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Abstract. In this paper we present the results of our new classification of asteroid families,
upgraded by using catalog with > 500, 000 asteroids. We discuss the outcome of the most recent
update of the family list and of their membership. We found enough evidence to perform 9 merg-
ers of the previously independent families. By introducing an improved method of estimation of
the expected family growth in the less populous regions (e.g. at high inclination) we were able
to reliably decide on rejection of one tiny group as a probable statistical fluke. Thus we reduced
our current list to 115 families. We also present newly determined ages for 6 families, including
complex 135 and 221, improving also our understanding of the dynamical vs. collisional families
relationship. We conclude with some recommendations for the future work and for the family
name problem.
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1. Introduction
In our previous work (Milani et al. 2014, hereinafter referred to as Paper I), we have

established methods for the classification of asteroids into families, capable of handling
very large data sets of proper elements (for 336, 319 numbered main belt asteroid) and
of updating the classification in a semiautomatic way whenever the data set is expanded.
Indeed in Knežević et al. (2014), hereinafter referred to as Paper II, we have already
expanded the data set to proper elements for 384, 336 numbered asteroids; the number
of family members increased from 87, 095 to 97, 440. Now we have further expanded the
data set to proper elements for 406, 251 numbered and 99, 475 multiopposition asteroids,
thus finding 121, 448 family members (see Section 2.1).

Such large numbers may be considered a technical achievement, but the large amount
of information in the data we use is not a scientific goal in itself: it is a tool to be used to
increase our level of understanding of the dynamical and collisional evolution of the main
asteroid belt. What matters is not the large number of families, but the number of those
for which we have achieved a rational model of the collisional processes involved in the
family formation and of the successive dynamical evolution. Of course a high confidence
level understanding is possible only for families large enough, in terms of the number of
members, to allow for statistically significant derivation of basic quantities, including the
minimum number of collisions and the age of each one of them, and in this the large data
set plays an important role. As an example in Spoto et al. (2015), hereinafter referred to
as Paper III, we have computed 37 ages for 34 families, and we have identified at least
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Table 1. Increase of the proper elements sets between those used in Paper I and the present
paper: for each zone, the range of values in proper a, the constraints in proper sin I , the number
in Paper I (numbered asteroids only), the numbered asteroids in this paper, the multiopposition
added in this paper, the percentage of increase between the Paper I and the total used in this
paper.

Zone Range a, au sin I Paper I Numbered Multiopp % inc.

1 1.600 ÷ 2.000 > 0.3 4, 249 5, 306 3, 017 96
2 2.065 ÷ 2.501 < 0.3 115, 004 135, 807 28, 334 43
2h 2.065 ÷ 2.501 > 0.3 2, 627 3, 221 973 60
3 2.501 ÷ 2.825 < 0.3 114, 510 139, 450 34, 421 52
3h 2.501 ÷ 2.825 > 0.3 3, 994 4, 586 1, 760 59
4 2.825 ÷ 3.278 < 0.3 85, 221 105, 284 26, 316 54
4h 2.825 ÷ 3.278 > 0.3 7, 954 9, 097 3, 569 59
5 3.278 ÷ 3.700 all 991 1, 346 284 64
6 3.700 ÷ 4.000 all 1, 420 1, 763 547 63

Tot 336, 319 406, 251 99, 475 50

7 cases in which the correspondence between dynamical families, identified by number
density contrast in the space of proper elements, and the collisional families, formed by
a single collision at a single time, is not one to one.

In this paper we exploit the larger data set to push forward our understanding of the
asteroid collisional and dynamical history. First, we solve a number of ambiguities due to
intersections of two families: in most cases, the solution we adopt is to consider a smaller
family as a satellite family to be merged into a larger one; the terms in italic are defined
in Section 2.2. Then we use the increase in number of members of the families, as a
consequence of the larger data set of proper elements, as a tool to assess the reliability of
the smallest families (Section 2.3). In Section 3 we compute several new ages, in particular
for families enlarged beyond a critical number of members, and for complex families, for
which only some of the generating events can be dated. In Section 4 we draw some
conclusions, in particular on the efficiency of our methods to detetct and date families of
different ages, and on the problem of comparing different family classifications.

2. A large classification update
2.1. The extended data set and the automatic update

Because of observational selection effects, by adding recently numbered asteroids and
others with good orbits but not yet numbered, we are increasing the proportion of smaller,
darker, more distant, for whatever reason less observable objects. Main belt asteroids are
comparatively less observed either at high inclination or at larger distance from the Sun
(the latter also are on average darker) Before applying the Hierachical Clustering Method
(HCM) Zappala et al. (1990) we subdivide the main belt asteroids in zones (see Table 1),
finding that the higher percentage of relative increase due to adding recently numbered
and multiopposition asteroids, between the data set of proper elements used in Paper I
and in this paper, occurs especially in zone 1, but also in the zones 5 and 6 and in the
high inclination zones 2h, 3h, and 4h.

Given this increased data set of proper elements, we have used the same core families
and small but independent families, for a total of 125, obtained in Paper II, and attached
to them the asteroids with distance in the proper elements space up to the maximum
used in the previous classification. This procedure is entirely automatic, and thanks to
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an advanced algorithm (with less than quadratic complexity) takes just an hour of CPU
time on a standard workstation. The output is a new classification with still 125 families
but 121, 480 members.

2.2. Intersections and families to be merged
In the new classification, after the automatic attachment step described in the previous
subsection, the attachement of new members may result in a single asteroid belonging to
two families: there are 36 such intersections between different families, up from 22 that
remained unsolved after the previous run (Paper II). The question is whether these addi-
tional cases of asteroids classified in two different families indicate that the list of families
should be changed: this procedure is not automatic, but requires a careful discussion. The
outcome of such a procedure may be to decide that a larger family has a satellite family,
formed by the statistical fluctuations of the number density but not requiring a separate
collisional event. In this case the intersection lead to a merge, in which the smaller family
disappears from the list of families and the larger one incorporates all the members of
the smaller one.

We have checked each single case by using the graphic visualizer of asteroid families
provided at the AstDyS site†, as well as other graphical tools, in particular to establish
whether the two families with intersections have been formed by a single or separate
collisional events. This also involves inspecting the same kind of V-shape plot used to
estimate family ages, as in Paper III, but formed by a hypothetical merger of the two
families. After this analysis, we propose the following modifications to the list of families;
we next discuss mergers we have not accepted and dubious cases.

2.2.1. Proposed family mergers
We propose performing 9 family mergers.
• Family of (480) Hansa with 34052 by 2 intersections, box‡ of 34052 included 100%

in the one of 480; now this family has 1, 327 members, and has been promoted to big
family (by which we mean with > 1, 000 members).

• Family of (1040) Klumpkea with 29185 by 1 intersection. 29185 is mostly included
in the box of 1040, but for sin I it extends to values slightly larger than 0.3; family 29185
was found in an HCM run limited to zone 4h. Thus the separation of these two families
could be an artifact of the boundary splitting zone 4 at sin I = 0.3.
• Family (135) Hertha with 7220, 1 intersection; 7220 is not a family, but the path of

transport away from family 135 along the 1/2 M resonance. The family 7220 was found
by HCM due to a chaining effect.
• Family of (4) Vesta with 63 and 3489, 1 intersection each, 100% in the box. 63 is

somewhat higher in proper e than the “high eccentricity” Vesta family (as defined in
Paper I), but this could be due to transport along the 3-body resonances 2J+3S-1 and
4J-2S-1. Note that this merge implies that (63) Ausonia is an interloper, because it is
too big to belong to a cratering family.
• Family of (15) Eunomia with 173 by 6 intersections; however (173) Ino is a large

interloper, with IRAS albedo 0.0642. The members of family 173 extend the range of
proper a of the family 15 to higher values beyond the 8/3 J resonance, but they do
not change significantly the age computation from the OUT side as done in Paper III.
The proper e, sin I of the members of family 173 are affected by passage, during the
Yarkovsky secular drift towards larger proper a, through the strong resonance 8/3 J;

† Available at http://hamilton.dm.unipi.it/astdys2/Plot/
‡ By box, as in Paper I, we mean the minimum parallelopipedon in the proper a, e, sin i space

containing all the family members.
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this is consistent with the small number of members of family 15 for a larger than the
resonant value.
• Family of (10) Hygiea with 22241 by 2 intersections; 22241 100% in the box of 10.
• Family of (10955) Harig with 19466 by 1 intersection, also single V-shape with

compatible ages (see paper III). The V-shape is asymmetric in that the OUT side is
much shorter, possibly terminated by the 3J − 1S − 1 resonance.
• Family of (4203) Brucato with 20494 by 2 intersections. There is a group of small/tiny

high I families (4203+20494, 10369, 23255) close in proper elements space: they could,
with more data, eventually merge into a single, widely dispersed (thus very old) family.

2.2.2. Rejected family mergers
We believe the following case can not be solved by merging the intersecting families.
The family of (1726) Hoffmeister has 1 intersection with the family of (110) Lydia. Such

a merge would assemble a family with a shape in proper elements space very difficult
to be modeled as the outcome of a single collision, and with no recognizable V-shape in
the (a, 1/D) plane. (110) Lydia and (1726) Hoffmeister also have very different albedos
and taxonomy. Novaković et al. (2015) found that a portion of the Hoffmeister family
is affected by the linear secular resonance s − sc with (1) Ceres. This affects the proper
sin I of the members of family 1726 with lower values of proper a, overlapping the range
in a of the family 110, thus creating a bridge between the two families.

2.2.3. Dubious cases
In the following 8 cases of intersection the available evidence is not enough to decide

a merger, thus it is necessary to wait for more data.
• Family of (135) Hertha with 6769 by 2 intersections; difference in sin I cannot be

explained by the 1/2 M resonance.
• Family of (10) Hygiea with 1298 by 2 intersections: 1298 is too far in proper sin I.
• Family of (5) Astraea with 4945 by 1 intersection: we plan to address this case in

our future work.
• Family of (2076) Levin with 298, 2 intersections, and 883, 1 intersection. The age

computed in Paper III refers to the family of (2076) Levin, but merging the family of
(298) Batistina would not change the V-shape, thus the age estimate. To the contrary,
the slope of the 883 family, although weakly determined, is not consistent with the same
age. Merging these three families would not remove the difficulty of building a consistent
model for the collisional formation of the whole complex.
• The family of (221) Eos has 8 intersections with family 507, which extends to much

larger values of proper a; also 1 intersection with each of 21885 and 31811, forming a
protuberance in the direction of increasing a. However, the V-shape resulting from these
mergers would give an extremely large age from the OUT side, based upon a too small
number of fit points. See further discussion on this in Section 3.2. Unfortunately the
physical observations of family 507 members are too few and do not clearly indicate a
prevalent taxonomy, thus they do not help in solving this problem.

In conclusion, we apply 9 mergers, thus removing 17 intersections. We leave 19 inter-
sections (in part different from the ones of the previous update) as problems to be solved
in the future. Note that the complex families of Eos and Baptistina are responsible for
the majority, namely 12, of the remaining intersections.

2.3. Significance of the smallest families
Another non-automatic step in the classification update procedure is to monitor the in-
crease in membership of the families. If the increase in the size of the catalog of proper
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Table 2. The families with < 50 members in the current classification, and comparison with
the number of members in a previous classification. For each family we provide no. of asteroids
in the box (enlarged by a factor 3 in all directions) surrounding the family from the catalog of
Paper I, and from the catalog of the current paper, total no. of members in the classification of
Paper I, and of this paper, the expected number for the new membership, and a comment (see
text for the codes).

Family Box I Box II Tot. I Tot. II Exp Comm

7468 76 100 45 48 59 -!
2 88 112 38 47 48
3438 106 158 34 42 51 -
4203 201 296 34 47 50 m
116763 24 58 13 33 31 +
909 26 34 24 32 31 +
10369 113 181 17 28 27 +
7605 21 45 12 26 26
5931 263 373 19 25 27
260 27 44 15 25 24 +
58892 215 317 14 21 21
22805 126 200 17 21 27 -
45637 42 54 15 19 19
3561 40 52 15 19 20
1101 78 86 17 18 19 -
69559 27 44 12 17 20
40134 32 46 13 17 19
3025 117 136 16 17 19 -!
14916 50 59 16 17 19 -!
6355 75 95 13 14 16 -!
10000 53 93 13 14 23 r
23255 67 92 10 13 14
10654 46 53 13 13 15 -!

elements is large, as in this paper with 50% increase (mostly due to addition of multi-
opposition asteroids), then we would expect all families to increase their membership,
on average by roughly the same percentage. Table 1 shows that this increase should be
somewhat larger in some regions, especially the ones at high inclination and beyond the
2/1 J resonance. On the other hand, the high inclination regions have lower and quite
non homogeneous number densities, and they also contain most of the families we rated
as tiny (with less than 30 members) in Paper I, which are marginally significant with
respect to the Montecarlo based acceptance criterion of the HCM. Thus we must use
the local rates of expected increase of added members instead of the regional ones, as a
criterion for confirmation of the significance for these marginal cases.

The local expected number of family members, given in the last column of Table 2,
is thus obtained by estimating the increase in number of asteroids in an enlarged area
around a family. More precisely, the family box defined in Table 6 of Paper I, has been
expanded by 100%, in all six directions in the 3D space of proper elements. Thus, the
length of every box side defined in this way is three times bigger in the semi-major axis,
eccentricity and sine of inclination, than that of the original family box, and the total
volume of the enlarged box is 27 times larger than for the family box. This choice of the
size for the enlarged box is arbitrary, but we consider it to be a plausible compromise
between local and global change in asteroid number density. The expected number of
family members in the updated classification is then determined as an increase of the
number of members in the family from the old catalog, proportional to the corresponding
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increase of the number of asteroids in the enlarged box from the old to the new catalog
of proper elements. This has to be compared to the actual increase in family membership
between the Paper I classification and the present one.

In Table 2 we show the increase of membership for all the families with < 50 members
in the new classification; 50 is an arbitrary boundary, large enough to show the increase
of the former tiny families†. As expected this Table shows very different behaviors: 4
tiny families (marked with + in the comment column) have increased even more than
expected, 9 have grown in an acceptable way (> 1/2 of expected): all these are likely
to be real families (blank in the comment column). Three of them increased between
1/3 and 1/2 of expected: these are suspect flukes to be monitored in the future updates
(minus in the comment column). Other tiny families proposed in 2014 have been merged:
3 to larger families (thus they are not in the table) and 2 together (into family 4203,
marked m, which has also grown satisfactorily).

There are cases in which we prefer to suspend judgment, as an example for family 14916
which has grown negligibly. It is located at high proper e and sin I, very close to the family
of (2) Pallas. In this region families are subject to much stronger perturbations, thus it
is expected that any family would be very strongly depleted by dynamical instabilities,
especially those resulting from cratering like (2) Pallas. Still, the Pallas family has grown
as expected. Anyway, the increase by 1 member when the statistical prediction is 3 is
affected by small number statistics and does not allow to propose removal of 14916 from
the list of tiny families. Three similar cases with small growth < 1/3, but with too small
numbers, are 3025, 6355 and 10654‡. All four cases in this class are marked by a minus
with exclamation mark: we expect that later, if the the lack of growth is confirmed, some
of these may be removed too.

This leaves a single case formerly proposed as tiny family with statistically significant
lack of increase, namely family 10000, which has grown by 1 member only, while the
expected number was 10. The most likely interpretation is that this case was a statistical
fluke, which has passed the Montecarlo significance test by few members: this is consistent
with the statistical nature of the HCM method. Thus we are removing this one, marked
r in the comment column, from the classification.

The formerly proposed family 7468 has grown by only 3 members, while the expected
increase was 14. However, this family is bounded in proper a by the 9/4 resonance with
Jupiter on the IN side, by the 11/5 resonance on the OUT side. Thus the growth of the
membership might be limited to a rate lower that expected from the statistical argument.

We have also checked among all the other families with between 30 and 50 members
in Paper I finding that most have grown in number of members as expected or at least
> 1/2 of what was expected, in only 3 cases by between 1/3 and 1/2. We have found
only one critical case, family 3811 which has grown by 9 out of 30 expected: this case is
left as dubious, because it also belongs to an especially unstable region just outside of
the 3/1 resonance with Jupiter. In conclusion, we propose for now to remove only one of
the tiny families, but there are 3 to 5 other suspect cases which have to be monitored in
the next updates with the goal of reaching a reliable conclusion.

Of the 25 tiny families listed in Paper I, 3 have increased their membership above
30, 2 have been merged together, 3 have been merged in larger families, and 1 has been
removed: only 16 tiny families (with � 30 members) are left, and by using larger catalogs
of proper elements we might be able to further reduce this number. Taking into account

† Family 895 has grown from 25 to 64 members, thus is the only former tiny family not shown
in the table.

‡ These three families, together with 1101, form a cluster of neighboring families at high
proper I separated only in proper e. They could hint at a depleted ancient family.
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Figure 1. The double V-shape for the family of (569) Misa reveals the subfamily of (15124)
2000 EZ39. The ⊕ signs indicate outliers removed from the fits for the two central slopes, that
is asteroids belonging to the larger family but not to the subfamily.

all the mergers and the removals, we have decreased our list of families from 128 in Paper
I to the current 115.

3. Family ages
To estimate family ages, we use the method introduced in Paper I and improved in

Paper III, based on V-shape slopes in the proper a, 1/D plane (D diameter, in km). This
procedure is summarized at the beginning of Section 3.2.

3.1. Multiple collisions, multiple V-shapes
It is a fact that the V-shape method, when applied without the prejudice that each dy-
namic family (found as density contrast in the space of proper elements) must correspond
to one and only one collisional family (that is, a single originating collision, with a single
age), results in many cases with two ages. In the discussions we had at the symposium,
many were puzzled by the fact that two collisions do not result in a W-shape.

The answer is that in some cases a W-shape is actually visible, and all 4 sides are
used in the fit for slopes, in other cases some of the sides are either partially or totally
obliterated by the superposition of the substructures. In the case of the family of (569)
Misa there are indeed 4 slopes, although the one with lowest a results in a poor accuracy
fit because of too few data points (Figure 1). A similar case occurs for the family of (847)
Agnia with the (3395) Jitka subfamily, see Paper I [Figure 4].

For the family of (15) Eunomia (Figure 2) the ratio of the inverse slopes on the two
sides is 0.57± 0.05 (that is the OUT side at higher a corresponds to a much younger age
that the IN side at lower a), thus the difference in age is statistically very significant.
Nevertheless, only 2 slopes have been fit, although the OUT one is based essentially only
on data points with proper a > 2.67 au. For 2.62 < a < 2.67 it would be possible to fit a
third slope (as shown by an additional dark line in the plot) which can be interpreted as
the OUT slope for the family with older age, and would be consistent with the age from
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Figure 2. The asymmetric V-shape for the family of (15) Eunomia reveals the presence of a
younger subfamily in the far OUT side. However, the region with 2.62 < a < 2.67 au shows
a segment of the OUT side of the V-shape for the older cratering event. Lighter lines are the
V-shape obtained in iterations of the procedure, the darker ones are the final result after outlier
removal; outliers are marked with a ⊕ symbol.

the IN slope. The fourth side of the W, the IN side for the younger family, is obliterated
by the superposition of the two V-shapes. Another example is the family of (4) Vesta,
see Paper I [Figure 5], in which the OUT side of the younger family (with low a) is
partially obliterated and the IN side of the older one is fully obliterated by the strong
superposition of the two families, as shown in Paper I [Figure 12].

3.2. Additional family ages

We have been able to compute 6 new ages. For each one of them, we have followed the
same steps of the procedure as in Paper III.
• Delimitation of the fit region in the (a, 1/D) plane, Table 3; this step is necessary

because most families are truncated in the proper a range by mean motion resonances,
and the usable V-shape is only the portion with 1/D below the truncation level. The
“cause” of the truncation, as given in Table 3, thus contains the integer coefficients of
the relevant mean motion resonance; when no truncation is found down to very small
sizes (below the completeness limit for discovery) we use the acronym FB.
• Estimation of the average and standard deviation (STD) for the family albedo,

Table 4; the average is used to compute D from the absolute magnitude H, the STD
appears in the error model for the fit of slopes.
• Determination of inverse slopes of the V-shapes, with standard deviation from the

fit, Table 5; also the ratio of the two results for the two sides, when available, used to
assess the presence of two collisional families.
• Selecting data for the Yarkovsky calibration, Table 6; the calibration formula is from

(Paper III, Section 4.1).
• Age estimation for the families, Table 7; includes the adopted Yarkovsky calibration,

the STD due to the fit, the STD due to the calibration and the combined STD.
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Table 3. Fit region: family number and name, choice, cause of the family truncation on the left,
minimum value of proper a, minimum value of the diameter selected for the inner side; cause for
truncation on the right, maximum value of proper a, minimum value of the diameter selected
for the outer side. FB stands for the Family Box.

number/ cause min min cause max min
name pr. a D IN pr. a D OUT

221 Eos 7/3 2.96 6.25 FB? 3.14 3.33
1040 Klumpkea 11/5 3.08 4.00 5J-2S-2 3.18 4.00
1303 Luthera FB 3.2 10.00 2/1 3.235 10.00

302 Clarissa FB 2.385 1.18 FB 2.42 1.54

650 Amalasuntha FB? 2.29 2.22
752 Sulamitis 2/1M 2.42 3.33

Table 4. Family albedos: number and name of the family, albedo of the parent body with
standard deviation and code of reference (W for WISE, and I for IRAS), mean and standard
deviation of the WISE albedo, by using only data with S/N > 3.

number/ albedo largest albedo
name value STD ref mean STD

221 Eos 0.165 0.034 W 0.157 0.050
1040 Klumpkea 0.239 0.048 W 0.204 0.100
1303 Luthera 0.052 0.009 W 0.053 0.010

302 Clarissa 0.052 0.010 I 0.054 0.020

650 Amalasuntha 0.027 0.002 W 0.060 0.020
752 Sulamitis 0.033 0.005 W 0.055 0.010

Table 5. Slopes of the V-shape for the families: family number/name, number of members of
dynamical family, side, slope (S), inverse slope (1/S), standard deviation of the inverse slope,
ratio OUT/IN of 1/S, and standard deviation of the ratio.

number/ no. side S 1/S STD ratio STD
name members 1/S ratio

221 Eos 14376 IN -2.063 -0.485 0.022
OUT 1.955 0.512 0.044 1.05 0.10

1040 Klumpkea 1950 IN -4.429 -0.226 0.025
OUT 4.494 0.223 0.048 0.99 0.24

1303 Luthera 251 IN -6.465 -0.155 0.014
OUT 6.633 0.151 0.019 0.97 0.15

302 Clarissa 222 IN -27.170 -0.037 0.007
OUT 33.6409 0.030 0.005 0.81 0.16

650 Amalasuntha 1598 IN -1.992 -0.502 0.052
752 Sulamitis 188 IN -4.633 -0.216 0.023

All the notations and symbols in the tables are the same as in Paper III [Tables 1-12];
the families are partitioned in three groups: fragmentations, young (that is age < 100
My), and one sided; the group of cratering is represented among the 6 new ages only by
the family 302, which is also young, and by family 752, which is also one-sided.
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Figure 3. V-shape for the family of (221) Eos. A bulge below the fit line around proper
a = 3.068 au may be linked with the large C-type asteroid (423) Diotima.

Comments
• Family of (221) Eos: this appears to be a very complex dynamical family, with

number density changing wildly as a function of proper a. Nevertheless, a well-defined
single V-shape is visible in Figure 3, and indeed a good fit can be obtained for both
the IN and the OUT slope, with ratio of the OUT and IN inverse slopes 1.05 ± 0.10.
This suggests that most of the members are from a single collisional event. Note that
some of the scattered points in the bottom right corner of the plot are from family 507,
thus merging 507 into 221 would imply a model with one additional collision for the Eos
family.
• Family of (1040) Klumpkea: the OUT slope is less well determined than the IN

slope, this should be due to the 2/1J mean motion resonance. Still the two slopes are
well consistent, implying a single collision origin.
• Family of (1303) Luthera: has 251 members in the new classification, which is barely

enough for the reliable use of the V-shape method. Still the two slopes are well consistent.
• Family of (302) Clarissa: although it has still only 222 members, a good fit is possible

on both sides, see Figure 4, because the range in proper a is small. Note the conspicuous
central gap, due to the YORP effect, see (Paper III, Section 5.2). This family is of
cratering type, having the volume of the fragments 7.5% of the total including (302).
• Family of (752) Sulamitis: it has still only 188 members, but it has a one-sided V-

shape (OUT side wiped out by the 3/1J resonance), thus the IN side slope has enough
data points for a good fit, see Figure 5. It is of cratering type, with fragments accounting
for 12% of the total volume.
• Dynamical family of (135) Hertha: it is well known (Cellino et al. 2002) that this is

a complex family, with at least two collisional families, because of the dis-homogeneous
taxonomy (Paper I, Figure 11) corresponding to a “double jet” shape in the proper (a, e)
projection (paper I, Figure 10). Thus we define a dark subfamily 650 by a combination
of proper elements and WISE albedo data, we get a one-sided V-shape and we fit a quite
accurate IN slope (the OUT side wiped out by the 3/1J resonance), see Figure 8.
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Figure 4. V-shape for the family of (302) Clarissa.

Figure 5. One sided V-shape for the family of (752) Sulamitis.

Complex families

A few additional explanations are needed for the two complex families 221 and 135.
The family of (221) Eos is indeed complex, both dynamically (because of the effect

of several resonances, 2-body, 3-body and secular) and collisionally. However, a possible
simple explanation can be found for the distribution in proper elements space of a large
majority of the family members. If the family has originated near (221) (proper a = 3.012
au), then the OUT side with positive da/dt due to Yarkovsky must have met the 9/4J
resonance at a = 3.028 au, which is strong enough to result in ejection of a good fraction of
the resonance-crossing asteroids from the main belt (Morbidelli et al. 1995). This explains
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Figure 6. The distribution of the family 221 members, as a function of proper a, is highly
dis-homogeneous and should be interpreted.

the sharp drop in the number density across the resonance, see Figure 6, without the
need for any multiple collision model. With our method we get a two-sided V-shape with
consistent IN and OUT slopes, and an age consistent with Vokrouhlický et al. (2006).

However, there is again an increase in the number density after the 9/4, with a peak
in the region near the proper a = 3.068 of (423) Diotima, which is an interloper in the
family both because of its size, see Figure 3, and its IRAS albedo 0.05. Actually, (423)
is more than 200 km in diameter, almost twice as large as (221). By carefully looking
at Figure 3 in the strip 3.05 < a < 3.074 it is possible to see a bulge of data points
above the fit line, which appears as a local anomaly of the fit residuals. In both Figure 6
and 7 there is a bimodality, with one of the peaks corresponding to the proper a and
the albedo of (423) Diotima, respectively. Unfortunately, both the size of the data set
and the S/N of the measurements is much lower if we try to use the albedo data, and
the two histograms appear quite different, in particular in the number ratio between the
hypothetical Eos (bright) and Diotima (dark) families.

Thus it is possible, although we cannot prove it, that the family 221 as found by our
HCM contains an entire family of interlopers, all C-complex asteroids from a cratering
event on (423) Diotima. Indeed, in Masiero et al. (2013)[Figure 7] there appears to be
an indication of a family 423 in the output of an HCM procedure limited to the dark
asteroids of zone 4, but the authors have not included a Diotima family in their list
of families. We are not claiming to have built a complete model of the collisional and
dynamical history of family 221, which would be a formidable task: we are just adopting
a model on the basis of Occam’s razor, that is the simplest one which does not contradict
the data: most of the 221 family members originate from a single collision. Only with
more data we will be able to answer in a reliable way the question about the existence
of a subfamily.
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Figure 7. The distribution of the family 221 members, as a function of WISE albedo (only
data with S/N > 3), is bimodal but in a way different from Figure 6.

For the family of (135) Hertha, we propose to split the family by combining proper
elements and WISE albedoes pv (limited to the ones with S/N > 3) as follows:

Dark = (a < 2.39 AND e < 0.162) OR (a > 2.39 AND e < 0.162 AND pv < 0.09)
Bright = (e > 0.162) OR (a > 2.39 AND e < 0.162 AND pv > 0.16) ;

the choice of the corner point (a, e) = (2.39, 0.162) and the values 0.09, 0.16 for the albedo
are justified from the Figures 10 and 11 of Paper I. This results in a partial success, as
we can fit an IN slope and obtain an age (Table 7) for the Dark subfamily of 761 ± 242
My. However, we have found an unexpected (at least for us) result. From Figure 8 it is
clear that (142) Polana is too large, given its proper a, to belong to the Dark subfamily;
being in the 2/1 Mars resonance, the long term stability of its proper e is dubious. Thus
the Dark subfamily, according to the convention on family naming, has namesake (650)
Amalasuntha, the lowest numbered (also largest) member of the subfamily. Note that an
Amalasuntha family had already been proposed by Zappala et al. (1990).

At this point it is useful to compare our results with the ones of Walsh et al. (2013):
they propose an Eulalia family which is about the same as our family 650, apart from
the fact that their namesake (495) has the possibility of having been a member of the
family, but precisely because it is on a strongly chaotic orbit it is not possible to prove
this claim. Then they propose a “new Polana” family, which beside (142) Polana could
include the interlopers, discarded from the slope fit because they are too large, which
can be seen in Figure 8. This family we have not identified with our HCM, which does
not imply it cannot exist, but just that we cannot show that it is statistically signifi-
cant. In conclusion, if we avoid being confused by the conventional family naming, but
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Table 6. Data for the Yarkovsky calibration: family number and name, proper semimajor axis
a and eccentricity e for the inner and the outer side, 1-A, density ρ at 1 km, taxonomic type, a
flag with values m (measured), a (assumed), g (guessed), and the relative standard deviation of
the calibration.

number/ proper proper proper proper 1-A ρ tax. flag rel.
name a e a e (1 km) type m STD

IN IN OUT OUT

221 Eos 2.96 0.075 3.14 0.06 0.95 2.275 S m 0.20
1040 Klumpkea 3.08 0.19 3.17 0.20 0.93 2.275 S g 0.30
1303 Luthera 3.20 0.12 3.23 0.12 0.98 1.41 C g 0.30

302 Clarissa 2.385 0.108 2.415 0.106 0.98 1.41 C a 0.25

650 Amalasuntha 2.29 0.14 0.98 1.41 C g 0.30
752 Sulamitis 2.42 0.087 0.98 1.41 C g 0.30

Table 7. Age estimation for the families: family number and name, side, da/dt calibration, age
estimation, uncertainty of the age due to the fit, uncertainty of the age due to the calibration,
and total uncertainty of the age estimation.

number/ side da/dt Age STD(fit) STD(cal) STD(age)
name IN/OUT 10−4au/My My My My My

221 Eos IN -3.43 1412 65 282 290
OUT 3.33 1537 131 307 334

1040 Klumpkea IN -3.40 664 72 199 212
OUT 3.37 661 142 198 244

1303 Luthera IN -5.55 279 26 84 88
OUT 5.52 273 34 82 89

302 Clarissa IN -6.41 57 11 14 18
OUT 6.37 47 3 12 12

650 Amalasuntha IN -6.59 761 79 228 242
752 Sulamitis IN -6.34 341 37 102 109

look at the content of the families, that is most of the members, there is not really a
disagreement.

The V-shape of the Bright subfamily does not allow a satisfactory fit. We believe this
is due to the fact that the Bright subfamily, as defined above, is still a complex family,
containing more than one collisional family. This can be confirmed by our visualizer, by
plotting the dynamic family 135 in the proper (a, e) plane: with the enlarged data set,
the family appears to have three lobes, consistently with the proposal by (Dykhuis et al.
2015) of two “Hertha” families, which could appear different in SDSS colors.

Calibration and ages
We can conclude by determining the Yarkovsky calibration for each of the 6 families

for which the slope has been computed (see Table 5). Then the nominal estimated age
is just (inverse slope)/(calibration), and the STD can be propagated taking into account
both the STD of the slope fit and the STD of the calibration.

In this paper we are continuing to use the calibration procedure of Papers I and
III because we wish to have additional ages computed with a method consistent with
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Figure 8. V-shape for the family of (650) Amalasuntha. Note the outliers of the fit (marked
by ⊕) on the low a portion of the plot; they are discussed in the text.

the one used for the 37 ages already published in Paper III. In this way we can le-
gitimately summarize the results in a single plot such as Figure 9. If the goal was to
obtain the most accurate possible age for an individual family, we would recommend to
compute a family-specific Yarkovsky calibration, possibly by obtaining with dedicated
observation campaign either values of secular da/dt, or densities, or thermal informa-
tion, for family members (or possibly for asteroids with the same composition as the
family).

The most obvious conclusion we can draw from all the ages we have been able to
compute (see Figure 9) is that our methods (both for family classification and for age
estimation) are most efficient for ages between 100 My and 1.5 Gy, while for ages above 2
Gy only especially large families have been found to be suitable. This can be interpreted as
a consequence of the Yarkovsky effect, which over Gy removes from the regions containing
the families most small members. In this way the number density may be reduced below
the level at which it can be shown to be statistically significant; this could explain the
elusive Flora family (Knežević, this volume). In other cases, the family may be detected
by HCM, but not have enough members for the V-shape fit. For the young families
(with ages between 10 and 100 My) the number of families with enough members (at
least 150 ∼ 200) to allow for the usage of our V-shape method is expected to increase
regularly with the increase of the size of the asteroid accurate orbit catalogs, and of the
corresponding catalogs of proper elements.

All the figures, and the data files used in the computations of ages for both the
ages of Paper III and those of this paper can be found in the AstDyS web site at
http://hamilton.dm.unipi.it/astdys2/fam ages/

4. Conclusions and state of the art
In this paper we have presented our new classification, upgraded by using a proper

elements catalog with > 500, 000 asteroids, numbered and multiopposition. Thus it is
the largest classification in terms of the amount of information used in input, taking into
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Figure 9. Global view of the family ages computed so far. For families appearing twice, the
value and error bar on the left belong to the IN side, the one on the right to the OUT side.
Families with only one value and error bar are either one-sided (on the right column of the
figure) or reported with the combined value from both sides.

account that proper elements are by far the largest contributors of information, as shown
in (Paper I, Table 1).

The careful utilization of this enlarged information input has allowed to simplify the
classification, by decreasing the number of families: indeed, 7 small/tiny families (with
< 100 members) and 2 medium families (173 and 19466) have been merged with larger
ones. 1 tiny family (< 30 members) has been removed because its lack of growth suggests
that it should be a statistical fluke. Thus we now have a total of 115 families (vs. 128 in
Paper I).

To the contrary, the increase in family members (for a total > 120, 000) is an important
improvement: the goal is to obtain large families, such that details of the family shape
are statistically significant. We now have 25 families with > 1, 000 members: out of these,
for 21 we now have some age estimate. We have another 19 with > 300 members: out of
these, for 12 now we have some age estimate.

The new ages we have been able to compute have been 6; some of them required just
to exploit the increased number or members resulting from the larger input data set,
for others we had to make a more detailed analysis than the one used in Paper III.
We consider plausible the models we found to explain at least part of the properties
of two particularly complex cases, the dynamical families 135 and 221, which are also
the largest dynamical families, with 15, 442 and 14, 376 members, respectively. Large
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dynamical families with complex structures are still presenting many open problems,
which cannot be solved all at once. By solving some of these problems, we have at least
understood the complex relationship between dynamical and collisional families.

We are certainly not claiming that our methods are unique, but we also cannot agree
that other methods solve all the problems. E.g., knowing that complex families with
multiple collisions exist, there is no reason for a priori assuming a single age: thus every
age determination must be preceded by an assessment of the possibility of multiple ages.
As for the calibration uncertainty, it is obvious, even from Figure 9, that it is the main
source of uncertainty for most ages (in a logarithmic time scale, the calibration uncer-
tainty being relative gives a roughly constant error bar); however, all the methods to
compute ages by the Yarkovsky effect have a hidden calibration, the numerical integra-
tions too. Our published inverse slopes allow anyone interested in more accurate ages to
recompute the calibration and revise the estimated ages (with uncertainty).

We would like to conclude with a recommendation for the future discussion regard-
ing asteroid family classifications, on the family name problem. There is a much larger
fraction of interlopers (classified in the family, but really belonging to the background)
among the largest members than among the small ones. Hence, in the fragmentation
families it does occur that the largest member is an interloper: examples are families 93
(now 1272) and 283 (now 1521); in 93 even the second largest and second by number,
(255), is an interloper. In cratering families it happens that the few largest after the
parent body are interlopers: example in 4, with (63), (556) as interlopers.

Thus those working on asteroid families should understand that the conventional
namesake is the less stable property for many families. Discussions (and publications)
containing only family names are fruitless, let us speak of stable properties like the
bulk of the membership. Then we will find, as in the Nysa-Polana-Hertha-Amalasuntha-
Eulalia soap opera, that there is not that much disagreement as it appears from some
discussions.
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