎, 𝑧, 𝑧−) is a ‘principal
three-dimensional subgroup’ in H. It is known that either S is properly contained in exactly one proper
connected subgroup R of H, or S is maximal among proper connected subgroups of H, in which case we
set 𝑅 = 𝑆. See Kostant [61] for a treatment of the notions used here. Choose𝔪 𝑗 so that it does not intersect
the Lie algebra 𝔯 of R, and let 𝑍 𝑗 be the subgroup of H whose Lie algebra is generated by a highest
weight vector of 𝔪 𝑗 . Then, as discussed in [15, §4.6], 𝐹 = 𝐴′𝑍𝑍 𝑗 is a three-dimensional split solvable
algebraic epimorphic subgroup of H. Therefore, as in the previous example, three-dimensional solvable
subgroups obtained by this construction support many H-expanding measures thanks to Proposition 3.7
and Lemma 3.14.

We end this section by mentioning an ensuing question, which was also posed to us by Barak Weiss.
Question. Let H be a semisimple real algebraic group without compact factors. Is it true that every
algebraic epimorphic subgroup 𝐹 � 𝐻 supports an H-expanding probability measure?

The answer to the above question is negative if we do not require F to be epimorphic (Proposition
3.12) or to be algebraic (Example 3.13).

On the other hand, let 𝐹 = 𝐴′𝑈 be an R-split solvable epimorphic subgroup of F, where U is a
unipotent group and 𝐴′ is an R-split algebraic torus normalizing U. Then [13, §7, Lemma (iii)] provides
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a sufficient condition (in terms of finite-generation of a monoid generated by certain characters of 𝐴′) for
F to contain an R-split solvable epimorphic subgroup 𝐹0 = 𝐴′

0𝑈 with one-dimensional R-split algebraic
torus 𝐴′

0 < 𝐴′. In view of Lemma 3.14, any such subgroup 𝐹0 supports H-expanding probability
measures. However, we do not know whether the hypothesis of the aforementioned lemma of Bien–
Borel is always satisfied in the context of the question above, or whether a different construction can be
used to obtain H-expanding probability measures on F in case it is not.

4. Measure rigidity

This section is dedicated to the statements outlined in §1.1. In §4.1, we first prove our general measure
rigidity result (Theorem 1.1), followed by a discussion of stationary measures charging an orbit of the
centralizer in §4.2, which leads to the proof of Corollary 1.2. Finally, we more closely analyze, in §4.3,
expansion in which representations is necessary to obtain the conclusion of Theorem 1.1. This will yield
a finite criterion weaker than H-expansion for measure rigidity to hold when the ambient Lie group G
is fixed.

4.1. Rigidity for expanding measures

Let Λ be a discrete subgroup of a real Lie group G and 𝑋 = 𝐺/Λ. Moreover, we let 𝐻 � 𝐺 be a
connected semisimple subgroup without compact factors and with finite center and 𝜇 a probability
measure on H. For the proof of Theorem 1.1, we will follow the strategy in the proof of [30, Theorem
1.3]. The argument is based on the following measure classification result of Eskin–Lindenstrauss.

Definition 4.1 [30, Definition 1.6]. Let Z be a connected Lie subgroup of G. A probability measure 𝜇
on G is said to be uniformly expanding mod Z if the following hold:

(a) Z is normalized by Γ𝜇,
(b) the conjugation action of Γ𝜇 on Z factors through the action of a compact subgroup of Aut(𝑍) and
(c) there is a Γ𝜇-invariant direct sum decomposition 𝔤 = Lie(𝑍) ⊕𝑉 such that 𝜇 is uniformly expanding

on V.

Theorem 4.2 (Eskin–Lindenstrauss [30, Theorem 1.7]). Let G be a real Lie group and Λ < 𝐺 a discrete
subgroup. Suppose that 𝜇 is a probability measure on G with finite first moment for which there exists
a connected Lie subgroup Z of G such that 𝜇 is uniformly expanding mod Z. Let 𝜈 be any ergodic
𝜇-stationary probability measure on 𝐺/Λ. Then one of the following holds:

(a) There exists a closed subgroup 𝑁 � 𝐺 with dim(𝑁) > 0, an N-homogeneous probability measure
𝜈0 on 𝐺/Λ and a 𝜇-stationary probability measure 𝜂 on 𝐺/𝑁 such that

𝜈 =
∫
𝐺/𝑁

𝑔∗𝜈0 d𝜂(𝑔).

(b) The measure 𝜈 is Γ𝜇-invariant and supported on a finite union of compact subsets of Z-orbits.

The following two lemmas will go into the proof of Theorem 1.1.

Lemma 4.3. Suppose that 𝜇 is H-expanding. Then the Lie algebra 𝔤 of G admits an H-invariant direct
sum decomposition 𝔤 = 𝔩 ⊕ 𝔳, where 𝔩 is the Lie algebra of the centralizer L of Γ𝜇 in G and 𝔳 ⊂ 𝔤 is
a subspace on which 𝜇 is uniformly expanding. In particular, 𝜇 is uniformly expanding mod 𝐿◦ in the
sense of Definition 4.1.

Proof. Since, by Proposition 3.12, Γ𝜇 is epimorphic in H, 𝔩 is the space of H-fixed vectors in the
adjoint representation of G. Semisimplicity thus implies the existence of an H-invariant complementary
subspace 𝔳. Now, the claim follows directly from the definition of H-expansion. �

The second lemma concerns 𝜇-stationary measures assigning positive mass to centralizer orbits.
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Lemma 4.4 [9, Lemma 7.6]. Suppose that 𝜈 is an ergodic 𝜇-stationary probability measure on X such
that 𝜈 assigns positive mass to some L-orbit in X, where 𝐿 = 𝐶𝐺 (Γ𝜇). Let 𝐿0 be any open subgroup of
𝐿 ∩ Stab𝐺 (𝜈). Then 𝜈 is homogeneous under the closed subgroup Γ𝜇𝐿0 and 𝐿0 is open in Stab𝐺 (𝜈).

We point out that the last claim in the statement above follows from the proof of [9, Lemma 7.6],
where it is shown that the support of 𝜈 is a finite union of closed 𝐿0-orbits which are transitively permuted
by Γ𝜇. In fact, even more conclusions can be drawn in the context of this lemma; see Proposition 4.5.

Proof of Theorem 1.1. Our main tool is Theorem 4.2. Its assumptions are satisfied, since by Lemma
4.3, 𝜇 is uniformly expanding mod 𝐿◦, where L denotes the centralizer of Γ𝜇 in G. If Theorem 4.2(b)
holds, then by Lemma 4.4, 𝜈 is homogeneous and the connected component of Stab𝐺 (𝜈) is contained
in L. By the epimorphic property of Γ𝜇 in H from Proposition 3.12 applied to the adjoint representation
of G, the connected components of 𝐶𝐺 (Γ𝜇) and 𝐶𝐺 (𝐻) coincide. Thus, it follows that the connected
component of Stab𝐺 (𝜈) is centralized by H.

If Theorem 4.2(a) holds, then there exists a closed subgroup N of G with dim(𝑁) > 0, an N-
homogeneous probability measure 𝜈0 on 𝐺/Λ and a 𝜇-stationary probability measure 𝜂 on 𝐺/𝑁 such
that

𝜈 =
∫
𝐺/𝑁

𝑔∗𝜈0 d𝜂(𝑔). (4.1)

We may assume that 𝜂 is 𝜇-ergodic. Indeed, if 𝜂 =
∫
𝑌
𝜂𝑦 d𝑦 is a 𝜇-ergodic decomposition of 𝜂, then

𝜈 =
∫
𝑌

(∫
𝐺/𝑁

𝑔∗𝜈0 d𝜂𝑦 (𝑔)
)

d𝑦

is a convex decomposition of 𝜈 into 𝜇-stationary measures. Since 𝜈 is 𝜇-ergodic, we must have 𝜈 =∫
𝐺/𝑁 𝑔∗𝜈0 d𝜂𝑦 (𝑔) for almost every y. Thus, we can replace 𝜂 by one of the 𝜂𝑦 , if necessary. We consider

N such that dim(𝑁) is maximal among possible representations of 𝜈 of the form (4.1).
Now, consider the adjoint action of G on 𝑆2 (𝔤∧ dim(𝑁 ) ), where 𝑆2 denotes the symmetric square

representation. Let 𝜔 = 𝑣 ⊗ 𝑣, where 𝑣 ∈ 𝔤∧ dim(𝑁 ) corresponds to a basis of the Lie algebra of N. Let
P be the stabilizer of 𝜔 in G. Since N admits a lattice, it is unimodular so that N acts on v by ±1. Thus,
N fixes 𝜔, that is 𝑁 � 𝑃. Let 𝜂′ be the pushforward of 𝜂 via the natural projection map 𝐺/𝑁 → 𝐺/𝑃.
The measure 𝜂′ can be thought of as an ergodic 𝜇-stationary measure on 𝑆2(𝔤∧ dim(𝑁 ) ). By Corollary
2.12, the measure 𝜂′ must concentrate on the subspace of H-fixed vectors. Then by ergodicity, 𝜂′ is a
Dirac measure. After replacing N and P by their conjugates, we may assume without loss of generality
that 𝜂′ is the Dirac measure on the coset P. It follows that 𝜔 is H-fixed. Hence, 𝐻 � 𝑃 and 𝐻 ∩ 𝑁◦ is a
normal subgroup of H. If 𝐻 � 𝑁◦, then the action of H on 𝑃/𝑁 is trivial, so that by ergodicity of 𝜂 we
have 𝜈 = 𝑔∗𝜈0 for an element 𝑔 ∈ 𝑃 with supp(𝜂) = {𝑔𝑁} and we are done.

So let us now assume that H is not contained in 𝑁◦. In this case, we consider the action of (𝐻/(𝐻 ∩
𝑁◦), 𝜇′) on 𝑃/𝑁 � (𝑃/𝑁◦)/(𝑁/𝑁◦) with the 𝜇′-stationary measure 𝜂, where 𝜇′ is the pushforward of
𝜇 under the natural projection map 𝐻 → 𝐻/(𝐻∩𝑁◦). Since 𝜇 is H-expanding and H is not contained in
𝑁◦, 𝜇′ is 𝐻/(𝐻∩𝑁◦)-expanding in view of Proposition 2.10(iii). Now, in view of Lemma 4.3, we are in
a position to apply Theorem 4.2 again for 𝜇′. We claim that thanks to the choice of N as having maximal
dimension in equation (4.1), the case (a) in Theorem 4.2 does not occur. Suppose it does. This means
that there exist a closed subgroup 𝑀 < 𝑃/𝑁◦ of positive dimension, an M-homogeneous probability
measure 𝜈′0 on 𝑃/𝑁 and a 𝜇′-stationary probability measure 𝜂′ on (𝑃/𝑁◦)/𝑀 such that we have

𝜂 =
∫
(𝑃/𝑁 ◦)/𝑀

𝑔∗𝜈
′
0 d𝜂′(𝑔). (4.2)
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Denote by �̂� the preimage of M under the projection 𝑃 → 𝑃/𝑁◦ so that we can identify (𝑃/𝑁◦)/𝑀
with 𝑃/�̂� . By combining equations (4.1) and (4.2), we deduce that

𝜈 =
∫
𝑃/𝑁

∫
𝑃/�̂�

(𝑔ℎ)∗𝜈0 d𝜂′(𝑔)𝑑𝜈′0(ℎ) =
∫
𝑃/�̂�

𝑔∗

(∫
𝑃/𝑁

ℎ∗𝜈0 d𝜈′0 (ℎ)
)

d𝜂′(𝑔).

Now, it is easily observed that the probability measure Ψ =
∫
𝑃/𝑁 ℎ∗𝜈0 d𝜈′0 (ℎ) on 𝐺/Λ is �̂�-invariant

and supported on finitely many �̂�-orbits. By 𝜇-ergodicity of 𝜈, for every �̂�-ergodic component Ψ𝑦 of
Ψ, we have

𝜈 =
∫
𝑃/�̂�

𝑔∗Ψ𝑦 d𝜂′(𝑔).

Take such a component Ψ𝑦 which assigns positive mass to an �̂�-orbit. Then Ψ𝑦 is �̂�-homogeneous and
the fact that dim(�̂�) > dim(𝑁) yields a contradiction to the maximality of dim(𝑁) in equation (4.1).

Therefore, we can conclude by case (b) of Theorem 4.2 that 𝜂 is Γ𝜇′-invariant and supported on
finitely many compact subsets of 𝐶𝑃/𝑁 ◦ (Γ𝜇′ )-orbits. By Lemma 4.4, 𝜂 is M-homogeneous for a closed
subgroup 𝑀 < 𝑃/𝑁◦. In particular, 𝜂 can be written in the form (4.2) with 𝜈′0 = 𝜂 and 𝜂′ the Dirac mass
at the identity coset, the latter being 𝜇′-stationary since 𝜂 is Γ𝜇′-invariant. As we have argued above, this
cannot happen if the support of 𝜂 has positive dimension. Thus, 𝜂 is a finite periodic orbit measure, and
using equation (4.1) it directly follows that 𝜈 is homogeneous. The connected component of Stab𝐺 (𝜈)
is 𝑁◦, which is normalized by H, as we already established above. Hence, the proof is complete. �

4.2. Stationary measures charging an orbit of the centralizer

The following proposition gives additional information about the measure 𝜈 in the setting of Lemma
4.4, or more generally, in the setting of [9, §7.3]. It will be used below to deduce Corollary 1.2(i) from
Theorem 1.1.

The general setting is as follows: G is a locally compact second countable group, Λ a discrete
subgroup of G, 𝜇 is a probability measure on G, L denotes the centralizer of Γ𝜇 in G, and 𝜈 is a 𝜇-
ergodic 𝜇-stationary probability measure on 𝑋 = 𝐺/Λ assigning positive mass to some L-orbit. Finally,
𝐿0 is any open subgroup of 𝐿 ∩ Stab𝐺 (𝜈).
Proposition 4.5. Retain the notation and assumptions above, and fix 𝑥 = 𝑔Λ ∈ supp(𝜈). Let 𝜈0 be the
restriction of 𝜈 to 𝐿0𝑥, Γ0 the stabilizer of 𝜈0 in Γ𝜇 and

Γ𝐿0 = {𝑙 ∈ 𝐿0 | there exists ℎ ∈ Γ0 such that ℎ𝑙 ∈ 𝑔Λ𝑔−1}.

Then in addition to the conclusion of Lemma 4.4, the following holds:
(i) Γ0 has finite index in Γ𝜇,

(ii) Γ𝐿0 is a dense subgroup of 𝐿0 with Γ0𝑥 = Γ𝐿0 𝑥 and
(iii) 𝐿0 ∩ 𝑔Λ𝑔−1 is a cocompact normal subgroup of 𝐿0.
In particular, 𝜈 is compactly supported and is the unique ergodic 𝜇-stationary probability measure on
X assigning positive measure to supp(𝜈).
Proof. By [9, Lemma 7.6] and its proof, we know that 𝜈 is the homogeneous measure on Γ𝜇𝐿0𝑥 and that
supp(𝜈) consists of finitely many closed 𝐿0-orbits which are transitively permuted by Γ𝜇. In particular,
we have 𝜈(𝐿0𝑥) > 0. It follows that Γ0 has finite index in Γ𝜇. Moreover, since Γ𝜇 preserves 𝜈 and acts
ergodically, the group Γ0 acts ergodically with respect to 𝜈0. This implies that we can find 𝑙0 ∈ 𝐿0 such
that Γ0𝑙0𝑥 is dense in 𝐿0𝑥. As 𝑙0 commutes with Γ0, it immediately follows that Γ0𝑥 is dense in 𝐿0𝑥. Since
Γ𝐿0 is precisely defined for Γ0𝑥 = Γ𝐿0 𝑥 to hold, we conclude that Γ𝐿0 = Γ𝐿0 (𝐿0 ∩ 𝑔Λ𝑔−1) is dense in 𝐿0.

We next prove that 𝐿0 ∩ 𝑔Λ𝑔−1 is a cocompact normal subgroup of 𝐿0. Since we have already shown
that Γ𝐿0 is dense in 𝐿0, it suffices to show that 𝐿0∩𝑔Λ𝑔−1 is normal in Γ𝐿0 . To see this, taking an arbitrary
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𝑙 ∈ Γ𝐿0 and choosing ℎ ∈ Γ0 with ℎ𝑙 ∈ 𝑔Λ𝑔−1, we calculate

𝑙 (𝐿0 ∩ 𝑔Λ𝑔−1)𝑙−1 = ℎ𝑙 (𝐿0 ∩ 𝑔Λ𝑔−1) (ℎ𝑙)−1 = 𝐿0 ∩ 𝑔Λ𝑔−1,

where we used again that Γ𝜇 and 𝐿0 commute. Since there is a finite 𝐿0-invariant measure on the locally
compact group 𝐿0/(𝐿0 ∩ 𝑔Λ𝑔−1), the latter must be compact.

It remains to prove the uniqueness of 𝜈. Let 𝜈′ be an arbitrary ergodic 𝜇-stationary probability
measure on X with 𝜈′(supp(𝜈)) > 0. Take 𝑥 ∈ supp(𝜈) ∩ supp(𝜈′). Then by what we have shown above,
𝜈′ is homogeneous and supp(𝜈) = Γ𝜇𝑥 = supp(𝜈′). Hence, 𝜈 = 𝜈′ by homogeneity. �

Loosely speaking, the group Γ𝐿0 in Proposition 4.5 consists of translations in the centralizer direction
arising from the action of Γ0 � Γ𝜇 on the centralizer orbit under consideration. This is illustrated by the
following simple example.

Example 4.6. Let𝐺 = SL2 (R)×𝐾 , where K is a connected compact Lie group, and let𝜓 : SL2 (Z) → 𝐾
be a fixed group homomorphism with dense image. Let 𝑋 = 𝐺/Λ for the lattice

Λ = {(𝛾, 𝜓(𝛾)) | 𝛾 ∈ SL2(Z)} < 𝐺.

Moreover, let 𝐻 = SL2(R), identified with the first factor of G, and choose a probability measure 𝜇 on H
with Γ𝜇 = SL2 (Z) < 𝐻. Let 𝜈 be the homogeneous measure on the K-orbit of the identity coset 𝑥 = Λ
in 𝐺/Λ, induced by the Haar probability measure on K, where we identify K with the second factor of
G. Then the action of 𝛾 ∈ Γ𝜇 on x is given by

(𝛾, 1)𝑥 = (𝛾, 1) (𝛾−1, 𝜓(𝛾−1))𝑥 = (1, 𝜓(𝛾−1))𝑥.

Thus, the K-orbit of x is given by (Γ𝜇 × 𝐾)/Λ, 𝜈 is Γ𝜇-invariant, and also ergodic for the Γ𝜇-action
since 𝜓 has dense image. If we set 𝐿0 = 𝐾 , then in the notation of Proposition 4.5 we have Γ0 = Γ𝜇 and
Γ𝐿0 = 𝜓(Γ𝜇), which is a dense subgroup of 𝐿0.

The key point of Corollary 1.2(i) is that we cannot have examples of the type above when X
is the quotient of a semisimple group G by an irreducible lattice Λ, such as 𝐺/Λ = (SL2 (R) ×
SL2 (R))/SL2 (Z[

√
2]).

To keep the continuity, we now proceed to the proof of Corollary 1.2, even though one part of the
statement relies on the countability result for homogeneous subspaces to be established in §5. The
central part of the proof makes heavy use of concepts from the theory of algebraic and arithmetic
groups, in particular Margulis’ arithmeticity theorem [65]. See the book by Witte Morris [96] for a
gentle introduction to this topic.

Proof of Corollary 1.2. Let 𝜈 be a 𝜇-ergodic 𝜇-stationary probability measure on 𝑋 = 𝐺/Λ. By Theo-
rem 1.1, we know that 𝜈 is homogeneous and Stab𝐺 (𝜈)◦ is normalized by H. By conjugating if necessary,
we may assume the identity coset Λ is in the support of 𝜈.

If Stab𝐺 (𝜈) ∩ 𝐻 is nondiscrete, then Stab𝐺 (𝜈) must contain a normal subgroup of H of positive
dimension. Since Λ is irreducible, this implies that 𝜈 is G-invariant. Indeed, Stab𝐺 (𝜈)Λ is closed since
the stabilizer intersects Λ in a lattice ([80, Theorem 1.13]), and also dense by irreducibility of Λ if
Stab𝐺 (𝜈) contains a simple factor of G.

Let us now assume that Stab𝐺 (𝜈) ∩ 𝐻 is discrete and 𝐻 ≠ 𝐺 and use this to derive a contradiction.
Since Stab𝐺 (𝜈)◦ is normalized by H, we may view its Lie algebra as H-submodule of 𝔤 = Lie(𝐺). As
every nontrivial H-isotypic component of 𝔤 is contained in Lie(𝐻), it follows from the discreteness
assumption that we must have Stab𝐺 (𝜈)◦ � 𝐶𝐺 (𝐻) � 𝐶𝐺 (Γ𝜇). This puts us in the setting of Proposition
4.5, namely, the homogeneous measure 𝜈 gives positive mass to an orbit of the centralizer L of Γ𝜇 in
G. We apply this proposition with 𝑥 = Λ and 𝐿0 the connected component of Stab𝐺 (𝜈) ∩ 𝐿 and let Γ0
and Γ𝐿0 be as defined there. Then 𝐿0 ∩ Λ is central by irreducibility of Λ ([80, Corollary 5.21]), hence
finite, which by part (iii) of the proposition implies that 𝐿0 is compact.
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We now invoke Margulis’ arithmeticity theorem [65]. The conclusion is that we may assume that

𝐺 =
∏
𝜎∈𝑆

G𝜎 (𝑘𝜎), (4.3)

where G is a Zariski connected absolutely simple linear algebraic group defined over a number field
k, 𝑘𝜎 ∈ {R,C} is the completion of 𝜎(𝑘) for a field embedding 𝜎 : 𝑘 → C and S is a finite set of
inequivalent such embeddings with the property that G𝜎 (𝑘𝜎) is noncompact if and only if 𝜎 or 𝜎 is
in S. The lattice Λ is given as the diagonal embedding of G(O𝑘 ) in G via 𝑘 � 𝑧 ↦→ (𝜎(𝑧))𝜎∈𝑆 , where
O𝑘 is the ring of integers of k. As 𝐻 ≠ 𝐺 is a connected normal subgroup of G of positive dimension,
there is a nonempty proper subset 𝑆1 ⊂ 𝑆 such that 𝐻 =

∏
𝜎∈𝑆1 G𝜎 (𝑘𝜎). Without loss of generality we

assume that the identity embedding 𝜄 is contained in 𝑆1. We also write 𝑆2 = 𝑆 \ 𝑆1, which is nonempty
by construction. In this setup, Γ𝐿0 is a dense subgroup of 𝐿0, which is a connected and compact subgroup
contained in

∏
𝜎∈𝑆2 G𝜎 (𝑘𝜎).

The following subtlety should be noted regarding Zariski topologies: The linear algebraic group G
naturally carries the complex Zariski topology, defined by complex polynomials in the entries of the
complex matrices in G (similarly for the Galois conjugates G𝜎). However, in the product representation
(4.3) of G, the point of view is that of real algebraic groups. This means that when 𝑘𝜎 = C, the group
G𝜎 (C) has to be seen as the group of real points of the restriction of scalars ResC/RG𝜎 with the real
Zariski topology, defined by real polynomials in the real and imaginary parts of the entries of matrices
in G𝜎 . This gives rise to the real Zariski topology on G.

We also remark that in equation (4.3) and the associated product representation of H, strictly speaking,
we should take the analytic identity components of the groups appearing as factors on the right-hand
side. But we ignore this point for ease of notation and without loss of generality.

Relative compactness in Galois conjugates. Recall that each 𝛾0 ∈ Γ0 preserves the homogeneous
measure on 𝐿0𝑥, so there exists 𝑙0 ∈ 𝐿0 such that 𝛾0𝑥 = 𝑙−1

0 𝑥, which implies that 𝛾0𝑙0 ∈ Λ. Let Γ1 be
the projection of Γ0 to G(𝑘 𝜄) (the factor corresponding to the identity embedding). Then Γ0 consists
of

∏
𝜎∈𝑆1 𝜎(𝛾1) and Γ𝐿0 consists of

∏
𝜎∈𝑆2 𝜎(𝛾1) for 𝛾1 ∈ Γ1. So we have Γ1 � G(O𝑘 ) and for every

𝜎 ∈ 𝑆2 the group 𝜎(Γ1) (obtained by component-wise application of 𝜎) has compact closure. The latter
conclusion holds also for 𝜎 ∉ 𝑆, since G𝜎 (𝑘𝜎) is compact in this case. So we conclude that 𝜎(Γ1) is
relatively compact for all embeddings 𝜎 ∉ 𝑆1.

Zariski density properties of Γ∗. From Proposition 3.12, it follows that the Zariski closure of Γ𝜇 is
an epimorphic subgroup of H in the category of real algebraic groups (see Appendix 1 for a discussion of
the epimorphic property in different categories). As Γ0 has finite index in Γ𝜇, also Zcl(Γ0) is epimorphic
in H. We claim that Zcl(Γ0) is also reductive. Otherwise, its projection to one of the simple factors of H
is not reductive. Without loss of generality assume that this holds for the projection to G(𝑘 𝜄). This means
that the Zariski closure of Γ1 (in the real Zariski topology of G(𝑘 𝜄)) has a nontrivial unipotent radical.
Now, consider the Zariski closure F of Γ1 in the complex Zariski topology of G. Since the real Zariski
topology of G(C) is finer than the complex Zariski topology of G, also F has a nontrivial unipotent
radical, that is, is not reductive. Moreover, F is defined over k, since Γ1 � G(O𝑘 ). So the failure to be
reductive carries over to the Galois conjugates of F. Then we get a contradiction since for each 𝜎 ∈ 𝑆2
the algebraic group F𝜎 is reductive, because it is the Zariski closure of the relatively compact group
𝜎(Γ1) (in the complex Zariski topology). So we obtain that Zcl(Γ0) is a reductive epimorphic subgroup
of H, which can only happen if Γ0 is Zariski dense in H. By projecting to the simple factors, we find
that 𝜎(Γ1) is Zariski dense in the real Zariski topology of G𝜎 (𝑘𝜎) for all 𝜎 ∈ 𝑆1. In particular, this
implies that Γ1 is Zariski dense in G in the complex Zariski topology. This latter property can now be
carried over to all Galois conjugates, showing that for every embedding 𝜎, 𝜎(Γ1) is Zariski dense in
G𝜎 (in the complex Zariski topology). For every embedding 𝜎, the Zariski closure of 𝜎(Γ1) in the real
Zariski topology must therefore be G𝜎 (C) or a real form of it. In particular, for every embedding with
𝑘𝜎 = R, 𝜎(Γ1) is Zariski dense in G𝜎 (R) in the real Zariski topology.

A more natural field of definition. Let 𝑘 ′ be the subfield of k generated by the set Tr(Ad(Γ1)).
Then Ad(Γ1) is definable over 𝑘 ′ (see [65, IX.1.8]). So we may and will assume that G is defined
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over 𝑘 ′ and Γ1 � G(𝑘 ′). The group Res𝑘′/QG(R) =
∏
𝜏 : 𝑘′→CG𝜏 (𝑘 ′𝜏) is naturally embedded in

Res𝑘/QG(R) =
∏
𝜎 G𝜎 (𝑘𝜎) as a real algebraic subgroup, by identifying G𝜏 (𝑘 ′𝜏) with its diagonal

embedding in
∏
𝜎 : 𝜎 |𝑘′=𝜏 G𝜎 (𝑘𝜎). We deduce the following facts.

(a) We have 𝑘 ≠ 𝑘 ′. Indeed, for 𝜎 ∈ 𝑆2 the group G𝜎 (𝑘𝜎) is noncompact and 𝜎(Γ1) has compact
closure (in the Lie group topology). In view of the Zariski density properties established in the
paragraph above and using that compact groups are closed in the real Zariski topology, it follows
that we must have 𝑘𝜎 = C, and 𝜎(Γ1) is contained in a real form of G𝜎 (C). The latter and the
definition of 𝑘 ′ (via traces in the adjoint representation) imply 𝜎(𝑘 ′) ⊂ R, which would contradict
𝑘𝜎 = C if we had 𝑘 = 𝑘 ′.

(b) The embeddings 𝜎 |𝑘′ of 𝑘 ′ for 𝜎 ∈ 𝑆1 are pairwise distinct, since Γ0 is Zariski dense in H.

Combining everything to a contradiction. In view of (a) above, the identity embedding 𝑘 ′ → C
must admit a nonidentity extension 𝜎 : 𝑘 → C. This embedding 𝜎 cannot be contained in 𝑆1, since
by (b) above, the elements of 𝑆1 have pairwise distinct restrictions to 𝑘 ′. But 𝜎 ∉ 𝑆1 would imply
𝜎(Γ1) = Γ1 is relatively compact, which is impossible since Γ1 is Zariski dense in the noncompact
group G(𝑘 𝜄) in the real Zariski topology. This contradiction finishes the proof of (i).

In the case 𝐻 = 𝐺 of part (ii), the arguments at the beginning of the proof show that either 𝜈 = 𝑚𝑋
or Stab𝐺 (𝜈) is discrete. In the latter case, 𝜈 must be the uniform probability measure on a finite Γ𝜇-
orbit (see [6, Lemma 8.3]). Moreover, in this case we have that 𝐶𝐺 (Γ𝜇) is discrete by the epimorphic
property of Γ𝜇 in G from Proposition 3.12. Proposition 5.1 thus implies that there are only countably
many distinct finite Γ𝜇-orbits in X. Hence, if 𝜈 is any nonatomic 𝜇-stationary probability measure on X,
𝜈 = 𝑚𝑋 follows by considering an ergodic decomposition of 𝜈. This completes the proof. �

4.3. Expansion on Grassmannians

The H-expansion condition on 𝜇 is a universal requirement in the sense that all our results (including
the measure classification theorem) hold for any embedding 𝐻 ↩→ 𝐺 and any discrete subgroup Λ in G.
Having fixed 𝐻 � 𝐺, however, close inspection of the proof of Theorem 1.1 reveals that it is sufficient
to have uniform expansion on the quotient of each exterior power of 𝔤 by the corresponding H-fixed
subspace.

Definition 4.7. Let G be a real Lie group and 𝐻 � 𝐺 a connected semisimple subgroup with finite
center. A probability measure 𝜇 on H is said to be H-expanding relative to G if 𝜇 is uniformly expanding
on the quotient of (Ad∧𝑘 , 𝔤∧𝑘 ) by the corresponding H-fixed subspace for every 1 ≤ 𝑘 ≤ dim(𝐺) − 1.

We remark that a related notion was previously studied by the first two authors [79].

Theorem 4.8. Let G be a real Lie group, Λ � 𝐺 a discrete subgroup and H a connected semisimple
subgroup of G with finite center. Let 𝜇 be an H-expanding probability measure relative to G with finite
first moment. Then the conclusions of Theorem 1.1 hold for every ergodic 𝜇-stationary probability
measure 𝜈 on 𝐺/Λ.

Proof. We analyze the applications of the H-expansion property in the proof of Theorem 1.1, so we
retain the notation used there.

◦ The first application of Lemma 4.3 is possible without problems.
◦ Next, expansion is used for the representation 𝑆2 (𝔤∧ dim(𝑁 ) ). If dim(𝑁) = dim(𝐺), then the probability

measure 𝜂 in (4.1) is finitely supported and Γ𝜇-invariant by [6, Lemma 8.3], so all claims follow.
Otherwise, the measure 𝜂′ on 𝑆2 (𝔤∧ dim(𝑁 ) ) is supported on {𝑣 ⊗ 𝑣 | 𝑣 ∈ 𝔤∧ dim(𝑁 ) } by construction.
Using that ‖𝑣 ⊗ 𝑣‖ = ‖𝑣‖2 and the assumed expansion in 𝔤∧ dim(𝑁 ) , we can again draw the desired
conclusion that 𝜂′ is supported on the set of H-fixed vectors.

◦ Finally, expansion is needed to reapply Theorem 4.2 in the quotient by 𝑁◦. The assumption there
implies that 𝐻/(𝐻 ∩𝑁◦) is still a semisimple group, so that dim(𝑁) ≤ dim(𝐺) −3. Let 𝑣 ∈ 𝔤∧ dim(𝑁 )

correspond to a basis of the Lie algebra 𝔫 of N. Then a norm on 𝔤/𝔫 is given by ‖𝑤 + 𝔫‖ = ‖𝑤 ∧ 𝑣‖
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for 𝑤 ∈ 𝔤. Since H fixes the vector 𝜔 = 𝑣 ⊗ 𝑣 in 𝑆2 (𝔤∧ dim(𝑁 ) ), H acts on v by ±1. As H is connected,
v is fixed by H. Thus, for every ℎ ∈ 𝐻 and 𝑤 ∈ 𝔤 we have

‖ℎ·(𝑤 + 𝔫)‖ = ‖ℎ·𝑤 ∧ 𝑣‖ = ‖ℎ·(𝑤 ∧ 𝑣)‖. (4.4)

Hence, we again obtain expansion for every vector in 𝔤/𝔫 that is not H-fixed. This justifies the
application of Lemma 4.3 in the quotient.

�

Combining the above with some properties of epimorphic subgroups, we obtain the following.
Corollary 4.9. Let G be a real algebraic group, Λ < 𝐺 a lattice, and 𝐻 � 𝐺 a Zariski connected
semisimple algebraic subgroup without compact factors. Then any Zariski connected real algebraic
epimorphic subgroup 𝐹 � 𝐻 supports probability measures 𝜇 for which the conclusions of Theorem 1.1
hold.
Proof. It is known that F contains a split solvable algebraic subgroup 𝐴′𝑈, where 𝐴′ is an algebraic R-
split torus and U is unipotent and normalized by 𝐴′, that is still epimorphic in H (see [13, §10, Theorem
2]). Thus, we may assume 𝐹 = 𝐴′𝑈 is of this form to begin with. By [95, Lemma 1] there is a nonempty
open cone 𝐴′

+ in 𝐴′ such that 𝜒(𝑎) > 1 for all 𝑎 ∈ 𝐴′
+ and all characters of 𝐴′ having an eigenvector

in one of the U-fixed subspaces 𝑉𝑈𝑘 of the finitely many representations 𝑉1, . . . , 𝑉𝑟 appearing in the
statement of Theorem 4.8. Then any probability measure 𝜇 on F with finite first moment whose 𝐴′-
average 𝑎avg(𝜇) lies in 𝐴′

+ and for which the Zariski closure of Γ𝜇 contains U is uniformly expanding in
all of the representations 𝑉𝑘 . Indeed, this follows directly by combining Lemma 3.5 and 3.6. Theorem
4.8 thus applies to all measures 𝜇 satisfying these conditions. �

5. Countability of homogeneous subspaces

Let Γ be a closed subsemigroup of G and Λ < 𝐺 a lattice. A homogeneous subspace 𝑌 ⊂ 𝑋 = 𝐺/Λ
is said to be Γ-invariant if Γ preserves the associated homogeneous probability measure 𝜂 on Y. It is
called Γ-ergodic if Γ acts ergodically on (𝑌, 𝜂). Define

S (Γ) = {Γ-invariant Γ-ergodic homogeneous subspaces 𝑌 ⊂ 𝑋}.

A key input to the proof of Theorem 1.6 is countability of S (Γ𝜇) modulo the centralizer of H. Our
strategy to prove this result closely follows the approach in [10], where this result is proved under the
assumption that the Zariski closure of Ad(Γ𝜇) is semisimple and has no compact factors. The goal of
this subsection is therefore to prove the following analogue of [10, Proposition 2.1].
Proposition 5.1. Let G be a real Lie group, 𝐻 � 𝐺 a connected semisimple subgroup with finite center
and Γ < 𝐻 a subsemigroup that supports a probability measure with finite first moment that is H-
expanding relative to G. Denote by L the centralizer of Γ in G. Then there exists a countable subset Y
of S (Γ) such that

S (Γ) = {𝑙𝑌 | 𝑙 ∈ 𝐿,𝑌 ∈ Y}. (5.1)

Note that the set S (Γ) remains the same if we replace the semigroup Γ by the closed group that it
generates. Therefore, in the proof of the previous result, we can suppose that Γ is a closed subgroup of H.

The key ingredient of the proof of this proposition is Lemma 5.3 below, which will imply countability
of the closed subgroups of G that arise as the stabilizer of homogeneous subspaces in S (Γ). To this end,
we introduce the following definition, which, in view of Theorem 1.1, is the appropriate replacement of
[10, Definition 2.4].
Definition 5.2. Let Δ ⊂ Σ be discrete subgroups of a real Lie group G. The set T (𝐺,Δ , Σ) is defined
to be the set of closed subgroups N of G such that

https://doi.org/10.1017/fms.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.56


Forum of Mathematics, Sigma 29

(i) Σ is contained in N and is a lattice in N,
(ii) Δ = Σ ∩ 𝑁◦, where 𝑁◦ is the connected component of N,

(iii) there exist a connected semisimple Lie group 𝐻𝑁 � 𝐺 and a subgroup Γ � 𝐻𝑁 ∩ 𝑁 which acts
ergodically on 𝑁/Σ and which supports an 𝐻𝑁 -expanding probability measure relative to G.

Lemma 5.3. Let G be a real Lie group and Δ ⊂ Σ finitely generated discrete subgroups of G. Then the
set T (𝐺,Δ , Σ) is countable.

The proof of this lemma requires the following strengthening of [10, Lemma 2.6].
Lemma 5.4. Let G be a real Lie group, 𝔤 its Lie algebra and Δ ⊂ Σ discrete subgroups of G. Let N
belong to T (𝐺,Δ , Σ), 𝐻𝑁 be any connected semisimple subgroup of G as in (iii) of Definition 5.2, and
let M be a unimodular Lie subgroup of G containing Σ. Let 𝜔 ∈ 𝑆2 (𝔤∧ dim(𝑀 ) ) correspond to a basis
of the Lie algebra of M. Then 𝜔 is fixed by N and 𝐻𝑁 , and hence 𝑀◦ is normalized by N and 𝐻𝑁 . In
particular, this holds whenever 𝑀 ∈ T (𝐺,Δ ,Σ).

In the statement above, 𝑆2 (𝔤∧ dim(𝑀 ) ) denotes the symmetric square of 𝔤∧ dim(𝑀 ) . If 𝑣 ∈ 𝔤∧ dim(𝑀 )

corresponds to a basis of the Lie algebra of N, the appearing vector 𝜔 is given by 𝜔 = 𝑣 ⊗ 𝑣.

Proof. If dim(𝑀) = dim(𝐺), then 𝑀◦ = 𝐺◦ and the statement is clear. So we assume that dim(𝑀) <
dim(𝐺). Since M is unimodular and contains Σ, the action of Σ fixes 𝜔. Therefore, the map

𝑁 → 𝑆2(𝔤∧ dim(𝑀 ) ), ℎ ↦→ ℎ·𝜔

descends to a map 𝑁/Σ → 𝑆2 (𝔤∧ dim(𝑀 ) ). Denote by 𝜂 the pushforward of the Haar probability measure
on 𝑁/Σ to 𝑆2(𝔤∧ dim(𝑀 ) ) by this map, and let Γ � 𝑁 ∩𝐻𝑁 be as in (iii) of the definition of T (𝐺,Δ , Σ).
Then 𝜂 is an ergodic Γ-invariant probability measure supported on the set {𝑣 ⊗ 𝑣 | 𝑣 ∈ 𝔤∧ dim(𝑀 ) }.
Since Γ supports an 𝐻𝑁 -expanding probability measure relative to G and ‖𝑣 ⊗ 𝑣‖ = ‖𝑣‖2, Lemma 2.6
implies that 𝜂 is concentrated on the subspace of 𝐻𝑁 -fixed vectors. The ergodicity forces 𝜂 to be the
Dirac mass at 𝜔. Hence, 𝜔 is N- and 𝐻𝑁 -fixed, as required. �

We can now prove Lemma 5.3. The argument is basically the same as in the proof of [10, Lemma
2.5], but we need to handle an additional difficulty coming from the fact that Γ is not necessarily Zariski
dense in 𝐻𝑁 , but only carries a probability measure that is 𝐻𝑁 -expanding relative to G.

Proof of Lemma 5.3. For every 𝑁 ∈ T (𝐺,Δ , Σ), we fix a connected semisimple group 𝐻𝑁 as in (iii) of
Definition 5.2. Considering the closure of the group generated by the set

⋃
𝑁 ∈T (𝐺,Δ ,Σ) 𝐻𝑁𝑁, we can

assume that this set generates a dense subgroup of G. By Lemma 5.4,

𝑀 �
⋂

𝑁 ∈T (𝐺,Δ ,Σ)
𝑁◦

is a normal subgroup of G. Let 𝜋 : 𝐺 → 𝐺/𝑀 be the natural projection map.
We will argue next that 𝜄 : 𝑁 ↦→ 𝜋(𝑁) gives an injection of T (𝐺,Δ ,Σ) \ {Σ𝑀} into

T (𝐺/𝑀, {𝑒}, 𝜋(Σ)). First, note that 𝑁 ↦→ 𝜋(𝑁) is an injective map from T (𝐺,Δ , Σ) into the set of
closed subgroups of 𝐺/𝑀 . Since Σ∩𝑀 = Δ is a lattice in M, Σ𝑀 is closed in G by [80, Theorem 1.13],
which implies that 𝜋(Σ) is discrete. As there is an equivariant projection 𝑁/Σ → 𝜋(𝑁)/𝜋(Σ), 𝜋(Σ) is
a lattice in 𝜋(𝑁). If 𝜋(𝑛) ∈ 𝜋(Σ) for some 𝑛 ∈ 𝑁◦, then 𝑛 = 𝜎𝑚 for some 𝑚 ∈ 𝑀 and 𝜎 ∈ Σ. Since
𝑀 ⊂ 𝑁◦, it follows that 𝜎 ∈ Σ ∩ 𝑁◦ = Δ ⊂ 𝑀 , which proves that 𝜋(𝑁)◦ ∩ 𝜋(Σ) = {𝑒} is the trivial
group. So we have verified conditions (i) and (ii) of Definition 5.2 for any element 𝜋(𝑁) in the image
of 𝜄. To also verify condition (iii), let 𝐻𝑁 � 𝐺 be the connected semisimple subgroup from condition
(iii) for N and Γ a subgroup of 𝐻𝑁 ∩ 𝑁 that acts ergodically on 𝑁/Σ and carries an 𝐻𝑁 -expanding
probability measure 𝜇 relative to G. Then it is clear that 𝜋(Γ) acts ergodically on 𝜋(𝑁)/𝜋(Σ). Now, if
𝐻𝑁 � 𝑀 , then ergodicity of this action forces 𝑁 = Σ𝑀 . Otherwise, 𝜋(𝐻𝑁 ) is a connected semisimple
Lie group. By Lemma 5.4 and connectedness, 𝐻𝑁 fixes a vector 𝑣 ∈ 𝔤∧ dim(𝑀 ) corresponding to a basis
of the Lie algebra 𝔪 of M. For 1 ≤ 𝑘 ≤ dim(𝐺/𝑀) − 1, on (𝔤/𝔪)∧𝑘 we may use a norm with the
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property that ‖ [𝑤] ‖ = ‖𝑤 ∧ 𝑣‖ for every 𝑤 ∈ 𝔤∧𝑘 , where [𝑤] denotes the projection of w to (𝔤/𝔪)∧𝑘 .
Then the same calculation as in equation (4.4) shows that 𝜋∗𝜇 is 𝜋(𝐻𝑁 )-expanding relative to 𝐺/𝑀 .
So also condition (iii) of Definition 5.2 holds for 𝜋(𝑁).

Therefore, it suffices to prove the lemma under the assumption that Δ = {𝑒} is the trivial group and
that for every 𝑁 ∈ T (𝐺, {𝑒},Σ), the connected component 𝑁◦ is normal in G. In view of condition (ii),
this implies that 𝑁◦ is a compact normal subgroup of G. By [10, Lemma 2.7], there are only countably
many such 𝑁◦. Similar to the first reduction step above, after fixing 𝑁◦ and replacing G by𝐺/𝑁◦ andΣ by
Σ𝑁◦/𝑁◦, we are left to show that the set V (𝐺, Σ) of discrete subgroups N containing Σ as a finite index
subgroup such that (iii) of Definition 5.2 holds is countable. For each 𝑁 ∈ V (𝐺, Σ), there is a finite index
subgroup Σ′ � Σ such that Σ′ is normal in N. Recall that by assumption Σ is finitely generated so that it
admits only finitely many homomorphisms to any fixed finite group. It follows that there are countably
many such Σ′. Therefore, it suffices to show that, for Σ′ fixed, the set V (𝐺, Σ′,Σ) of 𝑁 ∈ V (𝐺, Σ) with
Σ′ normal in N is countable. Let S be the closed subgroup generated by

⋃
𝑁 ∈V (𝐺,Σ′,Σ) 𝑁 . Then Σ′ is a

discrete normal subgroup of S. For any 𝑔 ∈ Σ′, the set {𝑠𝑔𝑠−1 | 𝑠 ∈ 𝑆◦} is a connected subset of Σ′,
so it has to be {𝑔}. It follows that Σ′ centralizes 𝑆◦. Given 𝑁 ∈ V (𝐺, Σ′, Σ), let Γ be a subgroup of
𝐻𝑁 ∩ 𝑁 acting ergodically on 𝑁/Σ as in (iii) of Definition 5.2. By ergodicity, we have 𝑁 = ΓΣ and
since ΓΣ = Γ(Σ′Σ) = (ΓΣ′)Σ, N is uniquely determined by the discrete group ΓΣ′. So it suffices to
show that the set of subgroups ΓΣ′ appearing in this way is countable. The finite index subgroup Γ∩Σ′

of Γ centralizes 𝑆◦ and Γ normalizes 𝑆◦. It follows that the conjugation action of Γ on 𝑆◦ factors through
a finite group. Now, according to (iii) of Definition 5.2, there exists a probability measure on Γ that is
𝐻𝑁 -expanding relative to G. By (i) of Proposition 2.10 applied to the adjoint representation of 𝐻𝑁 on
𝔤, we conclude that every element of the Lie algebra of S is fixed by 𝐻𝑁 . This implies that Γ < 𝐻𝑁
centralizes 𝑆◦. Therefore, ΓΣ′/Σ′ is a finite subgroup of 𝑆/Σ′ centralizing 𝑆◦Σ′/Σ′. By [10, Lemma
2.8], the set of compact subgroups of 𝑆/Σ′ centralizing 𝑆◦Σ′/Σ′ is countable. This gives the required
countability and hence completes the proof. �

We also need the following version of [10, Lemma 2.2].
Lemma 5.5. Let G be a real Lie group, H a connected semisimple subgroup of G and Γ a subgroup of
H that supports an H-expanding probability measure relative to G. Moreover, let L be the centralizer
of Γ in G and N a closed unimodular subgroup of G. Then the set of Γ-fixed points in 𝑌 = 𝐺/𝑁 is a
countable union of L-orbits.
Proof. It is enough to consider the case dim(𝑁) < dim(𝐺). Denote by 𝑌Γ the set of Γ-fixed points in Y.
Then it suffices to show that every L-orbit 𝐿𝑦 in 𝑌Γ is open in 𝑌Γ. After a conjugation, we may assume
𝑦 = 𝑒𝑁 is the identity coset. In particular, we then have Γ � 𝑁 . Let 𝔩 denote the Lie algebra of L. By
finite-dimensionality, we can find 𝛾1, . . . , 𝛾𝑟 ∈ Γ such that

𝔩 = {𝑣 ∈ 𝔤 | Ad(𝛾𝑖)𝑣 = 𝑣 for 1 ≤ 𝑖 ≤ 𝑟}.

In view of unimodularity of N, considering a vector in 𝑆2 (𝔤∧ dim(𝑁 ) ) corresponding to a basis of the Lie
algebra 𝔫 of N and arguing as in Lemma 5.4 yields that 𝔫 is H-invariant. Thanks to the expansion in the
adjoint representation, it moreover follows that 𝔩 coincides with the space of H-fixed vectors in 𝔤. We
choose an H-invariant complement 𝔳 of 𝔫 + 𝔩 in 𝔤. Then for any 𝑣 ∈ 𝔳 sufficiently small, if exp(𝑣)𝑦 is
Γ-fixed, then for all 1 ≤ 𝑖 ≤ 𝑟 we have

exp(Ad(𝛾𝑖)𝑣)𝑦 = 𝛾𝑖 exp(𝑣)𝑦 = exp(𝑣)𝑦,

which implies Ad(𝛾𝑖)𝑣 = 𝑣 and thus 𝑣 ∈ 𝔩 ∩ 𝔳 = {0}. This shows that 𝐿𝑦 is open in 𝑌Γ and hence
finishes the proof that 𝑌Γ is a countable union of L-orbits. �

Finally, we can prove the main result of this subsection. We adapt the proof of [10, Proposition 2.1]
by substituting Lemmas 5.3 and 5.5 for the corresponding results, and extend it to cover semigroups
that are not compactly generated.
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Proof of Proposition 5.1. We first establish the statement assuming additionally that Γ is compactly
generated. Let 𝑌 ∈ S (Γ), and denote by 𝐺𝑌 the stabilizer of the homogeneous probability measure 𝜈
corresponding to Y. Let 𝜇 be a probability measure on Γ that is H-expanding relative to G. Choose
𝑔 ∈ 𝐺 such that 𝑔Λ ∈ 𝑌 and consider 𝑁 = 𝑔−1Γ𝐺◦

𝑌 𝑔, which is a closed subgroup of G because Γ is
contained in 𝐺𝑌 and thus normalizes 𝐺◦

𝑌 . Now, the discrete groups Δ = 𝑁◦ ∩ Λ and Σ = 𝑁 ∩ Λ are
lattices in 𝑁◦ and N, respectively. Being a lattice in a connected Lie group, Δ is finitely generated (see
[80, 6.18]). As 𝑁 = 𝑔−1Γ𝐺◦

𝑌 𝑔 and Γ is compactly generated, 𝑁/𝑁◦ is finitely generated. Since Σ/Δ has
finite index in 𝑁/𝑁◦, also Σ is finitely generated. As Λ admits only countably many finitely generated
subgroups, one may assume that Δ and Σ are fixed. We claim that N belongs to T (𝐺,Δ ,Σ). To see this,
we first record that (i) and (ii) in Definition 5.2 are immediate. Considering 𝐻𝑁 = 𝑔−1𝐻𝑔, its subgroup
𝑔−1Γ𝑔 and the image of 𝜇 by conjugation by 𝑔−1, also (iii) is seen to hold. Consequently, we can also
assume N to be fixed by virtue of Lemma 5.3. As the point 𝑔𝑁 ∈ 𝐺/𝑁 is Γ-invariant, by Lemma 5.5
one may further assume the L-orbit 𝐿𝑔𝑁 ⊂ 𝐺/𝑁 is fixed. It only remains to note that for 𝑙 ∈ 𝐿, the
orbit 𝑙𝑔𝑁Λ ⊂ 𝑋 = 𝐺/Λ is precisely the translate 𝑙𝑌 of Y.

To treat the general case without the compact generation assumption, given an arbitrary probability
measure 𝜇′ on Γ with finite first moment that is H-expanding relative to G, we consider the probability
measure 𝜇 given as the normalized restriction of 𝜇′ to a sufficiently large compact ball B around the
identity. By choosing B large enough, we can guarantee that the integral characterization of uniform
expansion from Proposition 2.2 still holds for the finite collection of representations in Definition 4.7.
In view of expansion in the adjoint representation, the connected components of 𝐿 = 𝐶𝐺 (Γ) and
𝐿𝜇 = 𝐶𝐺 (Γ𝜇) coincide. Therefore, applying the above to the compactly generated subgroup Γ𝜇, we
can find a countable collection Y𝜇 ⊂ S (Γ𝜇) such that S (Γ𝜇) = {𝑙𝑌𝜇 | 𝑙 ∈ 𝐿,𝑌𝜇 ∈ Y𝜇}. We claim that
Y = {Γ𝑌𝜇 | 𝑌𝜇 ∈ Y𝜇} ∩ S (Γ) satisfies the conclusion of the proposition. To see this, let 𝑌 ∈ S (Γ)
be arbitrary and 𝜈𝑌 be the associated Γ-invariant Γ-ergodic homogeneous measure. By Theorem 4.8,
we know that every Γ𝜇-ergodic component of 𝜈𝑌 is an element of S (Γ𝜇). By Fubini’s theorem and
Γ-ergodicity of 𝜈𝑌 , we can thus find 𝑌 ′

𝜇 ∈ S (Γ𝜇) such that almost every point 𝑥 ∈ 𝑌 ′
𝜇 with respect to

the homogeneous measure on 𝑌 ′
𝜇 satisfies 𝑌 = Γ𝑥. We also know that 𝑌 ′

𝜇 = 𝑙𝑌𝜇 for some 𝑌𝜇 ∈ Y𝜇 and
𝑙 ∈ 𝐿 = 𝐶𝐺 (Γ). We conclude that 𝑌 = Γ𝑌 ′

𝜇 = 𝑙Γ𝑌𝜇 , which shows that Γ𝑌𝜇 ∈ Y and completes the
proof. �

6. Height functions with contraction properties

A Markov chain on a standard Borel space X is a measurable map 𝑋 � 𝑥 ↦→ 𝑃𝑥 from X to the space of
Borel probability measures on X, specifying the transition probabilities at each point of X. The associated
Markov operator P is defined by

𝑃( 𝑓 ) (𝑥) =
∫
𝑋
𝑓 d𝑃𝑥

for a nonnegative Borel function f on X and 𝑥 ∈ 𝑋 . If G is a locally compact second countable group
with a Borel G-action on X, then a choice of a probability measure 𝜇 on G induces a Markov chain on
X with transition probabilities 𝑃𝑥 = 𝜇 ∗ 𝛿𝑥 , which can be thought of as the formalization of the concept
of the random walk on X given by 𝜇. We denote the associated Markov operator by 𝐴𝜇, which is given
in this context by the explicit formula

𝐴𝜇 ( 𝑓 ) (𝑥) =
∫
𝐺
𝑓 (𝑔𝑥) d𝜇(𝑔).

We also refer to 𝐴𝜇 as the averaging operator associated to 𝜇. See [10, §3] and [11, §2] for more
background on Markov operators in the context of the study of random walks.

Coming back to our setting, recall that Λ denotes a lattice in a Lie group G and H a connected
semisimple subgroup of G without compact factors and with finite center, and 𝜇 is an H-expanding
probability measure on H.
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The goal of this section is to construct height functions on 𝑋 = 𝐺/Λ that are contracted by the
averaging operator 𝐴𝜇 (also known as Lyapunov functions or sometimes Margulis functions), which
will yield the recurrence properties of the random walk on X necessary for the proof of our main
theorems. As already explained in §1.2, two types of height functions are required. First, one needs a
height function that is proper but stays bounded on prescribed compact subsets of the space X, which
prevents the random walk from escaping to infinity. Secondly, in order to ensure equidistribution towards
a homogeneous measure sitting on the orbit closure, we will need to construct height functions which are
unbounded near lower dimensional homogeneous subspaces. These ensure that the random walk does
not accumulate near such ‘singular subspaces’, that is, does not spend too much time in their vicinity.

6.1. Height function with respect to the cusps

We first present the construction of the height functions responsible for ruling out escape of mass.

Theorem 6.1 (Exponential 𝜇-unstability of the cusps, [8]). Let 𝜇 be an H-expanding probability measure
with finite exponential moments. For any compact subset Z of 𝑋 = 𝐺/Λ, there exist constants 𝑚 ∈ N,
𝑎 ∈ (0, 1), 𝑏 > 0 and a lower semicontinuous function 𝛽∞ : 𝑋 → [1,∞] uniformly bounded on Z such
that for every 𝑥 ∈ 𝑋 we have

𝐴𝑚𝜇 (𝛽∞)(𝑥) ≤ 𝑎𝛽∞(𝑥) + 𝑏. (6.1)

Moreover,

(i) for every ℓ > 1, the set 𝛽−1
∞ ([1, ℓ]) is compact,

(ii) the set 𝛽−1
∞ ({∞}) is H-invariant and

(iii) there exists a constant 𝜅 > 0 such that for every ℎ ∈ 𝐻 and 𝑥 ∈ 𝐺/Λ we have 𝛽∞(ℎ𝑥) ≤
N(Ad ℎ)𝜅 𝛽∞(𝑥).

By slight abuse of terminology, we sometimes just say that a height function is ‘proper’ when
referring to property (i) above.

Let 𝔤 be the Lie algebra of G, 𝔯 the largest amenable ideal of 𝔤 and 𝔰 = 𝔤/𝔯. A Lyapunov function as
in the above theorem is constructed in [8] in the case the noncompact part of the Zariski closure of the
group generated by the support of the probability measure (Ad𝔰)∗𝜇 is semisimple. However, as it turns
out, this Zariski density assumption in a semisimple group without compact factors is only critically
used, via Furstenberg’s result of positivity of the top Lyapunov exponent, to ensure equation (6.2) below,
which is also guaranteed by our dynamical H-expansion assumption. Therefore, Benoist–Quint’s proof
goes through in our setting with minor adaptations. We now explain this in more detail.

A version of the following elementary but key lemma was already used in [31] (see also [9, Lemma
6.12]). In our case, it holds true thanks to the characterization of uniform expansion expressed in
Proposition 2.2.

Lemma 6.2. Let 𝜇 be an H-expanding probability measure on H with finite exponential moments and
(𝜌,𝑉) be a representation of H without nonzero H-fixed vectors. Then there exists 𝛿0 > 0 such that for
every 𝛿 ∈ (0, 𝛿0) and 𝑐 ∈ (0, 1), for every 𝑛 ∈ N large enough, we have∫

𝐻

1
‖ℎ·𝑣‖ 𝛿

d𝜇∗𝑛 (ℎ) ≤ 𝑐

‖𝑣‖ 𝛿
(6.2)

for every 𝑣 ∈ 𝑉 \ {0}.

Proof. Using the elementary fact that for every 𝜀 ∈ (0, 1), 𝑥 ∈ (0, 𝜀) and 𝑎 > 0, we have 𝑎𝑥 =

1+𝑥 log 𝑎+( 𝑥𝜀 )
2𝑅𝑎 (𝑥) with |𝑅𝑎 (𝑥) | ≤ 𝑒𝜀 |log 𝑎 | together with

���log ‖𝑣 ‖
‖𝑔𝑣 ‖

��� ≤ log N(𝑔) for every 𝑔 ∈ GL(𝑉),
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we see that for every 𝑛 ∈ N, 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 𝜀)∫
𝐻

‖𝑣‖ 𝛿

‖ℎ·𝑣‖ 𝛿
d𝜇∗𝑛 (ℎ) ≤ 1 + 𝛿

∫
𝐻

log
‖𝑣‖
‖ℎ·𝑣‖ d𝜇∗𝑛 (ℎ) +

(
𝛿

𝜀

)2 ∫
𝐻

N(𝜌(ℎ)) 𝜀 d𝜇∗𝑛 (ℎ). (6.3)

By Proposition 2.2, there exists 𝑁 ∈ N and 𝐶 > 0 such that for all 𝑣 ∈ 𝑉 \ {0}, we have∫
𝐻

log
‖𝑣‖
‖ℎ·𝑣‖ d𝜇∗𝑁 (ℎ) ≤ −𝐶. (6.4)

Since 𝜌∗𝜇 has finite exponential moments by Lemma 2.9, we can choose 𝜀0 > 0 such that∫
𝐻

N(𝜌(ℎ)) 𝜀0 d𝜇∗𝑛 (ℎ) < ∞ for every 𝑛 ∈ N. Now, applying equation (6.3) with 𝑛 = 𝑁 , 𝜀 = 𝜀0 > 0 and
using equation (6.4), we get that for every 𝛿 > 0 smaller than some 𝛿0 > 0, there exists 𝑐′ ∈ (0, 1) such
that we have ∫

𝐻

1
‖ℎ·𝑣‖ 𝛿

d𝜇∗𝑁 (ℎ) ≤ 𝑐′

‖𝑣‖ 𝛿
(6.5)

for every 𝑣 ∈ 𝑉 \ {0}. Writing an arbitrary 𝑛 ∈ N as 𝑛 = 𝑚𝑁 + 𝑘 with 𝑚, 𝑘 ∈ N and 𝑘 < 𝑁 , using
the facts that 𝜇∗𝑛 = 𝜇∗𝑚𝑁 ∗ 𝜇∗𝑘 , 1

‖ℎ ·𝑣 ‖ ≤ N(𝜌(ℎ)) 1
‖𝑣 ‖ and the existence of finite exponential moments,

iterating equation (6.5) now yields∫
𝐻

1
‖ℎ·𝑣‖ 𝛿

d𝜇∗𝑛 (ℎ) ≤ (𝑐′)𝑚

‖𝑣‖ 𝛿

(∫
𝐻

N(𝜌(ℎ)) 𝛿 d𝜇(ℎ)
) 𝑘
,

the right-hand side of which can be made to be smaller than 𝑐/‖𝑣‖ 𝛿 by requiring m to be large enough. �

Proof of Theorem 6.1. We start the proof with a few general remarks on Lyapunov functions and their
construction.

(1) It suffices to construct the function 𝛽∞ with values in [0,∞]. Indeed, in the end one can simply add
1, if necessary, to ensure values in [1,∞].

(2) The conclusion of the theorem is unaffected when replacing Λ by a commensurable lattice Λ′, that
is, a lattice such that the intersection Λ0 = Λ∩Λ′ has finite index in both Λ and Λ′. Indeed, given a
Lyapunov function 𝐺/Λ → [0,∞], one can just precompose it with the projection 𝐺/Λ0 → 𝐺/Λ,
and, conversely, starting with a function 𝛽 : 𝐺/Λ0 → [0,∞], one can define the function 𝛽∞ on
𝐺/Λ by setting

𝛽∞(𝑔Λ) =
∑
𝜆∈Λ/Λ0

𝛽(𝑔𝜆Λ0)

for 𝑔 ∈ 𝐺, which is easily seen to have the correct properties.
(3) We may always assume that the lattice Λ is nonuniform, that is, that 𝑋 = 𝐺/Γ is noncompact. For

on a compact quotient, the constant function 1 already has all required properties.
(4) In the construction, we may without loss of generality replace G by any open subgroup 𝐺0. Indeed,

X is the disjoint union of 𝐺0-orbits, and these are Γ𝜇-invariant since H is connected. Thus, one can
translate a function 𝛽∞ on 𝐺0/(𝐺0 ∩ Λ) to other 𝐺0-orbits.

From now on, we assume G is connected and prove the existence of the height function 𝛽∞ with the
required properties. The proof proceeds in several steps.

Case 1: 𝐺 = SL𝑑 (R) and 𝑋 = SL𝑑 (R)/SL𝑑 (Z). We show that the Benoist–Quint height function
in [8] has the required properties. We endow 𝐸 = R𝑑 with a Euclidean structure invariant by some
maximal compact subgroup of H. We endow the vector space

∧∗ 𝐸 =
⊕𝑑
𝑖=0

∧𝑖 𝐸 with the induced
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Euclidean structure and use ‖·‖ to denote the corresponding norm on E and on
∧∗ 𝐸 . For 0 ≤ 𝑖 ≤ 𝑑,

we fix constants 𝛿𝑖 = (𝑑 − 𝑖)𝑖; they satisfy

𝛿𝑟+𝑠 + 𝛿𝑟+𝑡 ≥ 𝛿𝑟 + 𝛿𝑟+𝑠+𝑡 + 1 (6.6)

for every 𝑟, 𝑠, 𝑡 ∈ N with 𝑠 > 0 and 𝑡 > 0.
We fix a maximal split torus A of H. Let 𝔞 and 𝔥 be the Lie algebras of A and H, respectively. Let

Σ(𝔥, 𝔞) be the set of restricted roots. We fix a positive system in Σ(𝔥, 𝔞). Let W ⊂ 𝔞∗ be the set of
restricted weights appearing in finite-dimensional representations of H. We define a partial order on W
by

𝜆 ≤ 𝜂 ⇐⇒ 𝜂 − 𝜆 is a sum of positive roots. (6.7)

Recall that any representation of a connected semisimple real Lie group is completely reducible
and each irreducible representation has a unique highest weight. We denote by W+ ⊂ W the set of
highest weights and let S ⊂ W+ be the set of nonzero highest weights corresponding to the nontrivial
irreducible representations of H appearing as direct summands in

∧∗ 𝐸 , where the representation of H
on E is just the restriction of the standard representation of G. So the action of H on

∧∗ 𝐸 decomposes
into a direct sum ∧∗

𝐸 = 𝐸𝐻∗ ⊕
⊕
𝜆∈S

𝐸𝜆∗ ,

where 𝐸𝐻∗ is the space of H-fixed vectors in
∧∗ 𝐸 and 𝐸𝜆∗ is the sum of all the irreducible subspaces

of
∧∗ 𝐸 with highest weight 𝜆 (i.e., the isotypic component of 𝜆). We fix 𝑠0 ∈ 𝔞 in the interior of the

positive Weyl chamber and define 𝛿𝜆 = 𝜆(𝑠0) for 𝜆 ∈ W+, so that the 𝛿𝜆 satisfy 𝜆 ≤ 𝜇 if and only if
𝛿𝜆 ≤ 𝛿𝜇 and 𝛿𝜆 = 0 if and only if 𝜆 = 0 for all 𝜆, 𝜇 ∈ W+. For 𝜆 ∈ S , we use 𝑞𝜆 (resp. 𝑞0) to denote
the H-equivariant projection from

∧∗ 𝐸 to 𝐸𝜆∗ (resp. 𝐸𝐻∗ ). For any 𝜀 > 0 and 𝑣 ∈
∧𝑖 𝐸 with 0 < 𝑖 < 𝑑,

define

𝜑𝜀 (𝑣) =
{

min𝜆∈S 𝜀
𝛿𝑖
𝛿𝜆 ‖𝑞𝜆 (𝑣)‖−

1
𝛿𝜆 , if ‖𝑞0 (𝑣)‖ < 𝜀𝛿𝑖 ,

0, otherwise,

with the convention min ∅ = ∞. Using Lemma 6.2 and H-equivariance of the projections 𝑞𝜆, one readily
observes (cf. [8, Lemma 4.3]) that for every 𝛿 > 0 small enough, for every 𝑐 ∈ (0, 1), there exists 𝑛 ∈ N
such that for every 𝑖 = 1, . . . , 𝑑 and 𝑣 ∈

∧𝑖 𝐸 it holds that

𝐴𝑛𝜇𝜑
𝛿
𝜀 (𝑣) ≤ 𝑎𝜑𝛿𝜀 (𝑣) (6.8)

for every 𝜀 > 0. For every 𝜀 > 0, let the function 𝛽𝜀,∞ on 𝐺/Λ be defined by

𝛽𝜀,∞(𝑥) = max 𝜑𝜀 (𝑣),

where, writing 𝑥 = 𝑔Λ, the maximum is taken over all 0 < 𝑖 < 𝑑 and nonzero 𝑣 ∈
∧𝑖 𝐸 such that

𝑣 = 𝑣1 ∧ · · · ∧ 𝑣𝑖 with 𝑣 𝑗 ∈ Λ𝑥 � 𝑔Z𝑑 for 𝑗 = 1, . . . , 𝑖 (following [8], such pure wedge products v will
be called “x-integral monomials”).

Note that by construction we have 𝛽𝜀,∞(𝑥) = ∞ if and only if there exists a nonzero H-fixed x-integral
monomial 𝑣 ∈

∧𝑖 𝐸 whose norm is less than 𝜀𝛿𝑖 . Therefore, the set 𝛽−1
𝜀,∞({∞}) is H-invariant. Moreover,

for every 𝜀 > 0, the function 𝛽𝜀,∞ is proper and lower semicontinuous (see [8, Remark 5.2]). Setting
𝜅′ = max𝜆∈S 𝛿−1

𝜆 , it is also readily verified that for every ℎ ∈ 𝐻 we have 𝛽𝜀,∞(ℎ𝑥) ≤ N(ℎ)𝑑𝜅′𝛽𝜀,∞(𝑥).
Now, it follows precisely in the same way as in [8, Proposition 5.3], by simply replacing [8, Lemma

4.3] by equation (6.8), that for every 𝛿 > 0 and 𝜀 > 0 small enough, there exist 𝑛 ∈ N, 𝑎 ∈ (0, 1) and
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𝑏 > 0 such that

𝐴𝑛𝜇𝛽
𝛿
𝜀,∞ ≤ 𝑎𝛽𝛿𝜀,∞ + 𝑏.

For brevity and to avoid mere repetition, we will not reproduce this part of the proof here. We note
however that this passage is the part where the crucial ‘Mother inequality’ [8, §3] and the convexity
assumptions (6.6) and (6.7) are used.

Finally, given a compact set Z as in the statement, by Mahler’s compactness criterion, we can choose
𝜀 > 0 and 𝛿 > 0 small enough so that the function 𝛽∞ � 𝛽𝛿𝜀,∞ is uniformly bounded on Z. By the
discussion above, this function has all desired properties.

Case 2: G is closed subgroup of SL𝑑 (R) andΛ = 𝐺∩SL𝑑 (Z). Then 𝑋 = 𝐺/Λ is a closed subset of
𝑋0 = SL𝑑 (R)/SL𝑑 (Z) by [80, Theorem 1.13]. Thus, we can use the height function from Case 1 above.

Case 3: 𝐺 = 𝐻 is a connected real rank one simple Lie group. We assume 𝑋 = 𝐺/Λ is
noncompact. Let 𝑉 =

∧𝑟 𝔤 endowed with a norm ‖·‖, where r is the dimension of the unipotent radical
of a minimal parabolic subgroup of G. Let 𝑣0 ∈ 𝑉 be a nonzero vector which corresponds to the Lie
algebra of such a unipotent radical. It follows from [43] (cf. [58, Proposition 3.1] and [8, p. 54]) that there
exist 𝑔1, . . . , 𝑔𝑟 ∈ 𝐺 such that for 𝑖 = 1, . . . , 𝑟 the vectors 𝑣𝑖 = 𝑔𝑖 ·𝑣0 in V have the following properties:

(a) Λ𝑣𝑖 is closed and hence discrete in V for 1 ≤ 𝑖 ≤ 𝑟 .
(b) For any subset 𝐹 ⊂ 𝐺, the set 𝐹Λ ⊂ 𝐺/Λ is relatively compact if and only if there exists 𝑎 > 0

such that ‖𝑔𝜆·𝑣𝑖 ‖ > 𝑎 for any 𝜆 ∈ Λ, 𝑔 ∈ 𝐹 and 1 ≤ 𝑖 ≤ 𝑟 .
(c) There exists 𝑎0 > 0 such that for any 𝑔 ∈ 𝐺 there exists at most one 𝑣 ∈

⋃
1≤𝑖≤𝑟 Λ·𝑣𝑖 such that

‖𝑔·𝑣‖ < 𝑎0.

Let𝑉 ′ be the H-invariant subspace complementary to𝑉𝐻 . In view of property (b), we know that 𝑣0 ∈ 𝑉 ′.
By Lemma 6.2, for every 𝛿 > 0 small enough, for every 𝑐 > 0, we have that for every 𝑛 ∈ N large enough∫

𝐻
‖ℎ·𝑣‖−𝛿 d𝜇∗𝑛 (ℎ) < 𝑐‖𝑣‖−𝛿 (6.9)

holds for all nonzero 𝑣 ∈ 𝑉 ′. Using properties (a)–(c) and (6.9) it is straightforward to check that

𝛽∞(𝑔Λ) = max
1≤𝑖≤𝑟

max
𝜆∈Λ

‖𝑔𝜆·𝑣𝑖 ‖−𝛿

is continuous, proper and satisfies equation (6.1) when 𝛿 > 0 is small enough. It is also readily checked
that 𝛽∞(ℎ𝑥) ≤ N(Ad ℎ)𝜅′𝛿𝛽∞(𝑥) for some 𝜅′ depending only on G.

Case 4: 𝐺 = Aut(𝔤) for 𝔤 semisimple without compact ideals. In view of (4) at the begining of
the proof, we may assume that G is connected. As G is of adjoint type, it is center-free. By [80, Theorem
5.22], after replacing Λ by a finite index subgroup, there is a collection of semisimple factors 𝐺𝑖 of G
such that 𝐺 =

∏
𝑖 𝐺𝑖 and Λ𝑖 = 𝐺𝑖 ∩ Λ is an irreducible lattice in 𝐺𝑖 . Then we have 𝐺/Λ =

∏
𝑖 𝐺𝑖/Λ𝑖 .

Thus, if we can construct functions with the desired properties on all spaces 𝐺𝑖/Λ𝑖 , then their sum is a
Lyapunov function on 𝑋 = 𝐺/Λ with the same properties (possibly with different constants). In other
words, we have further reduced to the case where the lattice Λ in G is irreducible. We can also assume
that Λ is nonuniform in view of (3) at the beginning of the proof.

Case 3 handles the case of G with real rank one. Thus, we may additionally assume that the rank is
at least two. Then Margulis’ arithmeticity theorem says that Λ is arithmetic. In our setting, this implies
that there is an isomorphism 𝜎 : 𝐺 → 𝐺 ′, where 𝐺 ′ is the connected component of a semisimple real
algebraic subgroup of SL𝑑′ (R) defined overQ such that𝜎(Λ) andΛ′ = 𝐺 ′∩SL𝑑′ (Z) are commensurable
(see [97, Corollary 6.1.10]). Then by Proposition 2.10(iii), 𝜎∗𝜇 is 𝜎(𝐻)-expanding, and we conclude
using Case 2 and the comment (2) on commensurability at the start of the proof.

Case 5: General case. Let 𝔯 be the maximal amenable ideal of𝔤, set𝔰 = 𝔤/𝔯 and 𝑅 = ker(Ad𝔰). Then
𝔰 is the largest semisimple quotient of 𝔤 without compact ideals and, by semisimplicity, 𝐺/𝑅 identifies
with a finite index subgroup S of Aut(𝔰). From [8, Lemma 6.1], we know that Λ ∩ 𝑅 is a cocompact
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lattice in R and the image Λ𝑆 = Ad𝔰 (Λ) is a lattice in S. In particular, the projection 𝐺/Λ → 𝑆/Λ𝑆 is
proper. Setting 𝐻𝑆 = Ad𝔰 (𝐻), we moreover have that (Ad𝔰)∗𝜇 is 𝐻𝑆-expanding by Proposition 2.10(iii).
By Case 4 above, the theorem holds for 𝑆/Λ𝑆 . Precomposing the obtained Lyapunov function with the
projection 𝐺/Λ → 𝑆/Λ𝑆 produces the desired function 𝛽∞ on X. Properties (i)–(iii) carry over from
the subcases, using for the latter property that the norm in the adjoint representation controls the norms
in any other representation after taking a suitable power. �

Before moving on, we make a simple remark that will be of use in the next part.

Remark 6.3. Notice that by considering a small power of 𝛽∞, at the cost of increasing the constants
𝑎 ∈ (0, 1) and b, one can modify 𝜅 > 0 that satisfies property (iii) in Theorem 6.1. Indeed, given
𝛿 ∈ (0, 𝜅), using Jensen’s inequality, the function 𝛽𝛿/𝜅∞ is seen to also satisfy the contraction condition
(6.1) with the same 𝑚 ∈ N and possibly different constants 𝑎 ∈ (0, 1) and 𝑏 > 0. Moreover, 𝛽𝛿/𝜅∞ (ℎ𝑥) ≤
N(Ad ℎ) 𝛿𝛽𝛿/𝜅∞ (𝑥).

6.2. Height function with respect to singular subspaces

In this section, we construct a height function with respect to a relatively compact subset of a lower-
dimensional homogeneous subspace of 𝑋 = 𝐺/Λ. In contrast to the height function used in [9], which
satisfies a contraction property with respect to a first return Markov operator, our height function will
satisfy a contraction property with respect to 𝐴𝜇 itself. Our construction is inspired by the work of
Eskin–Mirzakhani–Mohammadi [34] on random walks on moduli space.

To state the main result of this subsection, we start by recalling some notation and fixing some
data. Let G be a Lie group and Λ < 𝐺 a lattice. Let 𝐻 � 𝐺 be a connected semisimple Lie subgroup
with finite center and no compact factors. Let 𝜇 be an H-expanding probability measure on H with
finite exponential moments. Since 𝜇 has finite exponential moments, we can fix 𝛿0 ∈ (0, 1) such that∫
𝐻

N(Ad(ℎ)) 𝛿0 d𝜇(ℎ) < ∞. Fix an arbitrary compact subset Z of 𝐺/Λ, and let 𝛽∞ : 𝐺/Λ → [1,∞] be
the proper lower semicontinuous function given by Theorem 6.1. By passing to a small enough power,
we will suppose that 𝛽∞ satisfies 𝛽∞(ℎ𝑥) ≤ N(Ad(ℎ)) 𝛿0 𝛽∞(𝑥) for every ℎ ∈ 𝐻 and 𝑥 ∈ 𝐺/Λ (see
Remark 6.3). Moreover, given 𝜀 > 0, we define

𝑋𝜀 = {𝑥 ∈ 𝐺/Λ | 𝛽∞(𝑥) ≤ 𝜀−1}.

Since 𝛽∞ is lower semicontinuous and proper, 𝑋𝜀 is a compact subset of X. Here is the result we aim to
prove.

Theorem 6.4. Given 𝜀 > 0 sufficiently small, for any sufficiently small open neighborhood O of the
identity in 𝐶𝐺 (Γ𝜇) and for any 𝑌 ∈ S (Γ𝜇), there exists a height function 𝛽N : 𝐻𝑋𝜀 → [1,∞] together
with constants 𝑛 ∈ N, 𝑎0 ∈ (0, 1) and 𝑏0 > 0 such that for any 𝑥 ∈ 𝐻𝑋𝜀 we have

𝐴𝑛𝜇 (𝛽N ) (𝑥) ≤ 𝑎0𝛽N (𝑥) + 𝑏0,

and such that, denoting N = 𝑂𝑌 ,

(i) 𝛽N (𝑥) = ∞ if and only if 𝑥 ∈ N ∩ 𝐻𝑋𝜀 ,
(ii) 𝛽N is bounded on compact subsets of 𝑋𝜀 \𝑂𝑌 ,

(iii) for any ℓ ≥ 1, the set 𝛽−1
N ([1, ℓ]) is a compact subset of X.

The rest of this subsection is devoted to the proof of this result, which will require two preliminary
lemmas. We fix an inner product on 𝔤, denote by ‖·‖ the associated operator norm on End(𝔤), and to
ease the notation, we set

N𝑎 (ℎ) � N(Ad ℎ) = max{‖Ad(ℎ)‖,
		Ad(ℎ−1)

		},
where Ad denotes the adjoint action of H on the Lie algebra 𝔤 of G.
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Lemma 6.5. There exist constants 𝐶 ≥ 1, 𝑘 ∈ N and 𝜀0 > 0 such that for any 𝜀 ∈ (0, 𝜀0) and any
𝑥 ∈ 𝐻𝑋𝜀 there exists ℎ ∈ Γ𝜇 with N𝑎 (ℎ) ≤ 𝐶𝛽∞(𝑥)𝑘 such that ℎ𝑥 ∈ 𝑋𝜀 .

Proof. Set 𝑀 �
∫

N𝑎 (ℎ) 𝛿0 d𝜇(ℎ) < ∞, and let a positive

𝜀 < min
{

1
4
,

(
1 − 𝑎

1 − 𝑎 + 𝑏

)2}
� 𝜀0

be given, where 𝑎 ∈ (0, 1) and 𝑏 > 0 are the constants given by Theorem 6.1. Let 𝑥 ∈ 𝐻𝑋𝜀 . Since
𝛽−1
∞ ({∞}) is H-invariant, we have 𝛽∞(𝑥) < ∞ so that we may define 𝑛𝑥 ≥ 1 to be the smallest integer

such that 𝑎𝑛𝑥 𝛽∞(𝑥) ≤ 1. It follows that

𝐴𝑚𝑛𝑥𝜇 (𝛽∞)(𝑥) ≤ 𝑎𝑛𝑥 𝛽∞(𝑥) + 𝑏

1 − 𝑎
≤ 1

√
𝜀
,

where 𝑚 ∈ N is as in Theorem 6.1.
Now, decompose 𝜇∗𝑚𝑛𝑥 as a sum of two nonnegative measures 𝜇1 + 𝜇2, where 𝜇2 is the restriction

of 𝜇∗𝑚𝑛𝑥 to the set {N𝑎 (·) ≥ 𝑅𝑥} for 𝑅𝑥 = 21/𝛿0𝑀𝑚𝑛𝑥/𝛿0 . By submultiplicativity of 𝑁𝑎, we have∫
N𝑎 (ℎ) 𝛿0 d𝜇∗𝑚𝑛𝑥 (ℎ) ≤ 𝑀𝑚𝑛𝑥 . Using this bound together with the Markov inequality, we deduce that

𝜇2 (𝐻) ≤ 1
2 and hence 𝜇1 (𝐻) ≥ 1

2 ≥
√
𝜀. On the other hand, we know∫

𝐻
𝛽∞(ℎ𝑥) d𝜇1 (ℎ) ≤ 𝐴𝑚𝑛𝑥𝜇 (𝛽∞)(𝑥) ≤

1
√
𝜀
.

Now, considering the probability measure �̂�1 = 1
𝜇1 (𝐻 ) 𝜇1, we deduce 𝐴�̂�1 𝛽∞(𝑥) ≤ 1

𝜀 . This means that
there exists ℎ ∈ supp( �̂�1) ⊂ Γ𝜇 such that 𝛽∞(ℎ𝑥) ≤ 1

𝜀 . Finally, since by construction 𝑛𝑥 ≤ 1+ log 𝛽∞ (𝑥)
− log 𝑎 ,

we also obtain

N𝑎 (ℎ) ≤ 𝑅𝑥 = 21/𝛿0𝑀𝑚𝑛𝑥/𝛿0 ≤ 21/𝛿0𝑀𝑚/𝛿0 𝛽∞(𝑥)𝑚
log 𝑀

−𝛿0 log 𝑎 .

This shows that the statement holds by setting 𝐶 = 21/𝛿0𝑀𝑚/𝛿0 and 𝑘 = 𝑚� log𝑀
−𝛿0 log 𝑎 �. �

Let Y be a homogeneous space in S (Γ𝜇), and denote by N its stabilizer group. Recall that this means
that 𝑁 � Γ𝜇 is a closed subgroup of G, Y is given by 𝑁𝑥 for some 𝑥 ∈ 𝐺/Λ, and there is an N-invariant
probability measure on 𝑁𝑥 which is invariant and ergodic with respect to Γ𝜇. By Theorem 1.1, the
Lie algebra 𝔫 of N is H-invariant with respect to the adjoint action. We write 𝔤 as a direct sum of
Ad(𝐻)-invariant subspaces

𝔤 = (𝔫 + 𝔩) ⊕ 𝔳, (6.10)

where 𝔩 is the centralizer of 𝔥 and 𝔳 is a complementary H-invariant subspace of 𝔫 + 𝔩. Recall that by
the epimorphic property of Γ𝜇 in H, 𝔩 is also the Lie algebra of 𝐶𝐺 (Γ𝜇).

Lemma 6.6. With the notation of the previous paragraph, for every 𝑌 ∈ S (Γ𝜇) and compact set
𝐾 ⊂ 𝑋 = 𝐺/Λ, there exist an open neighborhood O of the identity in 𝐶𝐺 (Γ𝜇) and 𝑟 ∈ (0, 1) with the
property that for any 𝑥 ∈ 𝐾 , there is at most one 𝑣 ∈ 𝔳 such that

exp(𝑣)𝑥 ∈ 𝑂𝑌 and ‖𝑣‖ < 𝑟. (6.11)

Moreover, the set E of 𝑥 ∈ 𝑋 for which 𝑣 ∈ 𝔳 with equation (6.11) exists is open in X and the map
𝐸 ∩ 𝐾 → 𝔳, 𝑥 ↦→ 𝑣 is continuous.

Proof. Let 𝐾 ′ be a compact neighborhood of K. In view of equation (6.10), we can choose O, r and a
neighborhood U of the identity in G so that all of the following hold:
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(a) we have 𝑈𝐾 ⊂ 𝐾 ′,
(b) the natural map 𝑈 → 𝑈𝑦 is injective for all 𝑦 ∈ 𝐾 ′,
(c) for every 𝑦 ∈ 𝑌 ∩ 𝐾 ′ we have 𝑈𝑦 ∩ 𝑌 = (𝑈 ∩ 𝑁)𝑦,
(d) the map 𝐵𝑟 (𝔳)×(𝑈∩𝑂𝑁) → 𝐺, (𝑣, 𝑔) ↦→ exp(𝑣)𝑔 is a diffeomorphism onto an open neighborhood

of the identity in G, where 𝐵𝑟 (𝔳) denotes the open r-ball in 𝔳 and
(e) we have 𝑜−1

2 exp(𝑣2) exp(−𝑣1)𝑜1 ∈ 𝑈 for every 𝑣1, 𝑣2 ∈ 𝔤 with ‖𝑣𝑖 ‖ < 𝑟 , 𝑖 = 1, 2, and 𝑜1, 𝑜2 ∈ 𝑂.

Now, let 𝑥 ∈ 𝐾 and 𝑣1, 𝑣2 ∈ 𝔳 satisfy equation (6.11), say exp(𝑣𝑖)𝑥 = 𝑜𝑖𝑦𝑖 with 𝑜𝑖 ∈ 𝑂 and 𝑦𝑖 ∈ 𝑌 for
𝑖 = 1, 2. Using properties (a) and (e), we know 𝑦1 ∈ 𝐾 ′. Moreover, 𝑦2 = 𝑜−1

2 exp(𝑣2) exp(−𝑣1)𝑜1𝑦1.
Applying properties (b), (c) and (e), we deduce that

𝑜−1
2 exp(𝑣2) exp(−𝑣1)𝑜1 = 𝑛 ∈ 𝑈 ∩ 𝑁,

which means that

exp(−𝑣1)𝑜1 = exp(−𝑣2)𝑜2𝑛.

Using (e) once more, we see that 𝑜1, 𝑜2𝑛 ∈ 𝑈 ∩ 𝑂𝑁 . Hence, property (d) implies that 𝑣1 = 𝑣2, giving
uniqueness. Since 𝑂 ⊂ 𝑈, the final claims of the lemma also follows from (d). �

Proof of Theorem 6.4. Since there is a substantial amount of relevant notation and auxiliary objects,
let us start the proof by recalling the initial data. The probability measure 𝜇 on H is H-expanding with
finite exponential moments, Z is a compact subset of 𝑋 = 𝐺/Λ and 𝛽∞ : 𝐺/Λ → [1,∞] is as given
by Theorem 6.1. By the latter (and Remark 6.3), the function 𝛽∞ satisfies equation (6.1) with some
𝑚 ∈ N, 𝑎 ∈ (0, 1) and 𝑏 > 0 and 𝛽∞(ℎ𝑥) ≤ N𝑎 (ℎ) 𝛿0 𝛽∞(𝑥) for every 𝑥 ∈ 𝐺/Λ and ℎ ∈ 𝐻, where
𝛿0 ∈ (0, 1) is chosen so that

∫
𝐻

N𝑎 (ℎ) 𝛿0 d𝜇(ℎ) < ∞. Let 𝜀0 > 0, 𝑘 ∈ N and 𝐶 ≥ 1 be given by
Lemma 6.5, and fix 𝜀 ∈ (0, 𝜀0). Let O be a relatively compact open neighborhood of the identity in
𝐶𝐺 (Γ𝜇) and 𝑟 ∈ (0, 1) such that the conclusion of Lemma 6.6 holds with a compact neighborhood K of
𝑋𝜀 = {𝑥 ∈ 𝑋 | 𝛽∞(𝑥) ≤ 𝜀−1}. Let 𝑌 ∈ S (Γ𝜇), denote by N its stabilizer group, by 𝔫 its Lie algebra, and
set N = 𝑂𝑌 . Finally, let 𝔩 be the Lie algebra of𝐶𝐺 (Γ𝜇) and choose an Ad(𝐻)-invariant complementary
space 𝔳 so that equation (6.10) holds.

Since 𝜇 is H-expanding with finite exponential moments and 𝔳 has no nonzero H-fixed vectors, by
Lemma 6.2 there exists

0 < 𝜃 < min{𝛿0, 1/𝑘} (6.12)

such that for every 𝑎′ ∈ (0, 1) we have, for all 𝑛 ∈ N large enough,∫
𝐻
‖Ad(ℎ)𝑣‖−𝜃 d𝜇∗𝑛 (ℎ) ≤ 𝑎′‖𝑣‖−𝜃 (6.13)

for any nonzero 𝑣 ∈ 𝔳. We fix such 𝑛 ∈ N that is a positive multiple of 𝑚 ∈ N. Without loss of generality,
we assume 𝑎′ > 𝑎 and let 𝜀′ > 0 be such that 𝑎′ = (1 + 𝜀′)𝑎. Since 𝑚 |𝑛, (6.1) implies that∫

𝐻
𝛽∞(ℎ𝑥) d𝜇∗𝑛 (ℎ) ≤ 𝑎𝛽∞(𝑥) + 𝑏

1 − 𝑎
. (6.14)

For 𝑥 ∈ 𝐻𝑋𝜀 , we define

𝑟𝑥 = 𝑟𝐶−1𝛽∞(𝑥)−𝑘 .

Next, we claim that for every 𝑥 ∈ 𝐻𝑋𝜀 , there exists at most one 𝑣 ∈ 𝔳 such that

exp(𝑣)𝑥 ∈ N and ‖𝑣‖ < 𝑟𝑥 . (6.15)
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Indeed, by Lemma 6.5, there exists ℎ ∈ Γ𝜇 with N𝑎 (ℎ) ≤ 𝐶𝛽∞(𝑥)𝑘 such that ℎ𝑥 ∈ 𝑋𝜀 . Since N is
Γ𝜇-invariant, we have

exp(𝑣)𝑥 ∈ N if and only if ℎ exp(𝑣)𝑥 = exp(Ad(ℎ)𝑣)ℎ𝑥 ∈ N .

Since ‖Ad(ℎ)𝑣‖ ≤ N𝑎 (ℎ)‖𝑣‖ ≤ 𝑟 , if such an 𝑣 ∈ 𝔳 exists, it is unique thanks to Lemma 6.6 (applied to
ℎ𝑥 ∈ 𝑋𝜀) and the choice of 𝑟 > 0, where we are using that 𝔳 is H-invariant.

Using the claim above, we may define 𝛼 : 𝐻𝑋𝜀 → [1,∞] by

𝛼(𝑥) =
{
‖𝑣‖−𝜃 , if there exists 𝑣 ∈ 𝔳 satisfying (6.5),
𝑟−𝜃𝑥 , otherwise.

Using the corresponding property for 𝛽∞ and the choice of 𝜃 in (6.12), it is readily checked that for
every 𝑥 ∈ 𝐻𝑋𝜀 and ℎ ∈ Γ𝜇, we have 𝛼(ℎ𝑥) ≤ N𝑎 (ℎ) 𝛿0𝛼(𝑥). We shall show that

𝛽N = 𝛽∞(𝑥) + 𝛼(𝑥).

satisfies all requirements of the theorem.
To proceed, we start by decomposing 𝜇∗𝑛 as a sum 𝜇1 + 𝜇2 of two nonnegative measures with 𝜇1 of

compact support and 𝜇2 satisfying ∫
𝐻

N𝑎 (ℎ) 𝛿0 d𝜇2 (ℎ) <
1 − 𝑎′

2
.

It follows that ∫
𝐻
𝛼(ℎ𝑥) d𝜇2 (ℎ) ≤ 𝛼(𝑥)

∫
𝐻

N𝑎 (ℎ) 𝛿0 d𝜇2 (ℎ) ≤ 𝛼(𝑥) 1 − 𝑎′

2
. (6.16)

Denote by D the constant 𝑟−1𝐶𝑀𝑘 , where 𝑀 = sup{N𝑎 (ℎ) | ℎ ∈ supp(𝜇1)}. Then 𝐷 > 𝑀𝑘 ≥ 1 by
choice of r, and for any element ℎ ∈ 𝑆± � supp(𝜇1) ∪ supp(𝜇1)−1 we have

𝛽∞(ℎ𝑥) ≤ 𝑀𝛽∞(𝑥) and hence 𝑟𝑥 ≤ 𝐷𝑟ℎ𝑥 . (6.17)

We are now going to establish the contraction property for 𝛽N by distinguishing several cases based
upon the size of 𝛼(𝑥).

If 𝛼(𝑥) > 𝐷2𝑟−𝜃𝑥 , then there exists a uniquely determined 𝑣 ∈ 𝔳 so that equation (6.15) holds and
𝛼(𝑥) = ‖𝑣‖−𝜃 . In particular,

‖𝑣‖ < 𝐷−2/𝜃𝑟𝑥 < 𝐷−2𝑟𝑥 .

Together with equation (6.17), the previous inequality implies that for ℎ ∈ 𝑆±, we have

‖Ad(ℎ)𝑣‖ ≤ N𝑎 (ℎ) · ‖𝑣‖ < 𝐷 · 𝐷−2𝑟𝑥 = 𝐷−1𝑟𝑥 ≤ 𝑟ℎ𝑥 . (6.18)

Since exp(𝑣)𝑥 belongs to the Γ𝜇-invariant set N , we have exp(Ad(ℎ)𝑣)ℎ𝑥 ∈ N . In view of equation
(6.18) and the definition of 𝛼 it follows that 𝛼(ℎ𝑥) = ‖Ad(ℎ)𝑣‖−𝜃 . By equation (6.13),∫

𝐻
𝛼(ℎ𝑥) d𝜇1 (ℎ) =

∫
𝐻
‖Ad(ℎ)𝑣‖−𝜃 d𝜇1 (ℎ) ≤

∫
𝐻
‖Ad(ℎ)𝑣‖−𝜃 d𝜇∗𝑛 (ℎ) ≤ 𝑎′𝛼(𝑥).

Combining with equation (6.16), we get∫
𝐻
𝛼(ℎ𝑥) d𝜇∗𝑛 (ℎ) =

∫
𝐻
𝛼(ℎ𝑥) d(𝜇1 + 𝜇2) (ℎ) ≤

1 + 𝑎′
2

𝛼(𝑥).

https://doi.org/10.1017/fms.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.56


40 R. Prohaska, C. Sert and R. Shi

Together with equation (6.14), the previous inequality yields∫
𝐻
𝛽N (ℎ𝑥) d𝜇∗𝑛 (ℎ) ≤ 1 + 𝑎′

2
𝛽N (𝑥) + 𝑏

1 − 𝑎
.

Therefore, we proved the contraction property of 𝛽N for 𝑥 ∈ 𝐻𝑋𝜀 satisfying 𝛼(𝑥) > 𝐷2𝑟−𝜃𝑥 .
Now, let 𝑥 ∈ 𝐻𝑋𝜀 be such that 𝛼(𝑥) ≤ 𝐷2𝑟−𝜃𝑥 . In this case, we have

𝛼(𝑥) ≤ 𝐷2𝑟−𝜃𝑥 = 𝐷2𝑟−𝜃𝐶 𝜃 𝛽𝑘 𝜃∞ (𝑥) ≤ 𝐷3𝛽∞(𝑥). (6.19)

We claim that for any ℎ ∈ 𝑆±, we have

𝛼(ℎ𝑥) ≤ 𝐷4𝑟−𝜃ℎ𝑥 . (6.20)

If not, then using equation (6.17) and the fact that 𝛼(ℎ𝑥) ≤ 𝑀𝛼(𝑥) ≤ 𝐷𝛼(𝑥), we find

𝛼(𝑥) ≥ 𝐷−1𝛼(ℎ𝑥) > 𝐷−1 · 𝐷4𝑟−𝜃ℎ𝑥 = 𝐷3𝑟−𝜃ℎ𝑥 ≥ 𝐷3−𝜃𝑟−𝜃𝑥 ,

which contradicts the first inequality in equation (6.19) since 𝜃 ∈ (0, 1) and 𝐷 > 1. By equations (6.20)
and (6.17)

𝛼(ℎ𝑥) ≤ 𝐷4𝑟−𝜃ℎ𝑥 = 𝐷4𝑟−𝜃𝐶 𝜃 · 𝛽𝑘 𝜃∞ (ℎ𝑥) ≤ 𝐷5𝛽𝑘 𝜃∞ (𝑥) = 𝐷5𝛽𝑘 𝜃−1
∞ (𝑥) · 𝛽∞(𝑥).

Since 𝑘𝜃 < 1, if 𝛽∞(𝑥) is larger than some constant depending only on 𝜀′𝑎, 𝑘𝜃 and D, we will have

𝐷5𝛽𝑘 𝜃−1
∞ (𝑥) < 𝜀′𝑎.

In view of equation (6.19), we know that 𝛽∞(𝑥) is sufficiently large provided that 𝛼(𝑥) is (depending
on D). Therefore, there exists 𝑏′ > 0 (depending on 𝜀′𝑎, 𝑘𝜃, 𝐷) so that if

𝑏′ ≤ 𝛼(𝑥) ≤ 𝐷2𝑟−𝜃𝑥 , (6.21)

then for any ℎ ∈ 𝑆±

𝛼(ℎ𝑥) ≤ 𝜀′𝑎𝛽∞(𝑥). (6.22)

So in the case where (6.21) holds, combining equations (6.14), (6.16) and (6.22), we deduce∫
𝐻
𝛽N (ℎ𝑥) d𝜇∗𝑛 (ℎ) ≤ 1 + 𝑎′

2
𝛽N (𝑥) + 𝑏

1 − 𝑎
,

proving the required contraction property.
To treat the remaining case, suppose now that 𝑥 ∈ 𝐻𝑋𝜀 and 𝛼(𝑥) ≤ min{𝑏′, 𝐷2𝑟−𝜃𝑥 }. We claim that

𝛼(ℎ𝑥) ≤ 𝐷3𝑏′ for all ℎ ∈ 𝑆±. Supposing the contrary, we would have

𝛼(ℎ𝑥) > 𝐷3𝑏′ ≥ 𝐷3𝛼(𝑥) ≥ 𝐷3𝑟−𝜃𝑥 .

From this, using the inequality 𝛼(ℎ𝑥) ≤ 𝐷𝛼(𝑥), it follows that

𝛼(𝑥) ≥ 𝐷−1𝛼(ℎ𝑥) > 𝐷2𝑟−𝜃𝑥 ,
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a contradiction. Therefore, recalling equations (6.14) and (6.16), we obtain∫
𝐻
𝛽N (ℎ𝑥) d𝜇∗𝑛 (ℎ) =

∫
𝐻
𝛼(ℎ𝑥) d𝜇∗𝑛 (ℎ) +

∫
𝐻
𝛽∞(ℎ𝑥) d𝜇∗𝑛 (ℎ)

≤ 𝐷3𝑏′ + 1 − 𝑎′

2
𝛼(𝑥) + 𝑎𝛽∞(𝑥) + 𝑏

1 − 𝑎

≤ 1 + 𝑎′
2

𝛽N (𝑥) + 𝐷3𝑏′ + 𝑏

1 − 𝑎
.

We have thus concluded the proof of the contraction property with 𝑎0 = (1 + 𝑎′)/2 and the additive
constant 𝑏0 = 𝐷3𝑏′ + 𝑏/(1 − 𝑎).

It remains to prove the claims (i)–(iii). Since 𝛽∞ is finite on 𝐻𝑋𝜀 , (i) is directly seen to hold by
definition of 𝛽N . Property (ii) is also immediate from the definition of 𝛽N , since 𝛽∞ is bounded on 𝑋𝜀
and any compact subset not intersecting 𝑂𝑌 has positive distance to N . To prove (iii), let (𝑥 𝑗 ) 𝑗 be a
sequence in 𝐻𝑋𝜀 with 𝛽N (𝑥 𝑗 ) ≤ ℓ for all 𝑗 ∈ N for some ℓ ∈ R. Since 𝛽N = 𝛽∞ + 𝛼 with 𝛼 ≥ 0, we
also have 𝛽∞(𝑥 𝑗 ) ≤ ℓ for all j. Since 𝛽∞ is proper, we may suppose that lim 𝑗→∞ 𝑥 𝑗 = 𝑥 for some point
𝑥 ∈ 𝑋 . We need to prove that 𝑥 ∈ 𝐻𝑋𝜀 and 𝛽N (𝑥) ≤ ℓ.

We first show that 𝑥 ∈ 𝐻𝑋𝜀 . It follows from Lemma 6.5 that there is a compact subset 𝐾ℓ of Γ𝜇 such
that for any 𝑗 ∈ N, there exists ℎ 𝑗 ∈ 𝐾ℓ so that ℎ 𝑗𝑥 𝑗 ∈ 𝑋𝜀 . Since 𝑋𝜀 is compact, by possibly passing to
a subsequence, we may assume that ℎ 𝑗𝑥 𝑗 converges to some 𝑦 ∈ 𝑋𝜀 and ℎ 𝑗 converges to some ℎ ∈ Γ𝜇.
So we have

lim
𝑗→∞

ℎ 𝑗𝑥 𝑗 = ℎ𝑥 = 𝑦,

which implies 𝑥 = ℎ−1𝑦 ∈ 𝐻𝑋𝜀 .
Finally, we show that

𝛼(𝑥) ≤ lim inf
𝑗→∞

𝛼(𝑥 𝑗 ), (6.23)

which will complete the proof in view of the lower semicontinuity of 𝛽∞ and the definition of 𝛽N . First,
let us pass to a subsequence so that the liminf in equation (6.23) is a limit, say lim inf 𝑗→∞ 𝛼(𝑥 𝑗 ) =
lim 𝑗→∞ 𝛼(𝑥 𝑗 ) � 𝛼1. If 𝛼(𝑥) = 𝑟−𝜃𝑥 , then equation (6.23) follows from the definition of 𝑟𝑥 and lower
semicontinuity of 𝛽∞. Suppose therefore that 𝛼(𝑥) > 𝑟−𝜃𝑥 . This implies that there exists a unique 𝑣 ∈ 𝔳
such that exp(𝑣)𝑥 ∈ N and ‖𝑣‖ < 𝑟𝑥 . Using Lemma 6.5, choose ℎ ∈ Γ𝜇 with N𝑎 (ℎ) ≤ 𝐶𝛽∞(𝑥)𝑘 such
that ℎ𝑥 ∈ 𝑋𝜀 . Then ‖Ad(ℎ)𝑣‖ < 𝑟 and exp(Ad(ℎ)𝑣)ℎ𝑥 ∈ N . Now, since the points ℎ𝑥 𝑗 converge to ℎ𝑥,
for large j they lie in the neighborhood K of 𝑋𝜀 to which we applied Lemma 6.6. Thus, the last claim
in this lemma imply that there exist 𝑣 𝑗 ∈ 𝔳 with 𝑣 𝑗 → 𝑣 such that exp(𝑣 𝑗 )𝑥 𝑗 ∈ N . Note that since the
values 𝑟−𝜃𝑥 𝑗 are contained in [0, ℓ], up to passing to a further subsequence, we may suppose that they
converge to 𝛼2. Clearly, 𝛼1 ≥ 𝛼2. If 𝛼1 > 𝛼2, then for large j we have 𝛼(𝑥 𝑗 ) ≥

		𝑣 𝑗		−𝜃 and it follows
that equation (6.23) holds since

		𝑣 𝑗		−𝜃 → ‖𝑣‖−𝜃 = 𝛼(𝑥). On the other hand, in case 𝛼1 = 𝛼2 we know
that for every 𝜖 > 0, for 𝑗 ∈ N large enough, we have

		𝑣 𝑗		 + 𝜖 > 𝑟𝑥 𝑗 . But since 𝑣 𝑗 → 𝑣 and 𝜖 > 0 is
arbitrary, this implies that 𝛼(𝑥) = ‖𝑣‖−𝜃 ≤ lim 𝑗→∞ 𝑟−𝜃𝑥 𝑗 = 𝛼2 = 𝛼1, as desired. �

7. Recurrence, equidistribution, topology of homogeneous measures

Using the ingredients from §§4–6, we can now give the proofs of our results on recurrence, orbit
closures, equidistribution and topology of S (Γ𝜇). The following lemma is used to extract the necessary
information from the height functions constructed in the previous section.
Lemma 7.1. Let H be a locally compact 𝜎-compact metrizable group and X a locally compact
𝜎-compact metrizable space endowed with a continuous H-action. Let 𝜇 be a Borel probability measure
on H and 𝛽 : 𝑋 → [1,∞] be a lower semicontinuous function such that there exist 𝑚 ∈ N, 𝑎 ∈ (0, 1)
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and 𝑏 > 0 such that

𝐴𝑚𝜇 (𝛽) (𝑥) ≤ 𝑎𝛽(𝑥) + 𝑏 (7.1)

for all 𝑥 ∈ 𝑋 . Suppose that for every 𝜀 > 0 the set 𝑋𝜀 = 𝛽−1 ([0, 𝜀−1]) is compact and that the set
𝑋∞ = 𝛽−1({∞}) is Γ𝜇-invariant. Then the following holds:

(i) For any 𝛿 > 0, there exists a compact subset 𝑅𝛿 ⊂ 𝑋 \ 𝑋∞ such that for any 𝑥 ∈ 𝑋 with 𝛽(𝑥) < ∞
there exists 𝑛𝑥 ∈ N with 𝑛𝑥 = 𝑂 (log 𝛽(𝑥)) such that

𝜇∗𝑛 ∗ 𝛿𝑥 (𝑅𝛿) ≥ 1 − 𝛿

for every 𝑛 ≥ 𝑛𝑥 .
(ii) For every 𝑥 ∈ 𝑋 with 𝛽(𝑥) < ∞, for 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ ΓN𝜇 , every weak* limit 𝜈 of the sequence

( 1
𝑛

∑𝑛−1
𝑘=0 𝛿𝑔𝑘 · · ·𝑔1𝑥)𝑛 of empirical measures satisfies 𝜈(𝑋 \ 𝑋∞) = 1.

The techniques going into the first part of the lemma are by now standard. The second part is basically
[10, Proposition 3.9]. Related ideas also appear in Markov chain theory (see, e.g., [68, Theorem 18.5.2]
and the references given there). We include a brief proof for convenience.

Proof. Let 𝑥 ∈ 𝑋 be such that 𝛽(𝑥) < ∞. Iterating equation (7.1), we find for every 𝜀 > 0 and 𝑛 ∈ N

𝜇∗𝑚𝑛 ∗ 𝛿𝑥 (𝑋𝑐𝜀) ≤ 𝜀

∫
𝐻
𝛽(ℎ𝑥) d𝜇∗𝑚𝑛 (ℎ) ≤ 𝜀

(
𝑎𝑛𝛽(𝑥) + 𝑏

1 − 𝑎

)
.

For the proof of (i), given 𝛿 > 0, we set 𝜀 = 𝛿 (1−𝑎)
2𝑏+2 . Then the above estimate implies that for every

𝑛 ≥ 𝑛0,𝑥 � � log 𝛽 (𝑥)
− log 𝑎 �, we have 𝜇∗𝑚𝑛 ∗ 𝛿𝑥 (𝑋𝜀) ≥ 1 − 𝛿/2. Moreover, we may choose a compact subset

𝐹 ⊂ Γ𝜇 such that 𝜇∗𝑙 (𝐹) ≥ 1 − 𝛿/2 for all 0 ≤ 𝑙 < 𝑚. Now, setting 𝑅𝛿 to be the compact set 𝐹𝑋𝜀
which, since 𝑋 \ 𝑋∞ is Γ𝜇-invariant, is contained in 𝑋 \ 𝑋∞, we find

𝜇∗𝑛 ∗ 𝛿𝑥 (𝑅𝛿) ≥ 1 − 𝛿

for all 𝑛 ≥ 𝑛𝑥 � 𝑚𝑛0,𝑥 .
For (ii), we appeal to [10, Proposition 3.9], which implies that for 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ ΓN𝜇 , for every 𝛿 > 0

there exists a compact subset 𝐾 ⊂ 𝑋 \ 𝑋∞ such that

lim inf
𝑛→∞

1
𝑛
|{0 ≤ 𝑘 < 𝑛 | 𝑔𝑘𝑚 · · · 𝑔1𝑥 ∈ 𝐾}| ≥ 1 − 𝛿/2.

Moreover, by the law of large numbers, by choosing a large enough compact set 𝐹 ⊂ Γ𝜇 we can ensure
that for 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ ΓN𝜇

lim inf
𝑛→∞

1
𝑛
|{0 ≤ 𝑘 < 𝑛 | 𝑔𝑘𝑚+𝑙 · · · 𝑔𝑘𝑚+1 ∈ 𝐹 for 0 ≤ 𝑙 < 𝑚}| ≥ 1 − 𝛿/2.

Combining the above, it follows that for the compact subset 𝑅 = 𝐹𝐾 ⊂ 𝑋 \ 𝑋∞ we have

lim inf
𝑛→∞

1
𝑛
|{0 ≤ 𝑘 < 𝑛 | 𝑔𝑘 · · · 𝑔1𝑥 ∈ 𝑅}| ≥ 1 − 𝛿

for 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ ΓN𝜇 , and we conclude using a version of the Portmanteau lemma. �

7.1. Recurrence

We first prove our results about recurrence properties of H-expanding random walks.
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Proof of Theorem 1.4. Let Z be a compact subset of 𝑋 \ N , where we recall that N = 𝐾𝐿𝑌 for a
compact subset 𝐾𝐿 of 𝐿 = 𝐶𝐺 (Γ𝜇), and let 𝛽∞ be a height function coming from Theorem 6.1 such that
𝛽∞ is bounded on Z, say 𝑍 ⊂ 𝑋𝜀 = {𝑥 ∈ 𝑋 | 𝛽∞(𝑥) ≤ 𝜀−1} for some 𝜀 > 0. If 𝑌 = ∅, we set 𝛽 = 𝛽∞.
Otherwise, we apply Theorem 6.4 to 𝑌𝑙 = 𝑙𝑌 for finitely many points 𝑙 ∈ 𝐿 such that the associated
neighborhoods𝑂𝑙 of the identity in L coming out of the theorem satisfy𝑂𝑙𝑙𝑌 ∩𝑍 = ∅ and 𝐾𝐿 ⊂

⋃
𝑙 𝑂𝑙𝑙.

The associated height functions 𝛽𝑙 (extended to all of X by the value ∞ on the complement of 𝐻𝑋𝜀)
take the value ∞ on 𝑂𝑙𝑙𝑌 and are bounded on Z. We set 𝛽 =

∑
𝑙 𝛽𝑙 , which is a lower semicontinuous

function on X with compact sublevel sets by virtue of Theorem 6.4(iii).
In both cases, we now apply Lemma 7.1(i) to the height function 𝛽. The set 𝑅𝛿 coming out of the

lemma is a compact subset of 𝑋 \ N such that for every 𝑥 ∈ 𝑋 with 𝛽(𝑥) < ∞, for 𝑛 ≥ 𝑛𝑥 with
𝑛𝑥 = 𝑂 (log 𝛽(𝑥)), we have 𝜇∗𝑛 ∗𝛿𝑥 (𝑅𝛿) ≥ 1−𝛿. Since 𝛽 is bounded on Z by construction, this estimate
holds for all 𝑛 ≥ 𝑛0 for all 𝑥 ∈ 𝑍 . If F is a compact subset of Γ𝜇 such that 𝜇∗𝑛 (𝐹) ≥ 1 − 𝛿 for all
0 ≤ 𝑛 < 𝑛0, it follows that 𝜇∗𝑛 ∗ 𝛿𝑥 (𝑀𝑍, 𝛿) ≥ 1 − 𝛿 for all 𝑛 ≥ 0 and all 𝑥 ∈ 𝑍 for the compact subset
𝑀𝑍, 𝛿 � 𝑅𝛿 ∪ 𝐹𝑍 of 𝑋 \N , where we used for the last containment that 𝛽−1 ({∞}) is Γ𝜇-invariant. �

Remark 7.2. For 𝑌 = ∅, the recurrence property in Theorem 1.4 is referred to as (R1) in [8, 31]. In the
case of a random walk given by a G-expanding probability measure on the quotient of G by an irreducible
lattice, a slightly stronger, ‘uniform’ recurrence property (referred to as (R2)) can be established by
using some results of [31].

7.2. Orbit closures and equidistribution

The proof of Theorem 1.6 is similar to the proofs of the main results in [10].

Proof of Theorem 1.6. Provided 𝑌𝑥 contains x, part (i) is an immediate consequence of (ii). Moreover,
taking a compactly supported and continuous test function, it is not hard to see that (ii) follows from
(iii) by dominated convergence.

Let us thus prove (iii) with the additional property that 𝑥 ∈ 𝑌𝑥 . For 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ 𝐻N, every weak*
limit 𝜈 of the sequence ( 1

𝑛

∑𝑛−1
𝑘=0 𝛿𝑔𝑘 · · ·𝑔1𝑥)𝑛 of empirical measures is 𝜇-stationary by the Breiman law

of large numbers (see [10, Corollary 3.3]). By Theorem 6.1 and Lemma 7.1(ii), for 𝜇N-a.e. (𝑔𝑖)𝑖 ∈ 𝐻N

every such weak* limit is a probability measure on X. We restrict to a full measure set of (𝑔𝑖)𝑖 where
both these conclusions hold and let 𝜈 be a weak* limit of the sequence of empirical measures.

Let𝑌0 be a Γ𝜇-invariant homogeneous subspace of X containing x of minimal dimension. By Theorem
1.1, every ergodic component of 𝜈 is the homogeneous probability measure associated to an element of

S (Γ𝜇, 𝑌0) � {𝑌 ∈ S (Γ𝜇) | 𝑌 ⊂ 𝑌0}.

Let𝑌 ∈ S (Γ𝜇, 𝑌0) be such that Y is not open in𝑌0. Then by minimality of dim(𝑌0), we know that 𝑥 ∉ 𝑙𝑌
for any 𝑙 ∈ 𝐿 � 𝐶𝐺 (Γ𝜇).

Let Z be an arbitrary compact subset of X, take a height function 𝛽∞ as in Theorem 6.1, and recall
that 𝑋𝜀 = 𝛽−1

∞ ([1, 𝜀−1]). By Theorem 6.4, for sufficiently small 𝜀 > 0, there is an open neighborhood O
of the identity in L and a height function 𝛽N : 𝐻𝑋𝜀 → [1,∞] satisfying the contraction property (7.1)
and such that

◦ for 𝑥 ∈ 𝐻𝑋𝜀 , 𝛽N (𝑥) = ∞ if and only if 𝑥 ∈ 𝑂𝑌 ,
◦ for every ℓ ≥ 1, 𝛽−1

N ([1, ℓ]) is a compact subset of X.

We extend 𝛽N to all of X with the value ∞ outside of 𝐻𝑋𝜀 . Then the extension satisfies the assumptions
of Lemma 7.1. Write 𝑋∞,N for the set 𝛽−1

N ({∞}) so that 𝐻𝑋𝜀 ∩ 𝑂𝑌 ⊂ 𝑋∞,N . After further restricting
to a full measure set of (𝑔𝑖)𝑖 so that Lemma 7.1(ii) holds, we thus find 𝜈(𝐻𝑋𝜀 ∩ 𝑂𝑌 ) = 0. When 𝜀 is
small enough, this implies 𝜈(𝑍 ∩ 𝑂𝑌 ) = 0. We repeat this process for the homogeneous subspaces 𝑙𝑌
for countably many 𝑙 ∈ 𝐿 such that the translations 𝑂𝑙 of the associated neighborhoods O cover L. This
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gives 𝜈(𝑍 ∩ 𝐿𝑌 ) = 0. Repeating again for countably many compact subsets Z covering X, it follows that
𝜈(𝐿𝑌 ) = 0.

Hence, in view of the countability statement in Proposition 5.1, we deduce that 𝜈(𝐿𝑌 ) = 0 holds
for every 𝑌 ∈ S (Γ𝜇, 𝑌0) that is not open in 𝑌0 (to be precise, after once more restricting to a countable
intersection of full measure sets of (𝑔𝑖)𝑖 ∈ 𝐻N, once for each Y in a countable set of representatives in
equation (5.1)). It follows that each ergodic component of 𝜈 must be a homogeneous measure of some
𝑌 ∈ S (Γ𝜇, 𝑌0) that is open in𝑌0. By [10, Lemma 2.9], these Y are pairwise disjoint so that there are only
countably many of them. This means that for some 𝑌 ∈ S (Γ𝜇, 𝑌0) open in 𝑌0 we must have 𝜈(𝑌 ) > 0.
Then necessarily 𝑥 ∈ 𝑌 . By construction of 𝜈 and Γ𝜇-invariance of Y it follows that 𝜈(𝑌 ′) = 0 for any
𝑌 ′ ∈ S (Γ𝜇, 𝑌0) distinct from Y. Hence, all ergodic components of 𝜈 are in fact equal to the homogeneous
probability measure on Y, which finishes the proof of (iii). �

Remark 7.3 (Nonaveraged convergence in law). It is a natural question, already posed by Benoist–Quint
at the end of their survey [7], whether, or under what conditions, the Cesàro average in Theorem 1.6(ii)
can be removed. Unfortunately, in the generality of our results, this question of convergence of 𝜇∗𝑛 ∗ 𝛿𝑥
towards 𝜈𝑥 seems to be out of reach with current methods. Answers are available only in certain special
cases where additional structure can be exploited. For example, in the setting of toral automorphisms,
the harmonic analytic approach used by Bourgain–Furman–Lindenstrauss–Mozes [19] allows them to
obtain the convergence of 𝜇∗𝑛 ∗ 𝛿𝑥 together with a speed depending on Diophantine properties of
the starting point x. Their approach was recently refined and generalized to some nilmanifolds in the
works [45, 46, 47] of He–de Saxcé and He–Lakrec–Lindenstrauss. Outside the realm of nilmanifolds,
quantitative results on the convergence of 𝜇∗𝑛 ∗ 𝛿𝑥 include the work of Buenger [21, §3] and Khalil–
Luethi [53], who consider some classes of measures supported on compact-by-solvable groups, and
work of the first-named author [78] on spread-out measures.

Very recently, it was observed by Bénard [4] that the nonaveraged convergence can be ensured with
some additional hypotheses using an old result of Foguel.

7.3. Topology of homogeneous measures

Here, we prove the Mozes–Shah type results regarding the weak* topology on the set of ergodic
homogeneous subspaces of X.

Let 𝐺, 𝐻,Λ, 𝑋, 𝜇, Γ𝜇 be as in Theorem 1.6, and recall that S (Γ𝜇) denotes the set of all Γ𝜇-invariant
Γ𝜇-ergodic homogeneous subspaces Y of X. Each element Y of S (Γ𝜇) carries an associated Γ𝜇-invariant
and ergodic homogeneous probability measure 𝜈𝑌 . Using this, we embed S (Γ𝜇) into the space P (𝑋)
of Borel probability measures on X and endow S (Γ𝜇) with the weak* topology induced from P (𝑋).
Also, recall that for a subset 𝑍 ⊂ 𝑋 , we let S𝑍 (Γ) = {𝑌 ∈ S (Γ) | 𝑌 ∩ 𝑍 ≠ ∅}.

The following lemma will be useful for the proof of Proposition 1.8. In the statement, given 𝑌 ∈
S (Γ𝜇), we shall say that a point 𝑦 ∈ 𝑌 is Y-generic if the conclusion of Theorem 1.6(ii) holds, that
is, if lim𝑛→∞

1
𝑛

∑𝑛−1
𝑘=0 𝜇

∗𝑘 ∗ 𝛿𝑦 = 𝜈𝑌 in the weak* topology. Note that 𝜈𝑌 -a.e. point is Y-generic by the
Chacon–Ornstein ergodic theorem.

Lemma 7.4. Let (𝜈 𝑗 ) 𝑗 be a sequence of ergodic homogeneous measures associated to subspaces
𝑌 𝑗 ∈ S (Γ𝜇) converging to a finite measure 𝜈 on X in the weak* topology. Let 𝛽 be a height function on X
satisfying the assumptions of Lemma 7.1, and denote 𝑋∞ = 𝛽−1({∞}). Suppose that there is a sequence
of 𝑌 𝑗 -generic points 𝑦 𝑗 ∈ 𝑌 𝑗 such that 𝑦 𝑗 ∉ 𝑋∞ for infinitely many j. Then 𝜈(𝑋 \ 𝑋∞) = 1.

Proof. We may assume 𝑦 𝑗 ∉ 𝑋∞ for all j. Let 𝛿 > 0. By Lemma 7.1(i), there exists a compact subset
𝑅𝛿 ⊂ 𝑋 \ 𝑋∞ such that 𝜇∗𝑛 ∗ 𝛿𝑦 𝑗 (𝑅𝛿) ≥ 1 − 𝛿 for all 𝑛 ≥ 𝑛𝑦 𝑗 . Passing to the limit in the 𝑌 𝑗 -genericity,
this implies 𝜈 𝑗 (𝑅𝛿) ≥ 1− 𝛿. Letting 𝑗 → ∞, it follows that also 𝜈(𝑅𝛿) ≥ 1− 𝛿. The conclusion follows,
since 𝑅𝛿 ⊂ 𝑋 \ 𝑋∞ and 𝛿 > 0 was arbitrary. �

Proof of Proposition 1.8. Let us first prove (ii). Let (𝜈 𝑗 ) 𝑗 be a sequence of ergodic homogeneous
probability measures associated to subspaces 𝑌 𝑗 in S (Γ𝜇) converging to the homogeneous measure 𝜈∞
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associated to 𝑌∞ ∈ S (Γ𝜇). Take a sequence of 𝑌 𝑗 -generic points 𝑦 𝑗 ∈ 𝑌 𝑗 such that 𝑍 = {𝑦1, 𝑦2, . . . } is
compact. Let 𝛽∞ be a height function from Theorem 6.1 that is finite on Z, say with 𝑍 ⊂ 𝑋𝜀 for some
𝜀 > 0 sufficiently small. Let O be a small neighborhood of the identity in 𝐿 = 𝐶𝐺 (Γ𝜇) and 𝛽N a height
function from Theorem 6.4 taking the value ∞ on 𝐻𝑋𝜀 ∩ 𝑂𝑌∞. Extending 𝛽N from 𝐻𝑋𝜀 to X using
the value ∞, we are in the setting of Lemma 7.4 and know 𝜈∞(𝑋∞,N ) = 1, where 𝑋∞,N = 𝛽−1

N ({∞}).
Thus, the lemma implies 𝛽N (𝑦 𝑗 ) = ∞ for all large j, which means that 𝑦 𝑗 ∈ 𝑂𝑌∞ since 𝑦 𝑗 ∈ 𝑍 ⊂ 𝑋𝜀 .
Since O can be chosen arbitrarily small, (ii) is proved.

Now, let us establish (i). Note that (ii) implies that for 𝑍 ⊂ 𝑋 compact, S𝑍 (Γ𝜇) is closed in S (Γ𝜇).
So we only have to exhibit a limit point in S (Γ𝜇) of a given sequence (𝑌 𝑗 ) 𝑗 in S𝑍 (Γ𝜇). Thus, we may
replace Z by a compact neighborhood and assume that the homogeneous measures 𝜈 𝑗 associated to the
𝑌 𝑗 all satisfy 𝜈 𝑗 (𝑍) > 0. Then we can find 𝑌 𝑗 -generic points 𝑦 𝑗 ∈ 𝑍 . Letting 𝛽∞ be a height function
from Theorem 6.1 that is finite on Z, say again with 𝑍 ⊂ 𝑋𝜀 , Lemma 7.4 thus implies that any limit point
𝜈 of (𝜈 𝑗 ) 𝑗 is a probability measure on X. Let us pass to a subsequence, and assume that 𝜈 𝑗 → 𝜈. Then 𝜈
is a Γ𝜇-invariant probability measure on X. By Proposition 5.1, there exists 𝑌 ∈ S (Γ𝜇) and a relatively
compact neighborhood O of the identity in L such that 𝜈(𝑂𝑌 ) > 0. We suppose that the dimension of Y
is minimal so that the latter holds. As in the first part of the proof, using a height function 𝛽N and Lemma
7.4, this implies that 𝑦 𝑗 ∈ 𝑂𝑌 for all large j. After passing to a subsequence, we have that 𝑌 𝑗 ⊂ 𝑙 𝑗𝑌∞
for some 𝑙 𝑗 ∈ 𝐶𝐺 (Γ𝜇) converging to the identity and 𝑌∞ = 𝑙𝑌 for some 𝑙 ∈ 𝐶𝐺 (Γ𝜇). Then all ergodic
components of the limit measure 𝜈 are homogeneous probability measures associated to some ergodic
homogeneous subspace 𝑌 ′ ⊂ 𝑌∞. If subspaces 𝑌 ′ � 𝑌∞ were to feature in the ergodic decomposition
with positive weight, then another application of Proposition 5.1 would imply that 𝜈(𝐿𝑌 ′) > 0 for
some 𝑌 ′ ∈ S (Γ𝜇) of lower dimension, contradicting the choice of Y. Hence, we have established
convergence of 𝜈 𝑗 to the homogeneous probability measure associated to 𝑌∞, proving compactness of
S𝑍 (Γ𝜇).

To obtain relative compactness of S𝐻𝑍 (Γ𝜇), note that by H-invariance of 𝛽−1
∞ ({∞}) for the height

functions 𝛽∞ coming out of Theorem 6.1, we know that 𝛽∞(𝑥) < ∞ for every 𝑥 ∈ 𝐻𝑍 if 𝛽∞ is chosen
to be finite on Z. Thus, Lemma 7.1(i) implies that there exists a compact subset 𝑅1/2 of X such that
S𝐻𝑍 (Γ𝜇) ⊂ S𝑅1/2 (Γ𝜇), and the latter set is compact, as shown above.

Finally, if a limit point of a sequence of probability measures in S (Γ𝜇) ∪ {𝛿∞} has a point 𝑥 ∈ 𝑋 in
its support, then a subsequence is contained in S𝑍 (Γ𝜇) for some compact neighborhood Z of x, proving
compactness of S (Γ𝜇) ∪ {𝛿∞}. �

Proof of Corollary 1.9. Clearly, S (Γ𝜇, 𝑌∞) is closed in S (Γ𝜇). In view of the last statement in Proposi-
tion 1.8(i), we only have to show that the only possible limit point of (𝑌𝑛)𝑛 inside S (Γ𝜇, 𝑌∞) is 𝑌∞. Let
Y be such a limit point. By Proposition 1.8, since 𝐶𝐺 (Γ𝜇) is assumed discrete, it follows that 𝑌𝑛 ⊂ 𝑌
for infinitely many n. By assumption, this forces 𝑌 = 𝑌∞, and we are done. �

7.4. Application to nilmanifolds

Let Λ′ be a lattice in a connected simply connected nilpotent Lie group N and let X be the compact
nilmanifold 𝑁/Λ′. The automorphism group Aut(Λ′) of Λ′ is defined to be the subset of automorphisms
of N preserving Λ′. It is well known that any abstract automorphism of Λ′ extends to an automorphism
of N, therefore defines an element of Aut(Λ′) (see, e.g., [80, §II]).

A probability measure 𝜇 on Aut(Λ′) defines a random walk on 𝑋 = 𝑁/Λ′ by nilmanifold automor-
phisms. Our results have the following immediate corollaries for such random walks. Under an affine
submanifold of X, we understand a closed subset of X that is the translate of the image in X of a closed
subgroup of N.

Corollary 7.5. Let 𝑋 = 𝑁/Λ′ be a compact nilmanifold and 𝜇 a probability measure on Aut(Λ′) with
finite first moment such that the Zariski closure H of Γ𝜇 in Aut(𝑁) is a connected semisimple group
without compact factors. Then every 𝜇-ergodic 𝜇-stationary probability measure on X is Γ𝜇-invariant,
homogeneous, and supported on a finite union of affine submanifolds.
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Corollary 7.6. Let 𝑋 = 𝑁/Λ′ be a compact nilmanifold and 𝜇 a probability measure on Aut(Λ′) with
finite exponential moments such that the Zariski closure H of Γ𝜇 in Aut(𝑁) is a connected semisimple
group without compact factors. Then:

(i) Every Γ𝜇-orbit closure in X is a finite union of affine submanifolds.
(ii) For every 𝑥 ∈ 𝑋 , for 𝜇N-a.e. (𝑔1, 𝑔2, . . . ) one has

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝛿𝑔𝑘 · · ·𝑔1𝑥 = 𝜈𝑥 ,

where 𝜈𝑥 is the homogeneous probability measure on Γ𝜇𝑥.
(iii) The set S (Γ𝜇) is compact. If 𝑌𝑛 → 𝑌∞ in S (Γ𝜇), then there exists a sequence (𝑙𝑛)𝑛 of Γ𝜇-invariant

elements in N converging to the identity such that 𝑌𝑛 ⊂ 𝑙𝑛𝑌∞ for all large n.

The above corollaries are slight extensions of [9, Corollary 1.3] and [10, Corollary 1.10], respectively,
removing the assumption that the probability measure 𝜇 is finitely supported.

To deduce these corollaries from our general theorems, one needs to exhibit an embedding 𝑋 ↩→ 𝐺/Λ
into the quotient of a real Lie group G containing Aut(Λ′) by a lattice Λ < 𝐺. In the classical case of
toral automorphisms, one has Aut(Λ′) = GL𝑑 (Z), and we may simply choose 𝐺 = SL𝑑+1(R) with its
lattice Λ = SL𝑑+1 (Z) admitting the embedding 𝑋 = (GL𝑑 (Z) � R𝑑)/(GL𝑑 (Z) � Z𝑑) ↩→ 𝐺/Λ. More
generally, we can define 𝐺 = Zcl(Aut(Λ′)) �𝑁 and Λ = Aut(Λ′) �Λ′, where Zcl(Aut(Λ′)) denotes the
Zariski closure of Aut(Λ′) inside Aut(𝑁). Then Λ is a lattice in G by Borel–Harish-Chandra [17], since
Aut(Λ′) is commensurable to the subgroup of integer points of Zcl(Aut(Λ′)) for a suitable Q-structure
on Aut(𝑁) (see [80, Theorem 2.12] and its discussion). Hence, our results apply with 𝐻 = Zcl(Γ𝜇) in
view of Proposition 3.1.

8. Birkhoff genericity

The aim of this section is to prove Theorem 1.11. Recall that H is a connected semisimple Lie group
without compact factors and with finite center, 𝐴′ = {𝑎(𝑡) | 𝑡 ∈ R} is a one-parameter Ad-diagonalizable
subgroup of H, and U an 𝑎(1)-expanding subgroup of H contained in𝐻+

𝑎 (1) . In particular, U is connected,
Ad-unipotent and normalized by 𝐴′. Moreover, having fixed a maximal compact subgroup K of H, 𝐾 ′ is
defined to be the compact group 𝐶𝐾 (𝐴′) ∩ 𝑁𝐻 (𝑈) and 𝜇 is a probability measure on 𝐾 ′𝐴′𝑈 � 𝑃 � 𝐻
with finite exponential moments satisfying

∫
𝑃
𝜆(𝑔) d𝜇(𝑔) > 0, where 𝜆 is defined by the 𝐾 ′𝐴′𝑈-

factorization 𝑔 = 𝑘𝑎(𝜆(𝑔))𝑢 for 𝑔 ∈ 𝑃. Recall also that for 𝜔 = (𝑔𝑖)𝑖 ∈ 𝑃N and 𝑛 ∈ N, we write

𝑔𝜔,𝑛 � 𝑔𝑛 · · · 𝑔1 = 𝑘𝜔,𝑛𝑎𝜔,𝑛𝑢𝜔,𝑛

for the 𝐾 ′𝐴′𝑈-factorization of 𝑔𝑛 · · · 𝑔1. All these notations and assumptions will be understood to be
in place until the end of this section.

The first lemma we prove ensures that the limit in condition (3) of Definition 1.10 exists almost surely.

Lemma 8.1. For 𝜇N-almost every 𝜔 ∈ 𝑃N, the sequence (𝑢𝜔,𝑛)𝑛 converges to some 𝑢𝜔 ∈ 𝑈.

Proof. Since U does not intersect the (finite) center of H, the restriction Ad𝐻 : 𝑈 → Ad(𝑈) is a Lie
group isomorphism. To prove the claimed convergence, we may thus assume that H is a linear group. Let
𝜔 = (𝑔𝑖)𝑖 ∈ 𝑃N. For 𝑛 ∈ N, write 𝑔𝑛 = 𝑘𝑛𝑎𝑛𝑢𝑛 its (unique) factorization into 𝐾 ′, 𝐴′ and U components.
We also set 𝑝𝑛 = 𝑘𝑛𝑎𝑛. One readily observes that the term 𝑢𝜔,𝑛 is equal to the product

𝑢𝑝𝑛−1 · · ·𝑝1
𝑛 · · · 𝑢𝑝2𝑝1

3 𝑢𝑝1
2 𝑢1, (8.1)

where we use the shorthand 𝑔ℎ = ℎ−1𝑔ℎ. In the product (8.1), a term 𝑢𝑝𝑘−1 · · ·𝑝1
𝑘 is equivalently expressed

as exp
(
Ad((𝑝𝑘−1 · · · 𝑝1)−1) (log 𝑢𝑘 )

)
. Here, the log map is well defined since U being a unipotent linear

group implies that the exponential map is a diffeomorphism from 𝔲 = Lie(𝑈) onto U. Moreover, since
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the Lie algebra 𝔲 is nilpotent, we know that exp: 𝔲 → 𝑈 is given by 𝑣 ↦→ 𝐼 + 𝑣𝑞(𝑣), where q is
a polynomial map. Therefore, to show that the product (8.1) converges for 𝜇N-almost every 𝜔, by a
general convergence criterion for infinite matrix products (see, e.g., [94, §8.10]), it suffices to show that
for 𝜇N-a.e. 𝜔, ∑

𝑘≥1

		Ad((𝑎𝑘−1 · · · 𝑎1)−1) (log 𝑢𝑘 )
		

converges, where ‖·‖ is an arbitrary matrix norm on 𝔲. We now prove this convergence. We start by
observing that for 𝑢 ∈ 𝑈 the logarithm log 𝑢 is a polynomial in u. Hence, the random nilpotent elements
(log 𝑢𝑘 )𝑘≥1 are i.i.d. and their distribution has a finite first moment. By the law of large numbers, it
follows that almost surely ‖log 𝑢𝑘 ‖ = 𝑜(𝑘). Almost surely, we thus obtain the bound		Ad((𝑎𝑘−1 · · · 𝑎1)−1) (log 𝑢𝑘 )

		 ≤ 𝑜(𝑘) max
𝛼∈Π

𝑘−1∏
𝑖=1

exp(−𝛼𝜆(𝑎𝑖))

= 𝑜(𝑘) max
𝛼∈Π

exp
(
−𝛼

𝑘−1∑
𝑖=1

𝜆(𝑎𝑖)
)
,

(8.2)

where
Π = {𝛼 ∈ R | Ad(𝑎(𝑡))𝑣 = 𝑒𝛼𝑡𝑣 for all 𝑡 ∈ R for some nonzero 𝑣 ∈ 𝔲}

is the finite set of real numbers corresponding to the weights of 𝐴′ on 𝔲. Since U is contained in
𝐻+
𝑎 (1) , we have Π ⊂ (0,∞). Together with

∫
𝑃
𝜆(𝑔) d𝜇(𝑔) > 0, it thus follows from the Birkhoff ergodic

theorem that, 𝜇N-almost surely, the last term in (8.2) decays exponentially. This gives the summability
claimed above and hence the lemma. �

Proposition 8.2. Suppose that the Zariski closure of Ad(Γ𝜇) contains Ad(𝑈). Then the probability
measure 𝜇 is H-expanding. For a discrete subgroup Λ of a real Lie group G containing H, any ergodic
𝜇-stationary probability measure on 𝐺/Λ is H-invariant. If Λ is a lattice in G, then the conclusion of
Theorem 1.6 holds with 𝑌𝑥 = 𝐻𝑥 and 𝜈𝑥 = 𝜈𝐻𝑥 .

The following observations will be useful in the proof of the previous proposition. We denote by
𝐴′
+ = {𝑎(𝑡) | 𝑡 > 0} the positive ray in 𝐴′.

Lemma 8.3. Let Γ be a subsemigroup of P such that Γ∩𝐾 ′𝐴′
+𝑈 ≠ ∅. Then there exists 𝑢 ∈ 𝑈 such that

𝑢Γ𝑢−1 ∩ 𝐾 ′𝐴′
+ ≠ ∅.

Proof. By hypothesis there exists an element 𝛾0 ∈ 𝐾 ′𝐴′
+𝑈∩Γ. Factorize 𝛾0 = 𝑝0𝑢0 with 𝑝0 ∈ 𝐾 ′𝐴′

+ and
𝑢0 ∈ 𝑈. Endow 𝔲 with some Euclidean structure. As in the proof of Lemma 8.1, the linear map Ad(𝑝−1

0 )
preserves the Lie algebra 𝔲 and any large power of it acts on 𝔲 as a contraction. Moreover, since U
is connected and simply connected, as a consequence of the Baker–Campbell–Hausdorff formula (see,
e.g., [24, §1.2]), for every 𝑢 ∈ 𝑈, the map 𝑞𝑢 : 𝔲 → 𝔲 defined by 𝑋 ↦→ log(exp(𝑋)𝑢) is a polynomial
map whose degree depends only on U and whose coefficients depend continuously on u.

Using the same notation and reasoning as in the proof of Lemma 8.1, we observe that for every 𝑛 ≥ 1,
we have 𝛾𝑛0 = 𝑝𝑛0𝑢

𝑝𝑛−1
0

0 · · · 𝑢𝑝0
0 𝑢0, with the term 𝑢(𝛾𝑛0 ) � 𝑢

𝑝𝑛−1
0

0 · · · 𝑢𝑝0
0 𝑢0 converging in U as 𝑛 → ∞.

From these facts, one deduces that there exists a ball B in 𝔲 around 0 ∈ 𝔲 such that for every 𝑛 ∈ N large
enough, the continuous map 𝑓𝑛 : 𝔲 → 𝔲 defined by

𝑓𝑛 (𝑋) = 𝑞𝑢 (𝛾𝑛0 ) (Ad(𝑝−𝑛0 )𝑋) = log(exp(Ad(𝑝−𝑛0 )𝑋)𝑢(𝛾𝑛0 ))

satisfies 𝑓𝑛 (𝐵) ⊂ 𝐵. It follows from the Brouwer fixed point theorem that 𝑓𝑛 has a fixed point 𝑋 ∈ 𝔲.
We claim that 𝑢 = exp(𝑋) ∈ 𝑈 is the desired element. Indeed, since exp(Ad(𝑝−𝑛0 )𝑋) = 𝑝−𝑛0 exp(𝑋)𝑝𝑛0 ,
we have 𝑝−𝑛0 𝑢𝑝𝑛0𝑢(𝛾

𝑛
0 ) = 𝑢 and hence 𝑢𝛾𝑛0 𝑢

−1 = 𝑢𝑝𝑛0𝑢(𝛾
𝑛
0 )𝑢

−1 = 𝑝𝑛0 ∈ 𝐾 ′𝐴′
+. �

Given 𝑔 ∈ 𝑃, we write 𝑔 = 𝑘𝑔𝑎𝑔𝑢𝑔 for its 𝐾 ′𝐴′𝑈-factorization.
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Lemma 8.4. For a subset 𝐶 ⊂ 𝑃, let 𝑈𝐶 = {𝑢𝑔 | 𝑔 ∈ 𝐶} be the set of its U-parts. If the Zariski closure
of Ad(𝐶) contains Ad(𝑈), then Ad(𝑈𝐶 ) is Zariski dense in Ad(𝑈).

Proof. Denote by Q the Zariski closure of Ad(𝑃), and observe that Ad(𝑈) is contained in the unipotent
radical 𝑅𝑢 (𝑄) of Q. Since Ad(𝐾 ′𝐴′) is a linearly reductive subgroup of Q, there is a Levi factor L of Q
containing Ad(𝐾 ′𝐴′) (see [49, Theorem VIII.4.3]). Then we have 𝑄 = 𝐿 � 𝑅𝑢 (𝑄) as algebraic groups.
This implies

Ad(𝑈) ⊂ Zcl(Ad(𝐶)) ⊂ Zcl(Ad(𝐾 ′𝐴′) Ad(𝑈𝐶 )) = Zcl(Ad(𝐾 ′𝐴′))︸�������������︷︷�������������︸
⊂𝐿

Zcl(Ad(𝑈𝐶 ))︸�����������︷︷�����������︸
⊂𝑅𝑢 (𝑄)

.

We conclude that Ad(𝑈) ⊂ Zcl(Ad(𝑈𝐶 )), which is what we needed to show. �

Proof of Proposition 8.2. After choosing a maximal connected R-split torus A in H containing 𝐴′, we
see that the assumptions of Proposition 3.7 are satisfied. Thus, 𝜇 is H-expanding. Now, let 𝜈 be an ergodic
𝜇-stationary probability measure on 𝑋 = 𝐺/Λ. By Theorem 1.1, 𝜈 is Γ𝜇-invariant and homogeneous,
and the connected component N of Stab𝐺 (𝜈) is normalized by H.

In order to prove the statement about H-invariance, we can assume without loss of generality that Γ𝜇
contains an element in 𝐾 ′𝐴′

+. Indeed, suppose that the conclusion is true for such measures; call them
special. Given an arbitrary measure 𝜇 as in the statement, by Lemma 8.3 we can find an element 𝑢 ∈ 𝑈
such that (𝜏𝑢)∗𝜇 is special, where 𝜏𝑢 denotes conjugation by u. The properties in Definition 1.10 are
preserved by this conjugation. Then 𝑢∗𝜈 is (𝜏𝑢)∗𝜇-ergodic and stationary and hence it is H-invariant.
But since 𝑢 ∈ 𝑈 � 𝐻, this implies that 𝜈 itself is H-invariant.

So let us take 𝑔0 = 𝑘0𝑎0 ∈ Γ𝜇 ∩ 𝐾 ′𝐴′
+. Then, given an arbitrary 𝑔 ∈ Γ𝜇 written as 𝑔 = 𝑘𝑔𝑎𝑔𝑢𝑔 in

its 𝐾 ′𝐴′𝑈 factorization, by considering a sequence 𝑛𝑘 such that 𝑘𝑛𝑘0 → 𝑒 as 𝑘 → ∞, we get that the
conjugates 𝑔−𝑛𝑘0 𝑔𝑔𝑛𝑘0 converge to 𝑘𝑔𝑎𝑔. This implies that 𝑘𝑔𝑎𝑔 and thus also 𝑢𝑔 belongs to Γ𝜇. In other
words, Γ𝜇 contains all of its U-parts.

We next claim that for any proper connected normal subgroup 𝑆 � 𝐻, there exists 𝑔 ∈ Γ𝜇 whose
U-part 𝑢𝑔 does not belong to S. To see this, by way of contradiction, let us suppose that all U-parts of
elements of Γ𝜇 belong to some proper normal subgroup S. Using Lemma 8.4, we deduce from this that
Ad(𝑈) � Ad(𝑆), which entails that U acts trivially in the adjoint representation of H on 𝔥/𝔰. On the
other hand, the image of 𝑎(1) in this representation has determinant one so that it cannot expand all
elements of 𝔥/𝔰, contradicting 𝑎(1)-expansion of U.

Assuming that H is not contained in N, we can apply the above with 𝑆 = (𝑁∩𝐻)◦. Take 𝑔 = 𝑘𝑔𝑎𝑔𝑢𝑔 ∈
Γ𝜇 with 𝑢𝑔 ∉ (𝑁 ∩𝐻)◦. By normality, also the U-parts of 𝑔−𝑛𝑘0 𝑔𝑔𝑛𝑘0 do not belong to (𝑁 ∩𝐻)◦. On the
other hand, as observed above, these U-parts lie in Γ𝜇 � 𝐻 ∩ Stab𝐺 (𝜈) and converge to the identity.
This is impossible, since S is the connected component of 𝐻 ∩Stab𝐺 (𝜈) and hence an open subgroup of
it. This contradiction shows that 𝐻 � 𝑁 , and hence that any ergodic 𝜇-stationary probability measure 𝜈
is H-invariant.

Finally, applying the H-invariance statement to the homogeneous measure 𝜈𝑥 from Theorem 1.6, we
see that the conclusions of that theorem hold with 𝑌𝑥 = 𝐻𝑥. �

The following elementary but key equivariance property is the final ingredient required for the proof
of Theorem 1.11.

Lemma 8.5. For 𝜇N-almost every 𝜔 = (𝑔𝑖)𝑖 ∈ 𝑃N and every 𝑛 ∈ N, we have

𝑎𝜔,𝑛𝑢𝜔 = 𝑘−1
𝜔,𝑛𝑢𝑇 𝑛𝜔𝑔𝜔,𝑛,

where 𝑇 : 𝑃N → 𝑃N, (𝑔1, 𝑔2, . . . ) ↦→ (𝑔2, 𝑔3, . . . ) denotes the shift map.

Proof. By Lemma 8.1, there exists a set Ω of full 𝜇N-measure such that for every 𝜔 ∈ Ω, the sequence
𝑢𝜔,𝑛 converges (to the limit 𝑢𝜔). Replacing Ω by

⋂
𝑖≥0 𝑇

−𝑖Ω if necessary, we may assume that 𝑇Ω ⊂ Ω.
Let 𝜔 = (𝑔𝑖)𝑖 ∈ Ω and 𝑛 ∈ N. Writing 𝑔𝑖 = 𝑘𝑖𝑎𝑖𝑢𝑖 in its 𝐾 ′𝐴′𝑈 factorization, a straightforward
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computation shows that 𝑢𝜔,𝑛 = 𝑎−1
1 𝑘−1

1 𝑢𝑇 𝜔,𝑛−1𝑘1𝑎1𝑢1. Passing to the limit as 𝑛 → ∞, we obtain
𝑢𝜔 = 𝑎−1

1 𝑘−1
1 𝑢𝑇 𝜔𝑔1. The lemma now follows by iterating the latter equality, using that 𝐴′ and 𝐾 ′

commute. �

Proof of Theorem 1.11. Suppose the measure 𝜂 is generated by the probability measure 𝜇 supported on
𝑃 = 𝐾 ′𝐴′𝑈 as in Definition 1.10. By Theorem 1.6 and Proposition 8.2, we know that for every 𝑥 ∈ 𝑋 ,
for 𝜇N-almost every 𝜔 = (𝑔𝑖)𝑖 ∈ 𝑃N, the sequence of points

(𝑔𝜔,𝑛𝑥)𝑛

is equidistributed with respect to 𝜈 = 𝜈𝐻𝑥 .
Replacing 𝐾 ′ by a subgroup, we may assume without loss of generality that 𝜋𝐾 ′ (Γ𝜇) is dense in

𝐾 ′, where 𝜋𝐾 ′ : 𝑃 → 𝐾 ′ is the natural projection map. So the action of 𝜋𝐾 ′ (Γ𝜇) on (𝐾 ′, 𝑚𝐾 ′ ) by
left translation is ergodic, where 𝑚𝐾 ′ is the Haar probability measure on 𝐾 ′. By a version of Moore’s
ergodicity theorem (see [3, Theorem III.2.5(i)]) applied to the regular representation on the Hilbert space
𝐿2

0 (𝑋, 𝜈) of square integrable functions with mean zero, the action of Γ𝜇 on (𝑋, 𝜈) is weakly mixing.
Therefore, the action of Γ𝜇 on (𝑋 × 𝐾 ′, 𝜈 ×𝑚𝐾 ′ ) given by 𝑔(𝑦, 𝑘) = (𝑔𝑦, 𝜋𝐾 ′ (𝑔)𝑘) is ergodic (cf., e.g.,
[86, Proposition 2.2]). Thus, it follows from [93, Corollary 5.5] that for almost every 𝜔 = (𝑔𝑖)𝑖 ∈ 𝑃N,
the sequence

(𝑔𝜔,𝑛𝑥, 𝑘𝜔,𝑛)𝑛

is equidistributed with respect to 𝜈 ×𝑚𝐾 ′ . Next, applying [93, Proposition 5.1], this can be upgraded to
almost sure equidistribution of

(𝑔𝜔,𝑛𝑥, 𝑘𝜔,𝑛, 𝑇𝑛𝜔)𝑛 (8.3)

with respect to 𝜈 × 𝑚𝐾 ′ × 𝜇N, where 𝑇 : 𝑃N → 𝑃N denotes the shift map. We caution here that when
the support of 𝜇 is noncompact, the above equidistribution takes place in a non-locally compact space
so that the class of test functions to consider is that of bounded continuous functions. The proof of
[93, Proposition 5.1], however, only needs minor amending to accommodate this issue; see [79, Lemma
3.9] and the short discussion before its proof. Applying the map 𝜔 = (𝑔1, 𝑔2, . . . ) ↦→ (𝑢𝜔 , 𝑔1) to the
equidistribution in equation (8.3), we conclude that, for almost every 𝜔 = (𝑔𝑖)𝑖 ∈ 𝑃N, the sequence

(𝑔𝜔,𝑛𝑥, 𝑘𝜔,𝑛, 𝑢𝑇 𝑛𝜔 , 𝑔𝑛+1)𝑛 (8.4)

is equidistributed with respect to 𝜈×𝑚𝐾 ′ × 𝜂, where 𝜂 is a probability measure on𝑈 ×𝑃 that projects to
𝜇 in the second coordinate. Again, some caution is needed at this step, since 𝜔 ↦→ 𝑢𝜔 is not necessarily
continuous. However, also this can be dealt with by considering Lusin sets and continuous extensions
coming from Tietze’s theorem as in the proof of [93, Proposition 5.2].

The rest of the proof is the same as in [93, §12]; we briefly reproduce it for the convenience of the
reader. Given 𝑓 ∈ 𝐶𝑐 (𝑋), one considers the bounded continuous function 𝜑 on 𝑋×𝐾 ′×𝑈×𝑃 defined by

𝜑(𝑥, 𝑘, 𝑢, 𝑔) =
∫ 𝜆(𝑔)

0
𝑓 (𝑎(𝑡)𝑘−1𝑢𝑥) d𝑡,

where 𝑔 = 𝑘𝑔𝑎(𝜆(𝑔))𝑢𝑔 is the decomposition according to 𝑃 = 𝐾 ′𝐴′𝑈. A direct calculation using the
invariance of 𝜈 under H shows that∫

𝜑 d(𝜈 × 𝑚𝐾 ′ × 𝜂) =
∫
𝑃
𝜆(𝑔) d𝜇(𝑔)

∫
𝑋
𝑓 d𝜈. (8.5)
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Suppose 𝜔 = (𝑔𝑖)𝑖 is a generic point with respect to the equidistribution of equation (8.4) for which
also Lemma 8.5 holds for every n. Using only the last factor P in the equidistribution, it follows that

lim
𝑛→∞

𝜆(𝑔𝜔,𝑛)
𝑛

= lim
𝑛→∞

1
𝑛

𝑛∑
𝑖=1

𝜆(𝑔𝑖) =
∫
𝑃
𝜆(𝑔) d𝜇(𝑔) > 0. (8.6)

We thus obtain, by the equidistribution (8.4),∫
𝜑 d(𝜈 × 𝑚𝐾 ′ × 𝜂) = lim

𝑛→∞

1
𝑛

𝑛−1∑
𝑖=0

𝜑(𝑔𝜔,𝑖𝑥, 𝑘𝜔,𝑖 , 𝑢𝑇 𝑖𝜔 , 𝑔𝑖+1)

= lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑖=0

∫ 𝜆(𝑔𝑖+1)

0
𝑓 (𝑎(𝑡)𝑘−1

𝜔,𝑖𝑢𝑇 𝑖𝜔𝑔𝜔,𝑖𝑥) d𝑡

= lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑖=0

∫ 𝜆(𝑔𝑖+1)

0
𝑓 (𝑎(𝑡)𝑎𝜔,𝑖𝑢𝜔𝑥) d𝑡

= lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑖=0

∫ 𝜆(𝑔𝜔,𝑖+1)

𝜆(𝑔𝜔,𝑖)
𝑓 (𝑎(𝑡)𝑢𝜔𝑥) d𝑡

= lim
𝑛→∞

𝜆(𝑔𝜔,𝑛)
𝑛

1
𝜆(𝑔𝜔,𝑛)

∫ 𝜆(𝑔𝜔,𝑛)

0
𝑓 (𝑎(𝑡)𝑢𝜔𝑥) d𝑡

=
∫
𝑃
𝜆(𝑔) d𝜇(𝑔) lim

𝑛→∞

1
𝜆(𝑔𝜔,𝑛)

∫ 𝜆(𝑔𝜔,𝑛)

0
𝑓 (𝑎(𝑡)𝑢𝜔𝑥) d𝑡,

where we used Lemma 8.5 in the third equality and that 𝜆(𝑔𝜔,𝑖+1) = 𝜆(𝑔𝜔,𝑖) + 𝜆(𝑔𝑖+1) in the fourth.
Together with equation (8.5), this implies

lim
𝑛→∞

1
𝜆(𝑔𝜔,𝑛)

∫ 𝜆(𝑔𝜔,𝑛)

0
𝑓 (𝑎(𝑡)𝑢𝜔𝑥) d𝑡 =

∫
𝑓 d𝜈. (8.7)

Finally, notice that since the random variables 𝜆(𝑔𝜔,𝑛) − 𝜆(𝑔𝜔,𝑛−1) = 𝜆(𝑔𝑛) are i.i.d. with a distri-
bution that has a finite first moment, it follows from the law of large numbers that almost surely

𝜆(𝑔𝜔,𝑛) − 𝜆(𝑔𝜔,𝑛−1) = 𝑜(𝑛). (8.8)

Now, equations (8.6), (8.7) and (8.8) together imply the Birkhoff genericity of 𝑢𝜔𝑥 with respect to
(𝑎(𝑡))𝑡>0 and 𝜈. �

9. Connections to Diophantine approximation on fractals

The goal of this section is to explain the connection between random walks and Diophantine approx-
imation on affine fractals, prove a general result (Theorem 9.3) which will imply Theorem 1.12 on
Diophantine properties of Bedford–McMullen carpets, and mention some further directions.

9.1. Weighted Diophantine approximation and Dani–Kleinbock flow

To begin with, we recall basic notions in Diophantine approximation of matrices and the connection to
homogeneous dynamics.
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9.1.1. Badly approximable matrices and Dirichlet improvability
Let 𝑚, 𝑛 ∈ N be positive integers, r = (𝑟1, . . . , 𝑟𝑚) ∈ (0, 1]𝑚 and s = (𝑠1, . . . , 𝑠𝑛) ∈ (0, 1]𝑛 be such
that

∑𝑚
𝑖=1 𝑟𝑖 =

∑𝑛
𝑗=1 𝑠 𝑗 = 1 and 𝑀 ∈ Mat𝑚×𝑛 (R) a matrix with rows 𝑀1, . . . , 𝑀𝑚. Then M is called

(r, s)-badly approximable or badly approximable for the weights (r, s) if there exists a constant 𝐶 > 0
such that

max
1≤𝑖≤𝑚

|𝑀𝑖q − 𝑝𝑖 |1/𝑟𝑖 · max
1≤ 𝑗≤𝑛

��𝑞 𝑗 ��1/𝑠 𝑗 ≥ 𝐶 (9.1)

for every (p, q) ∈ Z𝑚 × (Z𝑛 \ {0}). Otherwise, M is called (r, s)-well approximable.
One can see by Dirichlet’s principle, or by Blichfeldt and Minkowski’s convex body results, that for

every matrix 𝑀 ∈ Mat𝑚×𝑛 (R), there exist infinitely many pairs (p, q) ∈ Z𝑚 × (Z𝑛 \ {0}) such that
the left-hand side of (9.1) is bounded above by 1. As a consequence of a general form of Khintchine’s
theorem [87], the set of (r, s)-badly approximable matrices is a Lebesgue null set. However, it has
everywhere-full Hausdorff dimension; see [56, Corollary 4.5] and [57, §5.4].

Given weights (r, s), an equivalent way to express the aforementioned consequence of the Dirichlet
principle is to say that for every matrix 𝑀 ∈ Mat𝑚×𝑛 (R) and for every 𝑡 > 0, the following system of
inequalities has a solution in (p, q) ∈ Z𝑚 × (Z𝑛 \ {0}):

|𝑀𝑖q − 𝑝𝑖 | ≤ 𝑒−𝑡𝑟𝑖 and
��𝑞 𝑗 �� ≤ 𝑒𝑡𝑠 𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛).

One says that the matrix 𝑀 ∈ Mat𝑚×𝑛 (R) is (r, s)-Dirichlet improvable if there exists 𝜀 ∈ (0, 1)
such that for every 𝑡 > 0 large enough, the following system of inequalities has a solution in (p, q) ∈
Z𝑚 × (Z𝑛 \ {0}):

|𝑀𝑖q − 𝑝𝑖 | ≤ 𝜀𝑒−𝑡𝑟𝑖 and
��𝑞 𝑗 �� ≤ 𝜀𝑒𝑡𝑠 𝑗 (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛).

In the special case where the weights (r, s) are given by (m, n)—by which we mean that 𝑟𝑖 = 1/𝑚 and
𝑠 𝑗 = 1/𝑛 for all 𝑖, 𝑗—the notion of Dirichlet improvability was introduced and studied by Davenport–
Schmidt, who showed that the set of (m, n)-Dirichlet improvable matrices has zero Lebesgue measure
[26] and that every (m, n)-badly approximable matrix is (m, n)-Dirichlet improvable [27]. The former
result was generalized to arbitrary weights (r, s) by Kleinbock–Weiss [56].

9.1.2. Dani–Kleinbock flow
Let 𝐺 = PGL𝑑 (R), Λ = PGL𝑑 (Z), and set 𝑋 = 𝐺/Λ. It is easy to see that X can alternatively be
written as SL𝑑 (R)/SL𝑑 (Z), which can be identified with the space of unimodular lattices in R𝑑 via
𝑔 SL𝑑 (Z) ↔ 𝑔Z𝑑 . For every 𝜀 > 0, we define

𝐾𝜀 �
{
𝑔Λ ∈ 𝑋

����𝑔 ∈ SL𝑑 (R), max
𝑖=1,...,𝑑

| (𝑔v)𝑖 | ≥ 𝜀 for every 𝑣 ∈ Z𝑑 \ {0}
}
.

Viewing X as space of unimodular lattices in R𝑑 , 𝐾𝜀 is nothing but the subset of lattices all of whose
nonzero vectors have length at least 𝜀 in the supremum norm. The collection of sets 𝐾𝜀 is clearly
decreasing in 𝜀. For 𝜀 < 1 the set 𝐾𝜀 has nonempty interior, and for 𝜀 > 1 one has 𝐾𝜀 = ∅, as can be
seen by Minkowski’s convex body theorem from geometry of numbers. Moreover, Mahler’s compactness
criterion states that the sets 𝐾𝜀 ⊂ 𝑋 for 𝜀 > 0 are compact and that a subset of X is relatively compact
if and only if it is contained in one of the 𝐾𝜀 .

Now, let 𝑑 = 𝑚 + 𝑛 and denote by 𝑥0 the identity coset in 𝑋 = 𝐺/Λ. The Dani–Kleinbock correspon-
dence principle—observed first by Dani [25] and developed further, among others, by Kleinbock [59]
and later Kleinbock–Weiss [56]—states that, loosely speaking, the Diophantine properties of a matrix
𝑀 ∈ Mat𝑚×𝑛 (R) are encoded in the behavior of the trajectory of 𝑢𝑀 𝑥0 inside X under suitable one-
parameter diagonal subgroups of G, where 𝑢𝑀 � ( 𝐼𝑚 −𝑀

0 𝐼𝑛
). We are going to use this principle in the
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form of the following proposition. Given weights (r, s) ∈ (0, 1]𝑚 × (0, 1]𝑛 as before, let 𝑎(𝑡) denote the
one-parameter subgroup of G corresponding to 𝑎(1) = diag(𝑒𝑟1 , . . . , 𝑒𝑟𝑚 , 𝑒−𝑠1 , . . . , 𝑒−𝑠𝑛 ).
Proposition 9.1 (Dani–Kleinbock correspondence). A matrix 𝑀 ∈ Mat𝑚×𝑛 (R) is
◦ ([59]) (r, s)-badly approximable if and only if the forward-orbit {𝑎(𝑡)𝑢𝑀𝑥0 | 𝑡 ≥ 0} is relatively

compact in X, and
◦ ([56]) (r, s)-Dirichlet improvable if and only if there exists 𝜀 ∈ (0, 1) such that 𝑎(𝑡)𝑢𝑀 𝑥0 ∉ 𝐾𝜀 for

every 𝑡 > 0 large enough.
An obvious consequence of this proposition is that given weights (r, s), if the forward orbit

{𝑎(𝑡)𝑢𝑀 𝑥0 | 𝑡 ≥ 0} associated to a matrix 𝑀 ∈ Mat𝑚×𝑛 (R) is dense in X, then M is (r, s)-well
approximable and not (r, s)-Dirichlet improvable.

In fact, the ergodic theoretic approach that we adopt will allow us to establish the following finer
Diophantine property.
Definition 9.2. Given weights (r, s) and the associated one-parameter diagonal group (𝑎(𝑡))𝑡 ∈R, a matrix
𝑀 ∈ Mat𝑚×𝑛 (R) is said to be of (r, s)-generic type if the forward-orbit (𝑎(𝑡)𝑢𝑀 𝑥0)𝑡>0 equidistributes
to the Haar measure 𝑚𝑋 on X.

9.2. Matrix sponges and self-affine measures

Here, we briefly describe the iterated function system (IFS) construction of affine fractals and introduce
the subfamily of affine fractals (matrix sponges) and self-affine measures whose Diophantine properties
will be studied in the subsequent part.

9.2.1. Affine fractals
Let 𝜙 be an affine transformation of R𝐷 given by 𝜙(𝑥) = 𝐴𝑥 + 𝑏, where 𝐴 ∈ GL𝐷 (R) and 𝑏 ∈ R𝐷 .
It is called contracting if the operator norm of its linear part A with respect to the standard Euclidean
structure of R𝐷 satisfies ‖𝐴‖ < 1. We shall refer to a finite tuple (𝜙1, . . . , 𝜙𝑘 ) of contracting affine
transformations 𝜙𝑖 of R𝐷 as a contracting affine IFS. Given such an IFS, there exists a unique nonempty
compact subset K of R𝐷 satisfying K =

⋃𝑘
𝑖=1 𝜙𝑖 (K), referred to as the attractor of the IFS (𝜙1, . . . , 𝜙𝑘 ).

Putting less emphasis on the IFS, K is also called an affine fractal or self-affine set. In the particular
case where all the 𝜙𝑖 are similarities, the attractor K is also called a self-similar set.

The coding map 𝜋 associated to a contracting affine IFS is the map {1, . . . , 𝑘}N → R𝐷 defined by

𝜋((𝑖1, 𝑖2, . . . )) � lim
𝑛→∞

𝜙𝑖1 ◦ 𝜙𝑖2 ◦ · · · ◦ 𝜙𝑖𝑛 (𝑥) (9.2)

for some 𝑥 ∈ R𝐷 ; the limit is independent of x. The image of the coding map 𝜋 is precisely the
affine fractal K, and we have the following equivariance property with respect to the shift map T on
{1, . . . , 𝑘}N:

𝜋((𝑖1, 𝑖2, . . . )) = 𝜙𝑖1𝜋(𝑇 (𝑖1, 𝑖2, . . . )) = 𝜙𝑖1𝜋((𝑖2, . . . )). (9.3)

Our results on random walks on homogeneous spaces also allow us to study a more general situation
where the IFS is not required to be finite and where one can allow contraction to only take place on
average. To describe this, let I be a compact set and 𝐼 → GL𝐷 (R) �R𝐷 , 𝑖 ↦→ 𝜙𝑖 = (𝐴𝑖 , 𝑏𝑖) a continuous
map, where 𝐴𝑖 denotes the linear part and 𝑏𝑖 the translation part of 𝜙𝑖 . Let 𝜇 be a probability measure
on I. We shall refer to the couple (𝐼, 𝜇) as a contracting-on-average affine IFS if there exists 𝑁 ∈ N
such that ∫

log
		𝐴𝑖𝑁 · · · 𝐴𝑖1

		 d𝜇𝑁 (𝑖1, . . . , 𝑖𝑁 ) < 0. (9.4)

This definition does not depend on the choice of operator norm.
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Using only boundedness of the translation parts, it is not hard to see that the limit lim𝑛→∞ 𝜙𝑖1 ◦
· · · ◦ 𝜙𝑖𝑛 (𝑥) exists and does not depend on 𝑥 ∈ R𝐷 whenever the sequence (

		𝐴𝑖1 · · · 𝐴𝑖𝑛		)𝑛≥1 decays
fast enough (e.g., exponentially). Under the contraction-on-average assumption, this holds for 𝜇N-
almost every (𝑖1, 𝑖2, . . . ), as one can see using submultiplicativity of the operator norm and Kingman’s
subadditive ergodic theorem. In this case, we thus obtain a measurable map 𝜋 : 𝐼N → R𝐷 that we shall
refer to as the coding map of (𝐼, 𝜇). Note that the subset Ω of elements of 𝐼N for which the previous
limit exists satisfies 𝑇Ω ⊂ Ω and on this set the coding map 𝜋 satisfies the equivariance relation (9.3).

Finally, we shall say that an IFS (𝐼, 𝜇) of affine maps of R𝐷 is irreducible if there does not exist a
proper affine subspace W of R𝐷 such that 𝜙𝑖 (𝑊) = 𝑊 for 𝜇-almost every 𝑖 ∈ 𝐼.

9.2.2. Self-affine measures
Given a contracting-on-average affine IFS (𝐼, 𝜇), the probability measure 𝜈𝜇 = 𝜋∗𝜇

N on R𝐷 is called
the associated self-affine measure (or self-similar measure if the IFS comprises only similarities). It
is with respect to these self-affine measures that we will study the typical Diophantine behavior of
vectors in R𝐷 or more generally matrices in Mat𝑚×𝑛 (R). The measure 𝜈𝜇 is the unique stationary
probability measure for the random walk on R𝐷 given by the IFS; see [28]. In the case of a finite IFS,
that is, when 𝐼 = {1, . . . , 𝑘}, this just means that 𝜈𝜇 is the unique probability measure on R𝐷 satisfying
𝜈𝜇 =

∑𝑘
𝑖=1 𝜇(𝑖) (𝜙𝑖)∗𝜈𝜇.

For a finite contracting IFS consisting of similarities of R𝐷 , under a separation condition (see [50]),
the Hausdorff measure on the attractor K is given by a self-similar measure which is also the unique
measure on K whose pointwise dimension matches the Hausdorff dimension of the similarity fractal K.
For genuinely self-affine fractals, the situation is considerably more complicated (see, e.g., [1, 51, 71,
70] and the references therein). On the other hand, for the Bedford–McMullen carpets introduced in §1.6
and their higher-dimensional generalizations, there exists a unique ergodic shift-invariant probability
measure on {1, . . . , 𝑘}N whose pushforward 𝜈 by the coding map has full Hausdorff dimension [52].
Moreover, this measure 𝜈 is self-affine. In dimension 2, it was already explicitly constructed and used
by McMullen [67], and is referred to as the McMullen measure in the literature.

9.2.3. Matrix sponges
We now describe the family of affine fractals and self-affine measures that will be of interest to us.
Let r = (𝑟1, . . . , 𝑟𝑚) ∈ (0, 1]𝑚 and s = (𝑠1, . . . , 𝑠𝑛) ∈ (0, 1]𝑛 be such that

∑𝑚
𝑖=1 𝑟𝑖 = 1 =

∑𝑛
𝑗=1 𝑠 𝑗 .

Consider the diagonalizable one-parameter groups 𝐴′
r ⊂ GL𝑚(R) and 𝐴′

s ⊂ GL𝑛 (R) given by {𝑎r (𝑡) �
diag(𝑒𝑡𝑟1 , . . . , 𝑒𝑡𝑟𝑚 ) | 𝑡 ∈ R} and {𝑎s(𝑡) � diag(𝑒𝑡𝑠1 , . . . , 𝑒𝑡𝑠𝑛 ) | 𝑡 ∈ R} respectively. Denote by 𝐾r the
compact group 𝐶GL𝑚 (R) (𝐴′

r) ∩ O𝑚(R) and similarly for 𝐾s substituting s for r and n for m.
We identify the real vector space Mat𝑚×𝑛 (R) with R𝑚𝑛 and consider affinities 𝜙 of Mat𝑚×𝑛 (R) of

the type

𝑀 ↦→ 𝐴1𝑀𝐴2 + 𝐵, (9.5)

where 𝐵 ∈ Mat𝑚×𝑛 (R), 𝐴1 ∈ GL𝑚(R) and 𝐴2 ∈ GL𝑛 (R). We will refer to affinities of this form as
matrix affinities and use the notation (𝐴1, 𝐴2, 𝐵) to denote such a map. If a matrix affinity 𝜙 can be
written as 𝜙 = (𝐴1, 𝐴2, 𝐵) with 𝐴1 ∈ 𝑎r (𝑡)𝐾r and 𝐴2 ∈ 𝑎s (𝑡)𝐾s for some 𝑡 ∈ R, then we call it an (r, s)-
matrix sponge affinity. Given a contracting-on-average IFS (𝐼, 𝜇) of (r, s)-matrix sponge affinities, we
call the associated attractor K an (r, s)-matrix sponge.

A cautionary remark is in order about our terminology. In the literature, the terms ‘carpet’ (in di-
mension 2) or ‘sponge’ (in general dimension) are used to describe self-affine fractals associated to
IFS’s whose linear parts are simultaneously diagonalizable with nontrivial (i.e., nonscalar) diagonals.
However, the matrix sponge affinities that we just described also comprise many similarities of R𝑚𝑛.
Similarities of R𝑚𝑛 of this form are called ‘algebraic similarities’ by Simmons–Weiss [93, §8.4], which
thus form a strict subclass of matrix sponge affinities. For example, specializing to 𝑛 = 1 we can
record that the class of (m, 1)-matrix sponges contains all self-similar fractals in R𝑚 and the class of
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(r, 1)-matrix sponges contains many examples of Bedford–McMullen carpets and their higher-
dimensional analogues—the self-affine Sierpiński sponges—for suitably chosen weight vectors r.

9.3. Relation with random walks and consequences

Here, we first adapt the constructions of Simmons–Weiss [93] relating algebraic similarities with
elements of PGL𝑑 (R) to the more general setting of matrix affinities. Then, we state and prove the main
result of this section (Theorem 9.3) on Diophantine properties of matrix sponges.

9.3.1. Embedding matrix sponge affinities into PGL𝑑 (R)
Let 𝑑 = 𝑚 + 𝑛. Given a matrix affinity 𝜙 = (𝐴1, 𝐴2, 𝐵) of Mat𝑚×𝑛 (R), where 𝐴1 ∈ GL𝑚 (R), 𝐴2 ∈
GL𝑛 (R) and 𝐵 ∈ Mat𝑚×𝑛 (R), we consider the element �̂�𝜙 of PGL𝑑 (R) corresponding to the matrix

�̂�𝜙 =

(
𝐴1 0
0 𝐴−1

2

)
.

The following basic relation in PGL𝑑 (R), which is readily verified, plays a key role in transferring
the results on random walks on homogeneous spaces to the study of Diophantine properties of matrix
sponges: For 𝑀 ∈ Mat𝑚×𝑛 (R), we have

�̂�𝜙𝑢𝑀 �̂�−1
𝜙 𝑢𝐵 = 𝑢𝜙 (𝑀 ) , (9.6)

where, as before, 𝑢𝑀 = ( 𝐼𝑚 −𝑀
0 𝐼𝑛

). We set 𝑔𝜙 � �̂�−1
𝜙 𝑢𝐵 ∈ PGL𝑑 (R). Given matrix affinities 𝜙1, . . . , 𝜙𝑛,

iterating equation (9.6) yields

𝑔𝜙𝑛 · · · 𝑔𝜙1 = �̂�−1
𝜙𝑛

· · · �̂�−1
𝜙1
𝑢𝜙1 · · ·𝜙𝑛 (0) . (9.7)

9.3.2. Genericity of typical points on matrix sponges
To state the following main result of this section, recall that given a contracting-on-average affine IFS
(𝐼, 𝜇), we denote by 𝜋 the associated coding map and by 𝜈𝜇 the pushforward of the Bernoulli measure
𝛽 = 𝜇N by 𝜋.

Theorem 9.3. Let (𝐼, 𝜇) be an irreducible contracting-on-average IFS consisting of (r, s)-matrix sponge
affinities. Then 𝜈𝜇-almost every point of R𝑚𝑛 is of (r, s)-generic type; in particular, (r, s)-well approx-
imable and not (r, s)-Dirichlet improvable.

In the classical case where (r, s) = (m, n), this result corresponds to Simmons–Weiss’ [93, Theorem
8.11], which implies one of the main results of that article ([93, Theorem 1.2]). We are going to see in
the proof that the contracting-on-average assumption in the theorem above amounts to asking that the
𝜇-average of the t-parameters associated to the (r, s)-matrix sponge affinities 𝜙 in the IFS is negative.
This allows for easy checking of this condition.

Remark 9.4. The conclusion of Theorem 9.3 also holds for any measure �̃�𝜇 obtained as pushforward
of 𝜈𝜇 by an affine transformation of the linear space Mat𝑚×𝑛 (R) of the form 𝑀 ↦→ 𝛼𝑀𝛽 + 𝛾, where 𝛼 ∈
GL𝑚(R) commutes with the diagonal group 𝐴′

r, 𝛽 ∈ GL𝑛 (R) commutes with 𝐴′
s and 𝛾 ∈ Mat𝑚×𝑛 (R).

In particular, these Diophantine properties of 𝜈𝜇 are invariant under translation of 𝜈𝜇.

We will deduce the theorem above by combining Theorem 1.11, Dani–Kleinbock correspondence
and the introduced constructions. To ease notation, we will assume from now on that I is already a set
of matrix sponge affinities, with 𝜇 living thereon.

Proof of Theorem 9.3. Recall that r = (𝑟1, . . . , 𝑟𝑚) ∈ (0, 1]𝑚 and s = (𝑠1, . . . , 𝑠𝑛) ∈ (0, 1]𝑛 are such
that

∑𝑚
𝑖=1 𝑟𝑖 = 1 =

∑𝑛
𝑗=1 𝑠 𝑗 , where m and n are positive integers. Let 𝑑 = 𝑚+𝑛, and set𝐺 = 𝐻 = PGL𝑑 (R)

and Λ = PGL𝑑 (Z). Moreover, we let 𝐴′ = {𝑎(𝑡) | 𝑡 ∈ R} be the one-parameter diagonalizable
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subgroup of G containing 𝑎(1) = diag(𝑒𝑟1 , . . . , 𝑒𝑟𝑚 , 𝑒−𝑠1 , . . . , 𝑒−𝑠𝑛 ), and denote by 𝐴′
+ its positive ray

{𝑎(𝑡) | 𝑡 > 0}. Take U to be the unipotent subgroup of G given by the image of Mat𝑚×𝑛 (R) under the
map 𝑀 ↦→ 𝑢𝑀 . It is 𝑎(1)-expanding (see Example 3.9). In view of Dani–Kleinbock correspondence
and Theorem 1.11, all we need to check is that the pushforward 𝜂0 of the self-affine measure 𝜈𝜇 by the
map 𝑀 ↦→ 𝑢𝑀 is generated by 𝑎(1)-expanding random walks in the sense of Definition 1.10.

We first define the probability measure 𝜇0 on G. Given a matrix affinity 𝜙 = (𝐴1, 𝐴2, 𝐵), recall the
notation 𝑔𝜙 = �̂�−1

𝜙 𝑢𝐵 ∈ PGL𝑑 (R) introduced in §9.3.1. We take

𝜇0 � 𝑐∗𝜇, (9.8)

the pushforward of 𝜇 by the map 𝑐 : 𝜙 ↦→ 𝑔𝜙 . Then it follows from our constructions that 𝜇0 (𝑃) = 1,
where 𝑃 = 𝐾 ′𝐴′𝑈 is defined as before Definition 1.10. Moreover, we claim that the contraction-on-
average assumption implies that

∫
𝑃
𝜆(𝑔) d𝜇0 (𝑔) > 0. To see this, endow Mat𝑚×𝑛 (R) � R𝑚𝑛 with the

standard Euclidean structure and denote by ‖·‖ the associated operator norm on End(Mat𝑚×𝑛 (R)).
Given an (r, s)-matrix sponge affinity 𝜙, let us denote by 𝐴𝜙 ∈ End(Mat𝑚×𝑛 (R)) its linear part. By
definition, we may write 𝜙 = (𝐴1, 𝐴2, 𝐵) as in equation (9.5) with 𝐴1 ∈ 𝑎r (𝑡)𝐾r and 𝐴2 ∈ 𝑎s (𝑡)𝐾s for
some 𝑡 ∈ R. Observe that by construction, the t-parameter is given by 𝑡 = −𝜆(𝑔𝜙). This implies that		𝐴𝜙		 ≥ 𝑒𝜅𝑡 = 𝑒−𝜅𝜆(𝑔𝜙) ,

where 𝜅 � min𝑖, 𝑗 (𝑟𝑖 + 𝑠 𝑗 ) > 0. Plugging this inequality into the contraction-on-average property (9.4)
and observing that 𝜆(𝑔𝜙𝑁 · · ·𝜙1) = 𝜆(𝑔𝜙𝑁 ) + · · · + 𝜆(𝑔𝜙1) yields

∫
𝑃
𝜆(𝑔) d𝜇0 (𝑔) =

∫
𝜆(𝑔𝜙) d𝜇(𝜙) > 0,

hence the claim.
We now show that the irreducibility assumption entails that 𝑈 � Zcl(Γ𝜇0). As in the proof of

Proposition 8.2, we will first reduce to the case of special measures 𝜇0 for which Γ𝜇0 contains an element
of 𝐾 ′𝐴′

+. Indeed, given a general 𝜇0 as in equation (9.8), using that
∫
𝑃
𝜆(𝑔) d𝜇0 (𝑔) > 0 and Lemma

8.3, it follows that there exists 𝑢0 ∈ 𝑈 such that the pushforward by conjugation (𝜏𝑢0)∗𝜇0 is special. The
closed group generated by the support of (𝜏𝑢0)∗𝜇0 is 𝑢0Γ𝜇0𝑢

−1
0 and if the Zariski closure of this group

contains U, then that of Γ𝜇0 also contains U. Moreover, this conjugation corresponds to conjugating the
IFS by a translation so that also irreducibility is preserved. So we now suppose that 𝜇0 is special. Then
as in the proof of Proposition 8.2, for every 𝑔 ∈ Γ𝜇0 written 𝑔 = 𝑘𝑔𝑎𝑔𝑢𝑔 in its 𝐾 ′𝐴′𝑈-factorization, we
know that also 𝑘𝑔𝑎𝑔 and 𝑢𝑔 belong to Γ𝜇0 . It follows that for every 𝑔 ∈ Γ𝜇0 , the one-parameter unipotent
subgroup of U containing 𝑢𝑔 is contained in the Zariski closure of Γ𝜇0 . Now, consider the connected
unipotent group𝑉 = Zcl(Γ𝜇0) ∩𝑈 and let𝑊𝑉 be the corresponding subspace of R𝑚𝑛 under (the inverse
of) the identification 𝑀 ↦→ 𝑢𝑀 . We claim that the subspace𝑊𝑉 is invariant by the IFS of matrix sponge
affinities. Indeed, by construction, for any 𝜙 = (𝐴1, 𝐴2, 𝐵) in the IFS, the unipotent part 𝑢𝐵 of the
associated element 𝑔𝜙 belongs to V and hence 𝐵 ∈ 𝑊𝑉 . Moreover, for any 𝑔 ∈ Γ𝜇0 , its 𝐾 ′𝐴′-component
𝑘𝑔𝑎𝑔 normalizes V. In view of equation (9.6), this translates to the statement that for any 𝜙 of the IFS,
the linear part of 𝜙 leaves the subspace𝑊𝑉 invariant. It follows that the subspace𝑊𝑉 ofR𝑚𝑛 is invariant
by the IFS. Hence, by the irreducibility hypothesis, we have 𝑊𝑉 = R𝑚𝑛, or equivalently, 𝑉 = 𝑈.

It remains to check that the measure 𝜂0 coincides with the image of 𝜇N0 under the map 𝜔 ↦→ 𝑢𝜔
defined by Lemma 8.1. To do this, let 𝜔 = (𝑔𝜙1 , 𝑔𝜙2 , . . . ). By definition of the coding map (9.2) and the
map 𝜔 ↦→ 𝑢𝜔 , it suffices to observe that for every 𝑛 ∈ N, factorizing 𝑔𝜙𝑛 · · · 𝑔𝜙1 as 𝑘𝜔,𝑛𝑎𝜔,𝑛𝑢𝜔,𝑛 with
𝑘𝜔,𝑛 ∈ 𝐾 ′, 𝑎𝜔,𝑛 ∈ 𝐴′ and 𝑢𝜔,𝑛 ∈ 𝑈, we have 𝑢𝜔,𝑛 = 𝑢𝜙1 · · ·𝜙𝑛 (0) ; see equation (9.7). This finishes the
proof. �

Finally, we state and prove the corollary of the previous theorem regarding the higher-dimensional
analogues of Bedford–McMullen carpets, which was announced at the end of §1.6. These higher-
dimensional fractals are constructed by the exact analogue inR𝑚 of the procedure for Bedford–McMullen
carpets described before Theorem 1.12, now using pairwise distinct integers 𝑎1, . . . , 𝑎𝑚 ≥ 2 and a
division of [0, 1]𝑚 into an 𝑎1 × · · · × 𝑎𝑚-grid. A fractal K obtained in this way is called a self-affine
Sierpiński sponge. Analogous to the McMullen measure on a Bedford–McMullen carpet, there exists
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a natural probability measure 𝜈K on K: Identifying [0, 1]𝑚 with the m-torus and denoting by T the
toral endomorphism corresponding to the diagonal matrix 𝐴 = diag(𝑎1, . . . , 𝑎𝑚), 𝜈K is the unique
T-invariant ergodic probability measure on K of full Hausdorff dimension (see Kenyon–Peres [52]).

Corollary 9.5. Let 𝑚 ≥ 2 and 𝑎1, . . . , 𝑎𝑚 ≥ 2 be pairwise distinct integers satisfying

1
𝑚

∑
𝑗≠𝑖

log 𝑎 𝑗 < log 𝑎𝑖 <
2

𝑚 − 1

∑
𝑗≠𝑖

log 𝑎 𝑗 (9.9)

for 𝑖 = 1, . . . , 𝑚. LetK ⊂ R𝑚 be a self-affine Sierpiński sponge invariant under the toral endomorphism T
corresponding to the matrix 𝐴 = diag(𝑎1, . . . , 𝑎𝑚) such thatK is not contained in any affine hyperplane.
Then for the choice of weights

r =

(
𝑚 log 𝑎𝑖 −

∑
𝑗≠𝑖 log 𝑎 𝑗∑

𝑗 log 𝑎 𝑗

)
1≤𝑖≤𝑚

, (9.10)

the set of r-badly approximable vectors on K has measure zero with respect to 𝜈K.

This corollary directly implies Theorem 1.12.

Proof. We start by noting that K is the attractor of a finite contracting affine IFS (𝜙1, . . . , 𝜙𝑘 ), where
𝜙𝑖 : 𝑥 ↦→ 𝐴−1𝑥 + 𝑏𝑖 with translation vectors 𝑏𝑖 ∈

∏
𝑗 {0, 1

𝑎 𝑗
, . . . ,

𝑎 𝑗−1
𝑎 𝑗

}. If 𝐼 = {1, . . . , 𝑘} and 𝜋 : 𝐼N →
R𝑚 denotes the associated coding map, the proof of [52, Theorem 1.2] shows that 𝜈K = 𝜈𝜇 = 𝜋∗𝜇

N

for some probability measure 𝜇 on I of full support. Then the assumption that K is not contained in
any affine hyperplane implies that the IFS (𝐼, 𝜇) is irreducible. We wish to arrange that the 𝜙𝑖 can be
seen as (r, 1)-matrix sponge affinities. By definition, this means that we have to write the linear part
𝐴−1 = diag(𝑎−1

1 , . . . , 𝑎−1
𝑚 ) as 𝑒𝑡𝑎r (𝑡) for some 𝑡 ∈ R, where 𝑎r (𝑡) = diag(𝑒𝑡𝑟1 , . . . , 𝑒𝑡𝑟𝑚). Solving the

resulting system of equations under the constraint 𝑟1 + · · · + 𝑟𝑚 = 1 yields the weights specified by
(9.10). The condition (9.9) ensures that r ∈ (0, 1)𝑚. Hence, Theorem 9.3 applies and gives the desired
conclusion. �

We end our discussion of Diophantine approximation by mentioning that our approach has serious
limitations when trying to tackle the general problem of understanding the measure-theoretic size
of badly approximable vectors or matrices—weighted or not—in general self-affine fractals. Even
seemingly tractable cases—for example, r-badly approximable vectors on an affine fractal for which
r represents the average contraction ratio—require a further understanding of diagonal flows and,
frustratingly, remain open.

Appendix A. Epimorphic subgroups and subalgebras

In category theory, an epimorphism is by definition a morphism 𝑓 : 𝐴 → 𝐵 satisfying the right
cancellation property: 𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 implies 𝑔 = ℎ for any two morphisms 𝑔, ℎ from B to another object
of the category. In categories where morphisms are maps with certain properties between underlying
sets, the epimorphism property is equivalent to the question whether the values on the image of f
uniquely determine morphisms from B to other objects. In this case, surjective morphisms are clearly
epimorphisms. In many familiar categories, the converse, that is, that only surjective morphisms can
be epimorphisms, is also true. For example, this holds in the categories of 𝐶∗-algebras, groups, finite
groups, all Lie algebras over a field k, and finite-dimensional Lie algebras over a field k of positive
characteristic; see [12, 85]. However, there are notable exceptions. These include the categories of
finite-dimensional Lie algebras over a field of characteristic 0 and that of algebraic groups, which are
our main interest. The corresponding lines of study were initiated by Bergman [12] and Bien–Borel [13,
14], respectively, who proved the following.
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Proposition A.1.

(i) ([12, Corollary 3.2]) Let 𝔣 ⊂ 𝔤 be finite-dimensional Lie algebras over a field k. Then the inclusion
𝔣 ↩→ 𝔤 is an epimorphism if and only if in every finite-dimensional representation of 𝔤, the subspaces
annihilated by 𝔣 and 𝔤 coincide.

(ii) ([13, Theorem 1]) Let G be a Zariski connected linear algebraic group over an algebraically closed
field k, and F � G an algebraic subgroup. Then the inclusion F ↩→ G is an epimorphism if and
only if in every finite-dimensional algebraic representation of G, the subspaces of F- and G-fixed
vectors coincide.

We take this representation-theoretic characterization as the defining property of an epimorphic
subgroup of a semisimple real Lie group.

Definition A.2.

(i) Let 𝔣 be a subalgebra of a finite-dimensional real Lie algebra 𝔤. We say that 𝔣 is epimorphic in 𝔤 if
for any finite-dimensional real representation of 𝔤, the subspaces annihilated by 𝔣 and 𝔤 coincide.

(ii) Let G be a connected semisimple real Lie group. A subgroup F of G is said to be epimorphic in G
if for every finite-dimensional representation of G, the vectors fixed by F are also fixed by G.

In the literature, it has been common to only introduce and study the concept of epimorphic subgroups
for algebraic groups. Let us therefore check that our definition coincides with the usual one when the
groups involved are algebraic.

Proposition A.3. Let G be a Zariski connected semisimple real algebraic group and F a Lie subgroup of
G such that 𝐹◦ is Zariski dense in F. Suppose that F is epimorphic in G in the category of real algebraic
groups, meaning that in every finite-dimensional real algebraic representation of G, the vectors fixed by
F are also fixed by G. Then 𝐹◦ is epimorphic in 𝐺◦ in the sense of Definition A.2.

To be precise, by G being a real algebraic group we mean that 𝐺 = G(R) is the group of real points
of an underlying complex algebraic group G defined over R, and a real algebraic representation is the
restriction to real points of an algebraic representation of G defined over R. Moreover, 𝐹◦ and𝐺◦ denote
the connected components of F and G, respectively, in the Lie group topology. It is easy to see that the
converse of the proposition is also true. Finally, we remark that F is epimorphic in G in the category of
real algebraic groups if and only if F is epimorphic in G in the category of complex algebraic groups.

The idea of the proof of the proposition above is to pass to the Lie algebra level, where all represen-
tations are algebraic thanks to semisimplicity. The following two lemmas enable this step.

Lemma A.4. Let G be a connected semisimple Lie group and F a closed subgroup of G. If 𝔣 = Lie(𝐹)
is an epimorphic subalgebra of 𝔤 = Lie(𝐺), then F is epimorphic in G.

Proof. A representation of G naturally induces a representation of its Lie algebra. A vector that is F-
fixed on the Lie group level is then 𝔣-annihilated on the Lie algebra level. Therefore, such vectors are
annihilated by 𝔤 and hence fixed by G, since G is connected. �

Lemma A.5. Let F and G be as in Proposition A.3. Then 𝔣 = Lie(𝐹) is an epimorphic subalgebra of
𝔤 = Lie(𝐺).

Proof. If 𝔣 is not an epimorphic subalgebra of 𝔤, then using complete reducibility of 𝔤-representations,
we can find a nontrivial irreducible representation 𝜌 : 𝔤 → 𝔤𝔩(𝑉) such that the subspace

𝑉0 = 𝑉 𝔣 = {𝑣 ∈ 𝑉 | 𝜌( 𝑓 )𝑣 = 0 for all 𝑓 ∈ 𝔣}

is nonzero. Let 𝔤C and𝑉C be the complexifications of 𝔤 and V, respectively. It follows from the discussion
in [74, §8] (Theorem 1 and Corollary 1) that either (1) 𝔤C acts irreducibly on𝑉C, or (2) V has a complex
structure and 𝔤 acts by C-linear transformations. In both cases, we thus obtain an irreducible complex
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representation of 𝔤C (either on 𝑉C or on V), which we denote by 𝜌C. We also set 𝑘 = R in the first case
and 𝑘 = C in the second, and record that since 𝔤 acts k-linearly, the subspace 𝑉0 is k-invariant.

We claim that there exists 𝑛 ∈ N such that the tensor product representation 𝜌⊗𝑘𝑛 of 𝔤 lifts to a real
algebraic representation of G. Assuming the claim and using that 𝐹◦ is Zariski dense in F, we find that
𝑉 ⊗𝑘𝑛

0 is a nonzero F-fixed subspace of 𝑉 ⊗𝑘𝑛. Since F is an epimorphic subgroup of G in the algebraic
category, the space 𝑉 ⊗𝑘𝑛

0 is G-fixed. It follows that 𝔤 annihilates 𝑉 ⊗𝑘𝑛
0 , hence 𝔤 annihilates 𝑉0. This

contradicts the assumption that (𝜌,𝑉) is a nontrivial irreducible representation, and thus establishes the
statement of the lemma.

It remains to prove the claim. Let G be a Zariski connected semisimple complex algebraic group
defined over R such that 𝐺 = G(R). Then 𝔤C is the Lie algebra of G. By [23, Corollary A.4.11] there is
a simply connected algebraic cover G̃ of G defined over R.

In case (1), since the representation 𝜌C : 𝔤C → 𝔤𝔩(𝑉C) is algebraic by semisimplicity, it lifts to an
irreducible algebraic representation G̃ → GL(𝑉C) defined over R (with respect to the real structure on
𝑉C given by V). The kernel N of the covering map G̃ → G is finite and central. By Schur’s lemma and
irreducibility, N thus acts on 𝑉C by scalar multiplication by roots of unity. Therefore, there exists 𝑛 ∈ N
such that N acts trivially on 𝑉 ⊗C𝑛

C
. Since the representation of G̃ on 𝑉 ⊗C𝑛

C
is defined over R, we deduce

that it induces a real algebraic representation of G on 𝑉 ⊗𝑘𝑛 = 𝑉 ⊗R𝑛.
In case (2), 𝜌C : 𝔤C → 𝔤𝔩(𝑉) lifts to an irreducible algebraic representation G̃ → GL(𝑉). By the

same argument as in the first case, for some 𝑛 ∈ N the kernel N of the covering map acts trivially on
𝑉 ⊗C𝑛. Hence, the action of G̃ on 𝑉 ⊗𝑘𝑛 = 𝑉 ⊗C𝑛 factors through an algebraic representation of G. By
restriction of scalars, we can view G and GL(𝑉 ⊗C𝑛) as groups of real points of algebraic groups defined
over R. Composing the map 𝐺 → G with the representation of G on 𝑉 ⊗C𝑛 we obtain the desired lift of
𝜌⊗𝑘𝑛. �

Proof of Proposition A.3. By Lemma A.5, 𝔣 = Lie(𝐹) is an epimorphic subalgebra of 𝔤 = Lie(𝐺).
Then Lemma A.4 implies that 𝐹◦ is epimorphic in 𝐺◦ in the sense of Definition A.2(ii). �
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