
SOME PROPERTIES OF LOCALLY COMPACT GROUPS

NEIL W. RICKERT1

(Received 6 June 1966)

In this paper a number of questions about locally compact groups are
studied. The structure of finite dimensional connected locally compact
groups is investigated, and a fairly simple representation of such groups is
obtained. Using this it is proved that finite dimensional arcwise connected
locally compact groups are Lie groups, and that in general arcwise connected
locally compact groups are locally connected. Semi-simple locally compact
groups are then investigated, and it is shown that under suitable restrictions
these satisfy many of the properties of semi-simple Lie groups. For example,
a factor group of a semi-simple locally compact group is semi-simple. A
result of Zassenhaus, Auslander and Wang is reformulated, and in this
new formulation it is shown to be true under more general conditions. This
fact is used in the study of (C)-groups in the sense of K. Iwasawa.

This work was done under the supervision of Professor F. J. Hahn, and
is based on part of the author's doctoral dissertation at Yale University.

NOTATIONAL CONVENTIONS. Topological spaces will always be Haus-
dorff. If G is a topological group, then Go will denote the connected com-
ponent of the identity. Our groups will be written multiplicatively and we
shall use 1 to denote the identity. When we use the word group, we shall
always mean a topological group. A homomorphism of a group into another
group will always mean a continuous homomorphism. We shall use the term
algebraic homomorphism when we do not require continuity. Likewise the
word isomorphism will always imply bicontinuity. In using the word sub-
group, we do not restrict ourselves to closed subgroups, although we shall
never consider the factor space G/H unless H is a closed subgroup of G.

1. Preliminaries

We collect here some of the known results to which we shall make
constant reference.

1.1 THEOREM. (Structure of locally compact groups). Let G be a locally
compact group such that G/Go is compact. Let U be a neighbourhood of the
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identity in G. Then there is a compact normal subgroup K of G, KCU, such
that G/K is a Lie group with finitely many components.

PROOF. See p. 175 of [10].

1.2 THEOREM. Let K be a compact group, and denote by A(K) its auto-
morphism group furnished with the compact open topology. Then the identity
component of A (K) is the group of those inner automorphism of K which are
generated by elements of the identity component ofK.

PROOF. See [8].

1.3 LEMMA. / / G is a connected locally compact group and if H and N
are two closed normal subgroups, one of which is compact, and if G = HN,
thenG = H0N0.

PROOF. See [4].

1.4 THEOREM. (Iwasawa [8]). Let G be a connected group and K a
compact normal subgroup. Let H be the centralizer of K in G. Then G — HK0.
If furthermore G is locally compact, G = H0K0.

PROOF. This follows easily from 1.2 and 1.3.

1.5 DEFINITION. For a group G define C0(G) — G, define C^G) to be
the smallest subgroup of G containing all elements of the form a^b^ab
for a and b in G. Define inductively Cn+1(G) = C1(CB(G)).

1.6 DEFINITION. For a group G define D0(G) = £> define DX(G) to be
the closure of CX{G) and define inductively Dn+1[G) = D^

1.7 DEFINITION. A group G is called solvable if for some integer n,
Cn(G) = {1}.

1.8 THEOREM. If H is a dense subgroup of G, then Dn(G) is the closure
in G of Cn(H).

PROOF. This is obvious for n = 0 and the general case follows easily
by induction.

1.9 THEOREM. A group G is solvable if and only if Dn(G) = {1} for
some n.

PROOF. This follows immediately from 1.8 with G = H.

1.10 THEOREM. Let M be a group, H a solvable subgroup, and G the
closure of H in M. Then G is solvable.

PROOF. This follows easily from 1.8 and 1.9.
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1.11 THEOREM. Let G be a connected locally compact group. Suppose
that f\Z.i Dn{G) = {!}• Then G is solvable.

PROOF. See [8].

2. Finite dimensional groups

2.1 DEFINITION. A locally compact group G with G/Go compact will
be called finite dimensional if there is a compact normal totally disconnected
subgroup K of G such that GjK is a Lie group.

This definition agrees with the usual definition of dimension as is
shown in chapter 4 of [10].

Our purpose in this section is to examine the structure of finite dimen-
sional locally compact groups. In [10] it is proved (p. 184) that a metric
finite dimensional locally compact group is locally the product of a Lie
group and a totally disconnected group. By using a slightly different
technique of lifting arcs, we are able to determine the global structure of
connected finite dimensional locally compact groups. We do not need to
assume that the group is metrisable, but we prove that it is as a corollary.

2.2 THEOREM. Let M be a connected Lie group with a discrete central
subgroup Z which is free abelian on generators zlt • • •, zm and let N be a
compact totally disconnected group which contains a dense subgroup X which
is algebraically a free abelian group on generators xlt • • •,xm. Let D be the
subgroup of MxN generated by the elements (z1, x^), • • •, (zm, xm). Then
(MxN)ID is a connected finite dimensional locally compact group. Conversely
every connected finite dimensional locally compact group is isomorphic to a
group of this type.

PROOF. The proof of the first assertion is straightforward, and will be
omitted. For the proof of the converse, we first introduce some notation.
/ will always denote some suitable indexing set, and i, j , k will always be
elements of that set. We shall sometimes use d to denote a distinguished
element of / . If we have a group G we will use the corresponding Greek
letter y as a homomorphism. In particular, if G has a family of subgroups
{Hf}, y( will denote the natural homomorphism of G onto G/Hf. If further-
more, H{ C Hj, we shall use yif for the natural homomorphism of GjHi

onto GjHj. Likewise, when we use other Latin letters to denote a group,
we shall use the corresponding Greek letters as homomorphisms. We shall
say that a family {Ht} of subgroups of a given group is directed, if given
*', / in / , there is a k in J, such that HkC Ht n Hj.

LEMMA 1. Let Z be a discrete group and {Zt} a directed family of normal
subgroups of Z such that Z\Z( is of finite order, and such that n Zi = {1}.
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Then there is a totally disconnected compact group N, a one-one homomorphism
a of Z onto a dense subgroup X of N and a directed family {N{} of open sub-
groups of N such that a(ZJ = a(Z) n N(. Furthermore Nt CNt if and only
if ZtCZj.

PROOF. Define K to be the complete direct product of the Z\Zit and
define the map a so that the i-th component of a(z) is the coset of z in
Z\Zi. Define Kt to be the open subgroup of K consisting of those elements
whose i-t\i component is the identity of Z\Zi. Define N to be the closure of
a(Z) in K. Define N( = N r\ Kt. It is straightforward to verify that the
lemma is satisfied.

LEMMA 2. Let M be a connected Lie group which contains in its centre
a discrete subgroup Z which is free abelian on generators zlt • • •, zm. Suppose
that we are given a directed family {Z,} of subgroups of Z such that Z\Zi is
finite and such that n Zi = {1}. Let N be the group constructed in lemma 1,
and a the corresponding homomorphism. Define x{ = a(zf). Then the xt are
generators of a dense subgroup X of N, which algebraically is free abelian on
these generators. The subgroup D of MxN generated by the elements
(z1, x^, • • •, (zm, xm) consists exactly of the elements of the form [z, OL(Z)) for
z in Z. Define G to be the group (MxN)fD and let n denote the natural homo-
morphism of MxN onto G. Define H = n{N) and Hi = 7t(Nt). Then Ht C Ht

if and only if Zt C Zt. There is a homomorphism <pt of MjZ{ onto GIHt such
that whenever Zt C Zt we have commutativity in diagram 1.

M\Zt

u»
<PJ *

MjZ, > G\H}

Diagram 1

We omit the proof which is straightforward.

LEMMA 3. Let T be a connected finite dimensional locally compact
group. Then T contains a compact totally disconnected subgroup F and a
directed family {Ft} of open subgroups of F such that

(i) There exists a Lie group M and a discrete central subgroup Z of
M which is free abelian on finitely many generators, and a directed family
{Zt} of subgroups of Z such that Z/Z{ is finite, |~| Z{ = {1} and Z( C Z^ if
and only if Ft C Ff.

(ii) There is an isomorphism y>t- of MjZt onto TIF{.
(iii) Whenever F{ C Ft we have commutativity in diagram 2.
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M\Z<

M/Z, + T\Ft

Diagram 2

PROOF. We first construct a Lie group M which satisfies the properties
required of M in (ii) and (iii). Since T is by hypothesis finite dimensional
there is a compact totally disconnected normal subgroup Fd of T such
that T\Fd is a connected Lie group. Let M be the universal covering group
of TjFd. Let the groups Ft be the open subgroups of Fd. Then TjFd is
isomorphic to (r/F,.)/(Fd/i7

i) so it follows that TjFt is a covering group
of TjFd. The natural map rid is the covering homomorphism. Denote by
pd the covering map of M onto TfFd. The covering map pd lifts to a covering
homomorphism pt of M onto T/F^ Set Zd equal to the kernel of pd and
Zt the kernel of p{. Then pt induces an isomorphism ^ of MjZt onto TfFt.
It is easily verified that the assertions of the lemma are verified with M,
Zit tjj{, in place of M, Z{, y>it except that n Zt — {1} may not be satisfied,
and Zd may not be a finitely generated free abelian group. We define
M = i0"/(n Zt) and Zt = ^3/(n Z{). Let %pt be the isomorphism of M\Zi

onto T\Ft induced by ^ . Being a discrete central subgroup of the connected
Lie group M, Zd is finitely generated, and thus the torsion subgroup of
Zd is finite. Hence there is a k such that Zk does not contain any torsion
elements other than the identity. Then Zk is a finitely generated free abelian
group. Define F to be Fk, and Z to be Zk, and restrict i to those indices
such that Ft C F. The assertions of the lemma are now seen to be true.

LEMMA 4. Let G and T be two topological groups with directed families
{Ht} and {F{} respectively, of compact normal subgroups, such that Ht C H}

if and only if Ft C Fjt and such that n Hf = {1}, n Fi = {1}. Suppose that
there are isomorphisms at of GjHi onto TjFt such that whenever Ht C Hj, we
have commutativity in diagram 3. Then G and T are isomorphic.

TjFi

Diagram 3

We omit the proof, since the argument is standard, and the result is well
known.
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Now to complete the proof of theorem 2.2 we observe that if T is a
finite dimensional locally compact connected group, there is a group G
of the form (MxN)/D required in the theorem (see lemmas 2 and 3 above),
and there are subgroups Ht of G and Ft of T such that the hypotheses of
lemma 4 are satisfied, where we define at = %pt • cpj1. From lemma 4 we
conclude that G and T are isomorphic, and the proof of theorem 2.2 is
complete.

REMARK. If the group T is a compact abelian group it is not difficult
to construct a much simpler proof which uses the duality theory for locally
compact abelian groups. We omit the details.

We now consider the problem of showing that finite dimensional con-
nected locally compact groups are metrizable. This was first proved in a
different manner by Newburgh [11]. From 2.2 we easily see that it reduces
to

2.3 LEMMA. Let K be a totally disconnected compact group with a dense
subgroup X which is free abelian on finitely many generators. Then K is
metrizable.

PROOF. It suffices to show that there is a countable base for the neigh-
bourhoods of the identity (p. 34 of [10]). Since the open subgroups form a
base for the neighbourhoods of the identity (p. 56 of [10]) it suffices to
show that there are countably many open subgroups of K. The map which
associates with an open subgroup H of K the subgroup H n X of X es-
tablishes a one-one correspondence between the open subgroups of K, and
certain of the subgroups of finite index of X. However there are at most
countably many of the latter. This completes the proof.

REMARK. By way of giving another proof of 2.3, notice that the
character group of K is a torsion subgroup of the w-torus and hence count-
able, so K is metrizable.

We now make use of 2.2 to examine arcwise connected locally compact
groups.

2.4 THEOREM. Let G be a connected finite dimensional locally compact
group. Then there is a Lie group M and a continuous one-one homomorphism
n of M onto the arc component of the identity of G which is dense in G. G is
arcwise connected if and only if it is a Lie group.

PROOF. According to theorem 2.2, G can be written as (MxN)/D
where M is a Lie group, N is a totally disconnected compact abelian group
and D is discrete. If we denote by n the natural homomorphism of MxN
onto G, then we see from the construction in 2.2 that n is one-one both on
M and on N. Since M is arcwise connected, n[M) is contained in the arc
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component of the identity of G. Since D is discrete, n is a local homeo-
morphism, so the arc component of the identity in G is in the image of the
arc component of the identity of MxN. Thus n(M) is the arc component
of the identity in G. Since if G is not a Lie group, N is uncountable, while
D is countable, so n (M) is not the whole of G, and thus G is not arc connected.
The fact that n(M) is dense in G is obvious from the construction in
theorem 2.2.

We shall use 2.4 to show that an arcwise connected locally compact
group is locally connected. We first need the following.

2.5 THEOREM. Let G be a connected locally compact group. Then G is
locally connected if and only if every finite dimensional factor group is locally
connected.

PROOF. In one direction the argument is trivial. To prove the other
direction, suppose that every finite dimensional factor group is locally
connected. Let U be a neighbourhood of the identity in G. We must show
that U contains a connected neighbourhood of the identity. Choose a
compact symmetric neighbourhood V of the identity such that V2 C U.
Let K be a compact normal subgroup of G contained in V such that GjK
is a Lie group. Then G/Ko is finite dimensional, and by hypothesis locally
connected. Denote by n the natural map of G onto G/Ko. Then n(V) contains
a connected neighbourhood of the identity. Denote by W the inverse image
under n of this neighbourhood. Thus WK0 = W, Ko is connected, and
n(W) is connected. From this it is easily seen that W is a connected neigh-
bourhood of the identity in G. Furthermore W C U, since

W C jr-i(»(7)) = VK0 CV*CU.

Thus G is locally connected.

2.6 COROLLARY. An arcwise connected locally compact group is locally
connected.

PROOF. If G is arcwise connected, every finite dimensional factor
group of G is arcwise connected, and (by 2.4) a Lie group, so locally con-
nected. Thus we conclude from 2.5 that G itself is locally connected.

3. Semi-simple groups

3.1 DEFINITION. A group G will be called semi-simple if G has no con-
nected normal solvable subgroup. On account of 1.10 this is equivalent to
saying that G has no connected normal solvable closed subgroup.

3.2 DEFINITION. If G is a group, a subgroup R of G is called the radical
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of G if R is a connected normal solvable subgroup, and R is not properly
contained in any connected normal solvable subgroup.

Clearly the radical of G, if it exists, is unique, since the product of two
connected normal solvable subgroups is again a connected normal solvable
subgroup. It follows from 1.10 that the radical, if it exists, is closed. Clearly
a connected closed normal solvable subgroup R of G is the radical if and
only if GjR is semi-simple.

For locally compact groups Iwasawa [8] has shown that the radical
always exists.

If G is a semi-simple Lie group, it is well known that every factor group
of G is also semi-simple (see for example chapter 2 of [6]). We shall prove
that this is true for all locally compact groups.

3.3 LEMMA. Let G be a locally compact group. Then G is semi-simple
if and only if Go is.

PROOF. If G is not semi-simple, obviously Go is not semi-simple. If
Go is not semi-simple, let R denote the radical of Go. R is a characteristic
subgroup of Go, and hence a normal subgroup of G. Hence G is not semi-
simple.

We remark that the radicals of G and Go coincide.

3.4 LEMMA. Let G be a connected semi-simple locally compact group,
and K a compact normal subgroup. Then G/K is semi-simple.

PROOF. Denote by N the identity component of the centralizer of
K in G. From 1.4 we know that G = KN. Let R be the radical of N/(N n K).
Let Rx be that subgroup of N such that RJ(N n K) = R. Since N n K is
in the centre of G, R± is solvable. Since R± is a normal subgroup of the
semi-simple group G it follows that Rx is totally disconnected. So therefore
is R. Hence R is the trivial group and N/(N n K) is semi-simple. Thus
G\K = KNjK is semi-simple.

3.5 LEMMA. Let G be a semi-simple locally compact group and K a
compact normal subgroup. Then GjK is semi-simple.

PROOF. By 3.3 Go is semi-simple, so by 3.4 G0/(G0 n K) is semi-simple.
Hence G0K/K is semi-simple. But (p. 63 of [7]) this is the identity component
of GjK, so it follows from 3.3 that that G/K is semi-simple.

The next lemma is essentially a converse to 3.5.

3.6 LEMMA. Let G be a topological group which is not semi-simple. Then
there is a neighbourhood U of the identity of G such that for any closed normal
subgroup NofG contained in U, G/N is not semi-simple.

PROOF. Since G is not semi-simple, there is a non-trivial solvable
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normal connected subgroup S oi G. Let a; be a point of S different from the
identity. Let U be the complement of the set whose only point is x. Then
if N C U is a closed normal subgroup of G, S maps onto a non-trivial
normal solvable connected subgroup of G/N, so GjN is not semi-simple.

We are now ready to proceed with the proof of the result mentioned
above.

3.7 THEOREM. Let G be a semi-simple locally compact group and H a
closed normal subgroup. Then GjH is semi-simple.

PROOF. Denote by n the natural map of G onto GjH. Assume firstly
that GjG0 is compact. Suppose that GjH is not semi-simple. Let U be a
neighbourhood of the identity in GjH as in 3.6. There is a compact normal
subgroup K of G in jt~l{U) such that GjK is a Lie group. Then KHjH is
contained in U, so (GIH)I(KH/H) is not semi-simple. Hence GjKH is not
semi-simple. On the other hand, 3.5 implies that GjK is a semi-simple Lie
group, so from the known result for Lie groups, {GjK)l{KHjK) is semi-
simple, so GjKH is semi-simple. This establishes the result in the special
case GjGQ compact. We consider now the general case. Let F be an open
subgroup of G such that FjF6(= F/GQ) is compact. Since G is semi-simple,
so is Go = Fo and so therefore is F. From the special case we have proved,
F/(F n H) is semi-simple. Thus FHjH is semi-simple. That is n(F) is
semi-simple. Since F is open n(F) is open in G/H, so the identity component
of G\H is identical with the identity component of n(F). Hence the identity
component of GjH is semi-simple, so GjH is semi-simple.

3.8 COROLLARY. Let G be a locally compact group with radical R. Let
H be a closed normal subgroup of G. Denote by n the natural homomorphism
of G onto GjH. Then the closure of n(R) is the radical of GjH.

PROOF. Denote by N the closure of n(R). Since AT is a solvable normal
connected subgroup of GjH, it will suffice to show that {GjH)jN is semi-
simple. But {GjH)jN is isomorphic to Gjn~1{N) which in turn is isomorphic
to {GjR)j(n~1{N)jR). The latter group is semi-simple, being a factor group
of the semi-simple group GjR. This completes the proof.

We do not know of any correct proofs of 3.7 in the literature. The proof
in [4] is erroneous.

Another consequence of 3.7 is the following theorem.

3.9 THEOREM. Let G be a semi-simple locally compact group which has
a compact normal subgroup K such that GjK is connected. Let A denote the
identity component of the automorphism group of G {with the compact-open
topology). Then A consists of those automorphisms which are inner automor-
phisms by an element of the identity component of G.
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PROOF. By enlarging K if necessary, we may assume that GjK has
no compact normal subgroups (see [8]). Then K is sent into itself by all
continuous automorphisms of G. Furthermore GjK is a semi-simple Lie
group. Let a be an element of A. Then a induces an automorphism of
GjK, which is in the identity component of the automorphism group of
GjK. Thus a induces an inner automorphism of GjK. Hence we may find
an x in G such that the image of x in GjK induces an inner automorphism of
GjK equal to the automorphism of GjK induced by a. We may choose
x to be in the identity component of G, since GjK is connected. Then by
applying the inner automorphism of G generated by x~x we see that we may
assume without loss of generality that a induces the identity automorphism
on GjK. The restriction of automorphisms of G to automorphisms of K
maps A continuously into the identity component of the automorphism
group of K. Thus from 1.2 we conclude that there is a k in the identity
component of K which induces an inner automorphism on K which is equal
to the restriction of a. Thus, by applying the inner automorphism of G
by k-1 we see that we may assume that a gives rise to the identity auto-
morphisms of K and of GjK. We shall prove that in this case a is the identity
automorphism of G. Define f{x) = x~1a(x). Clearly / is continuous. But
(p. 108 of [15]) / maps G into the centre of K, and / is constant on cosets of
K. Since G is semi-simple the centre of K is totally disconnected. Thus /
induces a continuous map of the connected group GjK into the totally
disconnected centre of K. Thus / is constant, and since /(I) = 1, it follows
that f(x) = 1 for all x in G. That is x = a(x). This completes the proof.

3.10 COROLLARY. Let T be a group, and G a subgroup. Suppose that
T is connected, G is semi-simple and locally compact, and G possesses a
compact normal subgroup K such that GjK is connected. Let H be the centraliser
of G in T. Then T = HG0.

We remark that 3.10 is stated, but without correct proof, in [4].
We now wish to give some conditions that guarantee that a subgroup

of a locally compact group is closed. The most basic condition will be that
of the next lemma. The next few pages are devoted to obtaining a generali-
zation.

3.11 LEMMA. Let G be a semi-simple Lie group and H a connected semi-
simple Lie subgroup of G. Then H is closed in G.

PROOF. Denote by AdG the adjoint representation of G. Since G is
semi-simple, the kernel of AdG is discrete, so AdG is a local isomorphism.
In [2] Goto has shown that a connected semi-simple matrix group is closed.
Thus AdGH is closed in AdGG. Hence Ad~1{AdGH) is closed in G. So there-
fore is its identity component. That is H is closed in G.
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3.12 LEMMA. Let G and H be connected semi-simple locally compact
groups. Let n be a continuous homomorphism of H into G. Then the
closure of n(H) is semi-simple. If H is finite dimensional, so is the closure
of n(H).

PROOF. Denote by L the closure of n(H). Suppose L is not semi-
simple. According to 3.6 there is a neighbourhood V of the identity in L
such that for any closed normal subgroup T of L with T CV, L\T is not
semi-simple. Let U be a neighbourhood of the identity of G such that
L nU = V. Let K be a compact normal subgroup of G contained in U
such that G\K is a semi-simple Lie group. The group Hjnr1^) is semi-
simple, and n induces a continuous one-one homomorphism of it into the Lie
group G\K. Thus (p. 130 of [1]) Hjii-^^K) is a semi-simple Lie group. Now
3.11 implies that its image in GjK is closed. That i s n (H)KjK = LKjK. Since
the former is semi-simple, so is the latter. Thus L/(L n K) is semi-simple.
But L n K C V, contradicting our choice of V. Thus L is semi-simple. Next
assume that H is finite dimensional. We must show that L is finite dimen-
sional. Let K be a compact totally disconnected normal subgroup of H
such that HjK is a Lie group. Then n(K) is a compact subgroup of L which
is normalised by the dense subgroup n(H) of L. Hence it is normalised by L.
By replacing H by HjK and L by Ljn(K) we may, and shall, assume that
H is a Lie group. Suppose that the dimension of H is n. Let AT be a closed
normal subgroup of L such that L\N is a Lie group. Then n induces a one-
one homomorphism of HJ7i~x (N) onto a dense subgroup of LjN. From 3.11
we conclude that the image of Hjn-1{N) is closed in LjN, and therefore
is the whole of LjN. Thus LjN is isomorphic to a factor group of an w-dimen-
sional Lie group. Thus the dimension of every Lie factor group of L is at
most n. Hence L is finite dimensional (see the discussion of dimension in
chapter 4 of [10]).

3.13 THEOREM. Let G and H be semi-simple connected locally compact
groups, and suppose that there is a homomorphism n of H onto a dense sub-
group of G. Assume G is locally connected. Then n{H) is closed in G and hence
equal to G. Conversely if G is not locally connected, there is a semi-simple
connected locally compact H, and a homomorphism n of H onto a proper dense
subgroup of G.

PROOF. Assume G is locally connected, and that we are given H and n.
Let K be a compact normal subgroup of H such that HjK is a Lie group.
Then n(K) is normalised by the dense subgroup n(H) of G, and hence by
all of G. Thus n induces a homomorphism of the semi-simple Lie group HjK
(and hence of HJ7c~1(n(K))) onto a dense subgroup of Gjn{K). It will suffice
to show that the image of Hjn-x(n{K)) is all of Gjn{K). But Gjn(K) is semi-
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simple, so 3.12 implies it is finite dimensional. Since G is locally connected,
G/n(K) is a Lie group. But 3.11 now implies that the image of Hjn-1(7t{K))
is closed in Gln(K), and therefore is Gjn{K). For the converse, assume that
G is not locally connected. Let E be the largest compact normal subgroup of
G, and let L be the identity component of the centralizer of E in G. Then
L is finite dimensional (it has no connected compact normal subgroup,
since such a group would have to be in E and thus in the centre of G,
contradicting semi-simplicity). Write L = (MxN)/D as in 2.2, where M
is a semi-simple Lie group. Since G = EL, it follows that there is a homo-
morphism n of ExMxN onto G, and the image of ExM is dense. Set
H — ExM. Then the proof will be complete provided we can show that
n(H) is a proper subgroup of G. But if n(H) were the whole of G, G would
be isomorphic to a factor group of H, and hence locally connected, since
H is locally connected (E is locally connected, being a factor group of a
product of simple Lie groups. See pp. 88—93 of [12]).

3.14 COROLLARY. Let G be a connected semi-simple compact group and
let H be a connected semi-simple locally compact group. Suppose that there is
a one-one homomorphism n of H into G. Then H is compact.

PROOF. From 3.12 we conclude that the closure of n(H) is a semi-
simple connected compact group. Hence we may assume without loss
of generality that n(H) is dense in G. But since G is compact it is locally
connected (and in fact a factor group of a product of Lie groups, see pp.
88—93 of [12]). Thus from 3.13 we see that n{H) = G. We may now appeal
to (5.29) of [7] to conclude that n is an isomorphism, so H is compact.

3.15 DEFINITION. A semi-simple locally compact group G will be said
to have no compact factor if every compact normal subgroup of G is totally
disconnected.

If G is a Lie group, G is locally isomorphic to a product of simple Lie
groups (see chapter 2 of [6]). The condition of the above definition is then
that none of these simple factors is compact. This is also equivalent to
G having no compact factor group other than the trivial GjG. This last
equivalence is true without G being a Lie group, as the next lemma shows.

3.16 LEMMA. Let G be a connected semi-simple locally compact group.
Then G has no compact factor if and only if, for any closed normal subgroup
H of G, GjH is not compact unless G = H.

PROOF. First assume that for a closed normal H, GjH compact implies
G = H. Let K be the largest compact connected normal subgroup of G.
We must show that K is trivial. Denote by H the identity component of
the centraliser of K in G. Then G = KH, by 1.4. Thus GjH is isomorphic to
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K/(K n H) which is compact. Thus G = H. Hence G centralizes K, so since
G is semi-simple, K is the trivial subgroup. Now conversely, suppose that
G has no compact factor. Choose a compact normal subgroup K of G
such that GjK is a Lie group. Our assumptions on G imply that K is totally
disconnected. Furthermore G/K has no compact factor (obvious). Suppose
that H is a closed normal subgroup of G such that G/H is compact. We
must show that G = H. First observe that GjHK is compact. Thus
(GIK)l(HKjK) is compact. Since G/K is a Lie group with no compact
factor, it follows that HK/K = G/K, and thus G = HK. Thus G/H = HK/H.
But G/H is connected, while HKjH is totally disconnected (being isomorphic
to Kj(K n H)). This is only possible if G = H, as required.

3.17 LEMMA. Let G be a connected semi-simple locally compact group,
K the largest compact connected normal subgroup of G, and N the identity
component of the centralizer of K in G. Let H be a connected semi-simple
locally compact group with no compact factor, and let n be a homomorphism
of H into G. Then n(H) CN.

PROOF. G/2V is compact, being isomorphic to Kj(K nN). But n in-
duces a one-one homomorphism of H/7i~1(N) into G/N. It follows from 3.14
that H/n-1(N) is compact, and so 3.16 implies that ^ ( i V ) = H. That is
n(H)CN.

We are now ready to give a best possible generalisation of 3.11 to con-
nected locally compact semi-simple groups.

3.18 THEOREM. Let G be a connected semi-simple locally compact group.
Let K be the largest compact connected normal subgroup, and let N be the identity
component of the centraliser of K in G. Then the following conditions on G are
equivalent.

(i) N is a Lie group.
(ii) G can be written LIT, where L is a product of semi-simple connected

Lie groups, and T is a compact totally disconnected central subgroup.
(Hi) Every closed connected semi-simple subgroup of G is locally connected.
(iv) Whenever H is a connected semi-simple locally compact group and n

is a homomorphism of H into G, n(H) is closed.
(v) Whenever H is a connected semi-simple Lie group and n is a homo-

morphism of H into G, n(H) is closed.

PROOF.

(Hi) => (iv). Obvious from 3.12 and 3.13.
(iv) => (v). Obvious.
(v) => (i). Suppose that (i) is false. According to 2.4 there is a con-

nected Lie group H and a one-one homomorphism of H onto a proper
dense subgroup of N (namely the arc component of the identity of N).
Hence (v) is not satisfied.
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(i) => (ii). Since N is a semi-simple Lie group, N n K is finite. Since
G = KN it follows that G is isomorphic to a factor group of KxN by a
finite group. Being a connected compact semi-simple group, K is isomorphic
to a factor group of a product of semi-simple connected Lie groups by a
compact totally disconnected central subgroup. It follows that the same is
true of G.

(ii) •=> (Hi). Since (ii) is true we may write G = L\T where T is
compact, and I is a product of semi-simple Lie groups. Denote by X the
natural map of L onto L/T. Suppose that H is a closed connected semi-
simple subgroup of G. Set Hy = ^(H), and set H' the identity component
of H1. Since X(H') = H, H is isomorphic to a factor group of H'. Thus it will
suffice to show that H' is locally connected. Let K' be the largest compact
connected normal subgroup of H', and let N' be the identity component of
the centralizer of K' in H'. From the implication (i) => (ii) which we have
already proved, it will suffice to show that N' is a Lie group. But N' is
a connected semi-simple locally compact group with no compact factor.
Thus it follows from 3.17 that N' lies in the identity component of the
centralizer of the largest compact connected normal subgroup of L. This
subgroup of L is a Lie group, and in fact is the product of the non-compact
simple factors of L. Thus N' is a closed subgroup of a Lie group, so is itself
a Lie group. This completes the proof of the theorem.

4. Some generalizations of a theorem of Zassenhaus,
Auslander and Wang

Suppose that G is a Lie group with radical R, such that GjR is compact.
Let H be a closed subgroup of G. We would like to be able to conclude that
H has a normal solvable subgroup S such that HjS is compact. This will
be proved (theorem 5.4). If H were discrete we could conclude the result
we desire from a theorem of Zassenhaus and Auslander. If at least the
identity component of H is solvable, we could conclude the result from
Wang's generalization of the Zassenhaus, Auslander result. We wish to give
a further generalization which will allow us to prove 5.4. We first state the
Wang result.

4.1 THEOREM (Zassenhaus, Auslander, Wang). Let G be a connected
Lie group with radical R, and let H be a closed subgroup of G. Then if Ho

(the identity component of H) is solvable, so is the identity component of the
closure of HR.

PROOF. This is theorem A of the appendix to [13] in case R is simply
connected. The general case follows easily by lifting to the universal
covering group G.

This theorem may be formulated in the following equivalent form.
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4.2 THEOREM. Let G be a connected Lie group with radical R. Let H
be a closed subgroup of G, and suppose that Ho is solvable. Then if HR is dense
in G, H0R = G.

PROOF OF EQUIVALENCE OF 4.1 AND 4.2. Obviously 4.2 follows im-
mediately from 4.1. On the other hand if we assume 4.2, and if G and H
satisfy the hypotheses of 4.1, set L the closure of RH, and R' the radical of
Lo. Set H' = H n Lo. Then the identity component of H' is solvable, and
R'H' is dense in Lo. Then 4.2 implies that Lo = (H')0R

r, which is clearly
solvable. Thus 4.1 is true.

We now state our generalisation of 4.2.

4.3 THEOREM. Let G be a Lie group with radical R. Suppose that H
is a closed subgroup of G such that RH is dense in G. Then RH = G, and
RH0 = Go.

PROOF. We assume G connected. It is easily seen that the general case
will then also be true. In this case we have only to show that RH0 = G.
Denote by n the natural map of G onto G\R. Then TZ(H0) is a normal sub-
group of n(H). However since n(H0) is a connected Lie subgroup of GjR, its
normaliser is closed (it consists of those x in GjR such that AdGIRx leaves
the Lie subalgebra corresponding to a(H0) invariant). Thus n(H0) is a
normal subgroup of GIR. Since G/R is semi-simple there is a connected
normal (hence semi-simple) subgroup N of GjR such that GjR = n(H0)N
and n(H0) nN is discrete. Being semi-simple, N is closed (see 3.11), so if
we define L = H n ^^(iV) it will follow that L is a closed subgroup of G.
Since n(H0) C n(H), since n(H) is dense in GjR, and since G/R is the product
of n(H0) and N, it is easily seen that n{H) n N is dense in N. That is n{L)
is dense in JV. Also Lo is solvable. For since TI(L0) is in both n(H0) and N
and Lo is connected, n(L0) is the trivial group, and Lo C R, so Lo is
solvable. Now obviously the radical of 7r~x(2V) is R, and since n{L) is dense
in N, LR is dense in TIT1{N). We therefore conclude that L0R = ^ ( i V )
(apply 4.2). But since Lo C R, it follows that R = n^^N), so N is trivial,
and n(H0) = G/R. That is H0R = G. This completes the proof.

In the next few pages we now try to consider to what extent 4.1, 4.2,
and 4.3 are true if we allow any locally compact groups, and not just Lie
groups. As above, if we can prove 4.1 holds for arbitrary locally compact
connected G, so will 4.2. Our next result will show that indeed 4.1 is true
in this extra generality, although as we shall later see, the same is not true
of 4.3.

4.4 THEOREM. Let G be a connected locally compact group, and H a
closed subgroup. Let R be the radical of G. Assume that the identity component
of H is solvable. Then the identity component of the closure of RH is solvable.
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PROOF. Denote by M the closure of RH, and by Mo its identity com-
ponent. Let U be a neighbourhood of the identity in G. Choose a compact
normal subgroup K contained in U, such that GjK is a Lie group. Applying
4.1 to G\K, we easily conclude that Mo is solvable modulo K. Thus
D ~=i Dn(Mo)CK c u- S i n c e U is arbitrary, it foUows thatf) ~=1 £»n(M0) = {1}.
Thus 1.11 implies that Mo is solvable.

Before we consider possible generalisations of 4.3 to locally compact
groups, we prove a lemma which will allow us to restrict our attention to
connected groups for much of what follows.

4.5 LEMMA. Let G be a locally compact group, with radical R. Let H be
a closed subgroup of G such that RH is dense in G. Then RH0 is dense in Go.

PROOF. It is easily seen that we may pass to an open subgroup of G.
Thus we may assume that GjG0 is compact. Let K be a compact normal
subgroup of G such that GjK is a Lie group. Applying 4.3 to GjK, we see
that RH0 = Go modulo K. That is every point in Go is the product of an
element in RH0 and an element in K. Since K may be chosen in an arbi-
trarily small neighbourhood of the identity, it follows that elements of
Go have elements of RH0 arbitrarily close. That is RHQ is dense in Go.

We now treat the case of connected groups.

4.6 LEMMA. Let G be a locally compact connected group such that GjR is
locally connected, R being the radical of G. Let H be a connected locally compact
group, and n a homomorphism of H into G such that Rn(H) is dense in G.
Then Rn{H) = G.

PROOF. Set 5 = n"1{R). Then n induces a homomorphism p of HjS
onto a dense subgroup of GjR. But HjS is semi-simple, for otherwise the
closure of the image under p of the radical of HjS would be a non-trivial
connected solvable normal subgroup of GjR, contradicting the semi-
simplicity of GjR. But we may now use 3.13 to conclude that p{HjS) = GjR.
That is Rn{H) = G.

4.7 THEOREM. Let G be a locally compact group with radical R, such
that G/R is locally connected. Let H be a closed subgroup of G such that RH
is dense in G. Then RH0 = Go and RH = G.

PROOF. From 4.5 and 4.6 we may easily conclude that RH0 = Go.
But since GjR is locally connected, Go is open. Thus RH is an open, therefore
closed subgroup of G. Since RH is dense in G, it follows that RH = G.

We now give two counter examples to the possibility of weakening the
hypotheses of 4.7. The first example shows that we cannot weaken the as-
sumption that GjR be locally connected to the assumption that GJR is
locally connected, even if we assume that GjR is compact. The second ex-
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ample shows that the assumption GjR locally connected cannot be weakened
to the assumption that Go is open, or even that G = Go.

4.8 EXAMPLE. Let R be the group of positive real numbers under
multiplication, and let t be an element different from the identity. Let
K be an infinite totally disconnected compact monothetic group, and let
a; be a generator of a dense infinite cyclic subgroup. Let G be the group
RxK, and H the subgroup consisting of elements of the form (tn,xn). It
is easily seen that R is the radical of G, and that RH is a dense proper
subgroup of G.

4.9 EXAMPLE. Let L be the universal covering group of SL(2, R) and
let z be a generator of its centre, which is well known to be infinite cyclic.
Let M be the group of positive real numbers under multiplication, and let
y be an element of M different from the identity. Let N be a totally dis-
connected infinite compact monothetic group, and let a; be a generator of
the dense infinite cyclic subgroup. Let D be the subgroup of LxMxN
generated by the element (z, y, x). Set G = {LxMxN)jD, and denote by
n the natural map of LxMxN onto G. It is easily seen that n{LxM) is
dense in G, so G is connected. Set R = n{M) and H = n{L). It is straight-
forward to verify that R is the radical of G, that H is closed in G, and that
RH is a proper dense subgroup of G.

5. On (C)-groups

5.1 DEFINITION. We call a connected Lie group G with radical R a
(C)-group if GjR is compact. We call a Lie group a (C)-group if its identity
component is a (C)-group. We call a locally compact group G a (C)-group
if every neighbourhood of the identity contains a compact normal subgroup
K of G such that GjK is a Lie group which is a (C)-group.

(C)-groups were defined by Iwasawa in [8]. We shall examine certain
of their properties here. We shall be concerned mostly with locally compact
groups G for which GjG0 is compact.

5.2 LEMMA. Let G be a locally compact group with GjG0 compact, and
let R be the radical of G. Assume that G is a (C)-group, or more generally,
assume that G has a compact normal subgroup K such that GjK is a (C)-group
which is a Lie group. Then GjR is compact.

PROOF. Denote by n the natural map of G onto GjK. From 3.8 we
know that n(R) is the radical of GjK. Thus the identity component of
(G/K)ln(R) is compact, so since G/Go is compact, {GjK)jn{R) is compact.
Thus {GjK)j{RKjK) is compact, so GjRK is compact, so {GjR)j{RKjR) is
compact, so since RKjR is compact, GjR is compact.
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5.3 LEMMA. Let G be a locally compact group with radical R, and assume
that GjR is compact. Then G/Go is compact, and G is a (C)-group. In fact for
each closed normal subgroup H of G such that GjH is a Lie group, GjH is a
{C)-group.

PROOF. Since G/Go is a homomorphic image of GjR it is compact.
Suppose now that we are given a closed normal subgroup H such that GjH
is a Lie group. Let S be the closure of RH. Denote by n the natural map of
G onto GjH. From 3.8, n(S) is the radical of GjH. We shall show that
{GjH)jn{S) is compact. The desired conclusions will follow immediately.
But (GIH)ljt(S) is isomorphic to G/S, and therefore to (G/i?)/(5/2?), which
is compact, being a homomorphic image of the compact group GjR. This
completes the proof.

We now use 4.3 to investigate subgroups of (C)-groups.

5.4 THEOREM. Let G be a Lie group such that GjR is compact. Let H
be a closed subgroup of G. Then H has a closed normal subgroup S which is
solvable and such that HjS is compact.

PROOF. Let G' be the closure of RH and let R' be the radical of G'.
Clearly R' D R, and G'jR' is compact. Thus HR' is dense in G' so 4.3 im-
plies that HR' = G'. Then since HR'jR' is compact, so is Hj(H n R').
Then S = H n R' is as desired.

We remark that we could choose the group S to be a characteristic sub-
group of H, for we could choose S to be the largest solvable normal subgroup
of H. Zassenhaus has shown in [14] that this exists if G is a matrix group,
and the general result follows by taking the adjoint representation.

If we only require that G be locally compact, but not necessarily a
Lie group, 5.4 fails. We shall give an example at the end of this paper. If
we allow G to be connected and finite dimensional, the conclusion of 5.4
still holds, as may be easily deduced from 5.4.

The following slight extension of 5.4 is possible.

5.5 THEOREM. Let G be a locally compact group with radical R, such
that G/i? is compact. Let H be a discrete subgroup of G. Then H has a solvable
normal subgroup S such that HjS is finite.

PROOF. We can find a compact normal subgroup K of G, such that
H is mapped isomorphically into G\K, and such that G\K is a Lie group.
Then apply 5.4 and the result follows.

We give another direction now in which 5.4 may be extended.

5.6 THEOREM. Let G be a locally compact group with radical R, such
that GjR is compact. Let H be a connected locally compact group, and n a one-
one homomorphism of H into G. Let S be the radical of H. Then HjS is compact.
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PROOF. By replacing G with the closure of Rn(H) we may assume
without loss of generality that Rn{H) is dense in G, and thus G is connected.
The image in GjR of n(H) is thus dense, so the image in GjR of n(S) is a
solvable connected subgroup which is normalised by a dense subgroup of
G/R. Thus the closure of the image in GjR of n(S) is connected solvable
normal, hence trivial, so S CTI~1(R). Thus HJJI"1{R) is semi-simple, and
n induces a one-one homomorphism of it into GjR. Thus we may conclude
from 3.14 that Hjn~1{R) is compact. Note that since n is one-one, n~1{R)
is solvable, and since S is the radical of H, 7i~1(R)/S is totally disconnected.
Set L = H/S, and T = n-1(R)IS. Then from LjT compact we must show
that L is compact. This is shown in the next lemma.

5.7 LEMMA. Let L be a connected semi-simple locally compact group, and
T a totally disconnected closed normal subgroup. Suppose that LjT is compact.
Then L is compact.

PROOF. Let K be a compact normal subgroup of L such that LjK
is a Lie group. It will suffice to show that LjK is compact. From the fact
that LjT is compact we easily conclude that {LjK)j{TKjK) is compact.
But TKjK is isomorphic to Tj(T r\K), so totally disconnected, and being
a Lie group, is thus discrete. Hence LjK is a covering group of the compact
semi-simple Lie group {LjK)j{TKjK). The compactness of LjK now fol-
lows (see chapter 2 of [6]).

We shall now consider groups which contain the free group on two
generators. We shall always mean that this group has the discrete topology,
and is thus a closed subgroup of any group in which it is embedded.

5.8 LEMMA. Let G be a locally compact group with radical R such that
GjR is compact. Then G does not contain the free group on two generators.

PROOF. If H is any discrete subgroup of G, then from 5.5 we know that
H has a solvable normal subgroup S such that HjS is finite. The free group
on two generators does not have this property (see p. 104 of [5]). Thus G
does not contain the free group on two generators.

The next few lemmas will lead us to a proof of the converse of this.
Namely if G/Go is compact, G is locally compact, and G doesn't contain the
free group on two generators, GjR is compact.

5.9 LEMMA. Let G be a group, and N a closed normal subgroup. Then
if GjN contains the free group on two generators, so does G.

PROOF. Let xx and x2 be generators of the free subgroup of GjN.
Choose yx and y2 in G which project onto xx and x2 respectively. Clearly
a non-trivial relation between yx and y2 would imply a non-trivial relation
between xx and x2. Thus y1 and y2 generate a free group on two generators

https://doi.org/10.1017/S1446788700004389 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004389


452 Neil W. Rickert [20]

(its topology is discrete, since the projection onto G/N maps it one-one and
continuously to a discrete group in G/N). This completes the proof.

5.10 LEMMA. If G is locally isomorphic to SL(2, R), G contains the free
group on two generators.

PROOF. By 5.9 it suffices to show that GjZ contains the free group
on two generators, where Z is the centre of G. But this group is isomorphic
to the group of fractional linear transformations of the upper half plane.
The existence of a subgroup isomorphic to the free group on two generators is
now well known from the theory of automorphic functions (it follows from
the properties of the elliptic modular function).

5.11 LEMMA. A non-compact semi-simple Lie group contains a closed
subgroup locally isomorphic to SL(2, R).

PROOF. If we can find a Lie subgroup locally isomorphic to SL(2, R),
3.11 will imply that it is closed. Thus the problem reduces to showing that
a non-compact semi-simple Lie algebra contains a subalgebra isomorphic
to the split three dimensional algebra (see [9] for terminology of Lie al-
gebras). But if we can find an element n ^ 0 in the Lie algebra such that
ad n is nilpotent, theorem 17, chapter 3 of [9] can be applied. Thus it suffices
to show the existence of such an n. But n may be taken to be any element of
the nilpotent factor of the Iwasawa decomposition (see chapter 6 of [6]).
This completes the proof.

5.12 LEMMA. Let G be a non-compact semi-simple connected Lie group.
Then G contains the free group on two generators.

PROOF. This follows immediately from 5.10 and 5.11.

5.13 LEMMA. Let G be a semi-simple locally compact group. Suppose
that G/Go is compact but G is not compact. Then G contains the free group on
two generators.

PROOF. GO is semi-simple, and non-compact. It suffices to show that
Go contains the free group on two generators. Let K be a compact normal
subgroup of Go such that GofK is a Lie group. Then Go/K is a non-compact
connected semi-simple Lie group. Applying 5.12 and 5.9 now completes the
proof.

5.14 LEMMA. Let G be a locally compact group such that G/Go is compact,
but GjR is not compact, where R is the radical of G. Then G contains the free
group on two generators.

PROOF. By 5.13, G/R contains the free group on two generators, so
applying 5.9 completes the proof.
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We summarize the results of the preceding lemmas in the following
theorem.

5.15 THEOREM. Let G be a locally compact group such that G/Go is
compact. Let R be the radical of G. Then the following conditions on G are
equivalent.

(i) G is a (C)-group.
(ii) G has a compact normal subgroup K such that GjK is a Lie group

which is a (C)-group.
(iii) GjR is compact.
(iv) For every closed normal subgroup H of G such that GjH is a Lie

group, G\H is a (C)-group.
(v) G does not contain the free group on two generators.

PROOF. By definition, (i) => (ii). By 5.2, (ii) => (iii). By 5.3 (in) => (iv).
Obviously (iv) => (i). Also 5.8 and 5.13 show that (iii) and (v) are equivalent.

We finish now by giving the promised example which shows that
the hypotheses of 5.4 cannot be weakened to the extent of allowing G to be
a locally compact group instead of a Lie group.

5.16 EXAMPLE. Let L be a simple compact group (simple in the
algebraic sense of no non-trivial normal subgroup). For example we
may take L to be either a finite simple group, of a simple compact con-
nected Lie group with trivial centre. Let Ln be the product of n copies
of L. Let an be the automorphism of Ln which sends (Ax, A2, • • •, Xn) to
(An, Ax, A2, • • •, A,^). Let M be the complete direct product (with the
product topology) of the Ln, n S: 2, and let N be the semi-direct product of
M with a discrete infinite cyclic group whose generator is t, where we require

t"(zt, x3, • • •)*-" = ((£(*,), <£(«,), • • •)•

Clearly N is locally compact, and non-compact. It is easily verified that
N has no solvable normal subgroup other than the trivial subgroup, so there
is no solvable normal S such that N/S is compact. We shall complete the
counter example by showing that N may be embedded in a locally compact
group G with radical R such that G/R is compact. We first show that there
is a compact group K, and a one-one homomorphism of N into K. Let
L* be the semi-direct product of Ln with the cyclic group of order n, where
the generator of the cyclic group acts on Ln as the automorphism an. Let
K be the complete direct product of the L*, n S; 2. Then it is easy to
construct a one-one homomorphism n of N into K. (We remark that we
could even choose K to be a product of simple compact Lie groups if we
desire, for once we have constructed some suitable compact group, we may
use the Peter-Weyl theorem to embed it in a product of compact Lie groups).
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Now let R be the group of positive real numbers under multiplication.
Define G = RxK. If K is semi-simple (and this is the case for the K
constructed above) R is the radical of G. In the general case the radical of
G certainly contains R. Since G/R is compact, G\(radical of G) is compact.
Now let r be a fixed element of R different from the identity. An element
of N may be always written as tkm where m is in M. We make correspond to
tkm the element (r*, n(tkm)). Then it is easily seen that in this way G con-
tains a closed subgroup isomorphic to N. This completes our construction.

References

[1] C. Chevalley, Theory of Lie groups, (Princeton University Press, Princeton, N.J., 1946).
[2] M. Goto, 'Faithful representations of Lie groups I', Math. Japonicae, 1 (1948), 107—118.
[3] M. Goto, 'Faithful representations of Lie groups II', Nagoya Math. Journal, 1 (1950),

91—107.
[4] M. Goto, 'Linear representations of topological groups', Proc. Amer. Math. Soc, 1 (1950),

425—437.
[5] M. Hall, The theory of groups, (Macmillan, New York 1959).
[6] S. Helgason, Differential geometry and symmetric spaces, (Academic Press, New York

1962).
[7] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, (Springer, Berlin and New York

1962).
[8] K. Iwasawa, 'On some types of topological groups'. Annals of Math., 60 (1949), 507—557.
[9] N. Jacobson, Lie algebras, (Interscience, New York 1962).

[10] D. Montgomery and L. Zippin, Topological transformation groups, (Interscience, New
York 1955).

[11] J. D. Newburgh, 'Metrization of finite dimensional groups', Duke Math. Journal, 20
(1953), 287—293.

[12] A. Weil, L'integration dans les groupes topologiques et ses applications, (Hermann,
Paris 1953).

[13] H. Wang, 'On the deformation of a lattice in a Lie group', Amer. Journal of Math.,
85 (1963), 189—212.

[14] H. Zassenhaus, 'Beweis eines Satzes iiber diskrete Gruppen', Abh. Math. Seminar,
Hamburg, 12 (1938), 289—312.

[15] H. Zassenhaus, The theory of groups, (Chelsea, New York, 1958).

Yale University

https://doi.org/10.1017/S1446788700004389 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004389

