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Abstract

We give a simplified proof of the complex inversion formula for semigroups and, more generally, solution
families for scalar-type Volterra equations, including the stronger versions on unconditional martingale
differences (UMD) spaces. Our approach is based on (elementary) Fourier analysis.
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1. Introduction

In this paper we are concerned with the following question. Let X, Y be Banach spaces
and let S : [0, ∞) −→ L(X, Y ) be a strongly continuous mapping of finite exponential
type ω0(S). In what sense and under what conditions does the complex inversion
inversion formula

lim
N→∞

1
2π i

∫ ω+i N

ω−i N
et z(LS)(z) dz = S(t) (t > 0), (1.1)

hold true? (Here ω > ω0(S) is fixed and LS denotes the Laplace transform of S.)
Actually we are interested in the case that S is a solution family to a scalar-type

Volterra equation (see Section 4), in particular that S is a C0 semigroup. However, as
in [1, Theorem 2.3.4] we do not confine ourselves to these applications and start very
generally.

Theorem 2.3.4 from [1] states that (1.1) holds in an ‘integrated form’. From this one
can then derive the standard result on semigroups (strong convergence on the domain
of the generator). Driouich and El-Mennaoui [4] showed that in case that X has the
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unconditional martingale differences (UMD) property, the convergence is strong on
all of X . This was subsequently generalized from semigroups to solution families for
scalar-type Volterra equations by Cioranescu and Lizama in [3].

The aim of the present paper is to present new and much shorter proofs of these
results, eventually even generalizing them. Our approach uses some elementary
Fourier analysis and has the advantage that the recent ‘UMD results’ become at
least as simple as the classical results, if not simpler. The results obtained are also
more specific with respect to what happens with the approximation for small times
(compare, for example, Theorem 3.5 here with [5, Corollary III.5.15]).

All of our results on the complex inversion formula remain true when we let the
lower and the upper bound of the integral in (1.1) tend to infinity independently. One
has to replace the Dirichlet kernel in our discussion with a somewhat more complicated
expression, but the proofs are essentially the same.

1.1. Preliminary remarks and definitions Here and in the following X, Y, Z
always denote complex Banach spaces. The symbol 1 is used to denote the
characteristic function of the positive real axis, that is 1 = χ[0,∞). So 1′

= δ0 in the
distributional sense, where δ0 is the Dirac measure at 0. We write simply t to denote
the real coordinate (t 7−→ t). All functions that live on [0, ∞) are tacitly extended to
R by 0 on (−∞, 0). For a mapping S : [0, ∞) −→ L(X, Y ) and ω ∈ R we define its
exponential shift Sω by

Sω(t) := e−ωt S(t) (t ≥ 0).

The exponential type of S is

ω0(S) := inf{ω ∈ R | ∃ M ≥ 0 : ‖S(t)‖ ≤ Meωt (t ≥ 0)}.

If S is strongly measurable and of finite exponential type, we denote by

(LS)(z) := strong −

∫
∞

0
e−zt S(t) dt (Rez > ω0(S)),

its Laplace transform. If S : [0, ∞) −→ L(X, Y ) and T : [0, ∞) −→ L(Y, Z) are
both strongly measurable and of finite exponential type, then the convolution S ∗ T :

[0, ∞) −→ L(X, Y ) given by

(T ∗ S)(t)x :=

∫
∞

0
T (t − s)S(s)x ds (x ∈ X),

is well-defined, strongly continuous and of finite exponential type; furthermore, one
has

(T ∗ S)ω = Tω ∗ Sω and L(T ∗ S) = (LT )(LS). (1.2)

In addition to this type of convolution we encounter (in Section 4) µ ∗ S, where
S : [0, ∞) −→ L(X, Y ) is strongly continuous and µ is a locally finite complex Borel
measure on [0, ∞). The convolution µ ∗ S : [0, ∞) −→ L(X, Y ) is then given as

(µ ∗ S)(t)x :=

∫ t

0
S(t − s)xµ(ds) (x ∈ X),
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and is again strongly continuous. With the obvious definition of µω we have
(µ ∗ S)ω = µω ∗ Sω; if µω happens to be a bounded measure, Lµ is defined in the
obvious way, and one has L(µ ∗ S) = (Lµ)(LS).

A third situation involves functions on the whole real line, and is described in
the following. A strongly measurable mapping S : R −→ L(X, Y ) is said to be
strongly L2, if S(·)x ∈ L2(R; Y ) for every x ∈ X . By the closed graph theorem one
then has

‖S‖2 := sup
x∈X,‖x‖≤1

‖S(·)x‖L2(R;Y ) < ∞.

The mapping S is said to be uniformly L2 if there exists a function g ∈ L2(R) such
that g ≥ 0 and

‖S(t)x‖Y ≤ g(t) ‖x‖X (t ∈ R, x ∈ X).

The function g is said to be a scalar majorant of S. We will have occasion to use the
following form of Young’s inequality.

LEMMA 1.1 (Young’s inequality). Let X, Y be Banach spaces, let S : R −→ L(X, Y )

be strongly L2, and let T : R −→ L(Y, Z) be uniformly L2 with scalar majorant g.
Then the convolution T ∗ S defined by

(T ∗ S)(t)x :=

∫
R

T (t − s)S(s)x ds (x ∈ X, t ∈ R),

exists and satisfies (T ∗ S) ∈ C0(R; Ls(X, Z)) with

sup
t≥0

‖(T ∗ S)(t)‖L(X,Y ) ≤ ‖g‖2 ‖S‖2 . (1.3)

One may choose Y = Z and T (s) = f (s)I , g(t) = | f (t)| in the lemma, so the
estimate (1.3) becomes

sup
t≥0

‖( f ∗ S)(t)‖L(X,Y ) ≤ ‖ f ‖2 ‖S‖2 ,

and this shows that with S fixed the mapping

( f 7−→ f ∗ S) : L2(R) −→ C0(R; L(X, Y )),

is continuous. On the other hand, if we choose X = C, then (1.3) shows that with fixed
T the mapping

( f 7−→ T ∗ f ) : L2(R; Y ) −→ C0(R; Z),

is continuous.
For N > 0 we denote by DN the Dirichlet kernel, that is

DN (t) :=
sin(Nt)

π t
(t ∈ R).
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Then, as is well known (or by a short computation),

DN ∗ f =
1

2π

∫ N

−N
eist f̂ (s) ds, (1.4)

where f is integrable and f̂ =F f denotes its Fourier transform. (Of course, the
function f may be vector- or operator-valued.) The following is an easy consequence
of Plancherel’s theorem.

LEMMA 1.2. Let f ∈ L2(R). Then DN ∗ f → f in L2(R) as N → ∞.

2. General Laplace transforms

Let X, Y be Banach spaces and let S : [0, ∞) −→ L(X, Y ) be a strongly
continuous mapping of finite exponential type ω0(S). Note that

KN (t) :=
1

2π i

∫ ω+i N

ω−i N
et z(LS)(z) dz

= eωt 1
2π

∫ N

−N
eist (LS)(ω + is) ds = eωt (DN ∗ Sω)(t), (2.1)

whence (KN )ω = DN ∗ Sω. If we replace S by a ∗ S with a scalar function a we arrive
at our first result.

PROPOSITION 2.1. Let X, Y be Banach spaces, let S : [0, ∞) −→ L(X, Y ) be
strongly continuous, and let a ∈ L1

loc[0, ∞) be a scalar function, both a and S of finite
exponential type. Then for every ω > ω0(S), ω0(a) one has

lim
N→∞

1
2π i

∫ ω+i N

ω−i N
et zL(a ∗ S)(z) dz = a ∗ S,

in L(X, Y ), uniformly in t from compact subsets of [0, ∞).

PROOF. Replace S by a ∗ S in (2.1) to obtain

e−ωt KN (t) = DN ∗ (a ∗ S)ω = DN ∗ aω ∗ Sω,

by (1.2). Now DN ∗ aω → aω in L2(R) and hence, by Young’s inequality, DN ∗ aω ∗

Sω → aω ∗ Sω in L(X), uniformly in t ≥ 0. Multiplying everything by eωt concludes
the proof. 2

Proposition 2.1 does not quite cover [1, Theorem 2.3.4]; however, it will suffice for
the applications we have in mind, and it is certainly more general than [3, Lemma 5],
where the authors need a ∈ C1 and assert only strong convergence and uniformity in t
from compact subsets of (0, ∞).
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We would like to point out that we do not claim that Proposition 2.1 is new, although
it might be (as we do not know of a reference). Our emphasis is on the idea of the
proof, which can be put as follows. The complex inversion formula is simply the
convergence of the partial inverse Fourier transforms. In a first step one establishes L2

convergence; then a convolution with another L2 term yields uniform convergence to
something which, with some luck, is just a weighted form of what one is interested in.

In the following this idea is applied to the case of the complex inversion formula in
its bare (that is, non-integral) form. The following observation will also be helpful.

LEMMA 2.2. Let X, Y be a Banach space, let S : [0, ∞) −→ L(X, Y ) be strongly
continuous of finite exponential type, and let ω > ω0(S). Then

t (DN ∗ Sω) ∼ (DN ∗ [t S(t)]ω),

by which we mean that for each x ∈ X

lim
N→∞

[t (DN ∗ Sω) − (DN ∗ [t S(t)]ω)]x = 0,

uniformly in t ≥ 0.

PROOF. We perform integration by parts to obtain

1
2π

∫ N

−N
teist Ŝω(s) ds =

1
2π i

ei ts Ŝω(s)

∣∣∣∣s=N

s=−N
−

1
2π i

∫ N

−N
eist Ŝω

′
(s) ds,

and clearly Ŝω
′
= −i ̂[t S(t)]ω. The statement now follows from the Riemann–

Lebesgue lemma. 2

REMARK. The proof of [1, Theorem 2.3.4] relies on [1, Lemma 2.3.5] which states
that

1
2π i

∫ ω+i N

ω−i N

ezt

z
e−z dz → χ[0,t] (N → ∞, t > 0, ω > 0),

in the Banach space X = L1
[0, ∞) where e−z = e−z·. This in fact follows from

Proposition 2.1: let S be the right shift semigroup on X and a = 1. Then (1 ∗ S)(t)
is convolution with χ[0,t] and (LS)(z) is convolution with e−z , as is easily seen.
However, the L(X)-norm of the operator ‘convolution with f ’ equals the L1-norm
of f (see [7] for a simple proof).

3. Semigroups

In this section we apply the results of the previous section to C0 semigroups.
Although it is a special case of the situation considered in Section 4, it is worthwhile
to deal with the semigroup case first. We begin with the complex inversion formula in
its integral form, see [5, Theorem III.5.14].
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THEOREM 3.1. Let A generate a bounded C0 semigroup (T (t))t≥0 on a Banach
space X. Then for every ε > 0,∫ t

0
T (s) ds = lim

N→∞

1
2π i

∫ ε+i N

ε−i N

ezt

z
R(z, A) dz, (3.1)

in norm, the convergence being uniform in t from bounded intervals of [0, ∞).

PROOF. This follows from Proposition 2.1 with X = Y , S = T and a = 1. 2

Now we pass to the plain form of the inversion formula. To formulate it we need the
notion of a UMD space, due to Burkholder. There are several equivalent definitions,
one of which involves so-called unconditional martingale differences, but we will use
a different characterization, due to Burkholder and Bourgain, involving the vector-
valued Hilbert transform (see [2] for more about UMD spaces). Given a function
m ∈ L∞(R) one considers the operator Tm defined by

Tm f =F−1(m f̂ ),

for f from the Schwartz space S(R; X). (The symbol F−1 denotes the inverse
Fourier transform.) The function m is called a bounded L2(R; X)-Fourier multiplier
if the operator Tm extends to a bounded operator on L2(R; X). If m = µ̂ for some
bounded measure µ ∈ M(R), then m is a bounded L2(R; X)-Fourier multiplier and
Tm f = µ ∗ f . A Banach space X is called a UMD space if the function

h(t) := −isgn(t) (t ∈ R),

is a bounded L2(R; X)-Fourier multiplier. The operator H := Th is called the Hilbert
transform. It is known that there is a wealth of UMD spaces; for example, each
Hilbert space is UMD (by Plancherel’s theorem) and if X is UMD and if (�, 6, µ)

is a measure space, then L p(�, 6, µ; X) is UMD, for every p ∈ (1, ∞). See [6,
Appendix E] for more information and literature about UMD spaces.

Using little more than the definition of a UMD space, we can prove the vector-
valued analogue of Lemma 1.2.

LEMMA 3.2. Let X be a UMD space and f ∈ L2(R; X). Then DN ∗ f → f in
L2(R; X) as N → ∞.

PROOF. Consider the convolution operators L N := ( f 7−→ DN ∗ f ) on L2(R; X).
By (1.4) one has L N ( f ) = DN ∗ f =F−1(1[−N ,N ] f̂ ), whence L N = Tm N with
mM := 1[−N ,N ]. However,

m N = 1[−N ,N ] =
i

2
(h(· + N ) − h(· − N )) (N > 0).

Since X is a UMD space, h is a bounded L2(R; X)-Fourier multiplier. It is now easily
seen that for each r ∈ R the shifted function h(· + r) is a bounded L2(R; X)-Fourier
multiplier as well, with same norm as Th =H. Hence,
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sup
N

‖L N ‖L(L2(R;X)) ≤ ‖H‖L(L2(R;X)) < ∞.

Since L2(R) ⊗ X is dense in L2(R; X) and DN ∗ f → f for scalar-valued f by
Lemma 1.2, the statement follows. 2

Recall that for any C0 semigroup T on a Banach space X one has

(T ∗ T )(t) =

∫ t

0
T (t − s)T (s) ds = tT (t) (t ≥ 0). (3.2)

The definition of KN from (2.1) in this context reads

KN (t) :=
1

2π i

∫ ω+i N

ω−i N
et z R(z, A) dz, (3.3)

where A is the generator of T . Here is finally the result about strong convergence of
the complex inversion formula.

THEOREM 3.3. Let A be the generator of a C0 semigroup T on the Banach space X,
let ω > ω0(T ), and define KN by (3.3). Suppose that X is a UMD space. Then for
every x ∈ X

t KN (t)x → tT (t)x as N → ∞,

uniformly in t from bounded subintervals of [0, ∞).

PROOF. By (2.1) one has KN = eωt (DN ∗ Tω). Now Lemma 2.2 and (3.2) yield

e−ωt t KN = t (DN ∗ Tω) ∼ DN ∗ [tT (t)]ω = DN ∗ Tω ∗ Tω = Tω ∗ (DN ∗ Tω).

Fix x ∈ X . By Lemma 3.2, DN ∗ Tωx → Tωx in L2(R; X) as N → ∞. Young’s
inequality therefore yields Tω ∗ (DN ∗ Tωx) → Tω ∗ Tωx = [tT (t)x]ω uniformly in
t ≥ 0. Multiplying by eωt concludes the proof. 2

Applying Theorem 3.3 with A = 0 and X = C yields the following.

COROLLARY 3.4. Let ω > 0. Then limN→∞ t (DN ∗ 1ω) = t1ω uniformly in t ≥ 0.

Without X being a UMD space, the theorem cannot be true, the canonical
counterexample being the shift semigroup on L1(R); see [1, Example 3.12.3]. The
classical result [1, Proposition 3.12.1, 5, Corollary III.5.15] is that one always has
strong convergence if x ∈D(A). We aim at showing that one actually has convergence
in the norm of L(X, X−1), where X−1 is the first extrapolation space (see [5,
Section II.5]).

THEOREM 3.5. Let A be the generator of a C0 semigroup T on the Banach space X.
Take ω > ω0(T ) and define KN by (3.3). Let λ ∈ %(A) be arbitrary. Then

lim
N→∞

t KN (t)R(λ, A) = tT (t)R(λ, A),

in norm, uniformly in t from bounded subintervals of [0, ∞).
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PROOF. By shifting the generator, we can assume that ω0(T ) ≥ 0, so ω > 0. We
abbreviate R := R(λ, A), C := AR(λ, A). The fundamental formula for semigroups
reads T − I = A(1 ∗ T ). Multiplying this by R from the right yields

T R = R + (1 ∗ T )C.

So
e−ωt KN R = DN ∗ Tω R = (DN ∗ 1ω)R + (DN ∗ 1ω ∗ Tω)C.

By the now well-known arguments, the second summand tends to 1ω ∗ TωC =

[1 ∗ T C]ω uniformly in t ≥ 0. By Corollary 3.4 we know that t (DN ∗ 1ω) → t1ω

uniformly in t ≥ 0. To sum up, we obtain

lim
N→∞

t KN R = eωt(t1ω R + t[1 ∗ T ]ωC
)
= t (R + (1 ∗ T )C) = tT (t)R,

in norm, and the convergence is uniform on bounded subintervals of [0, ∞). 2

REMARK (Integrated semigroups). One may ask for analogues of Theorems 3.3
and 3.5 for integrated semigroups. Let α > 0, and suppose that A generates an α-times
integrated semigroup S. Then S and A satisfy the equation

S = ϕα + A(1 ∗ S),

with ϕα(t) := tα/0(α + 1), t > 0. Following the lines of the proof of Theorem 3.5
one establishes that

lim
N→∞

t KN (t)R(λ, A) = t S(t)R(λ, A),

in norm, uniformly in t from bounded subintervals of [0, ∞). (The argument is not
completely analogous; to deal with the summand t[DN ∗ (ϕα)ω] one has to employ
Lemma 2.2 and the identity tϕα(t) = (α + 1)ϕα+1 = (α + 1)[1 ∗ ϕα].)

Apart from the trivial case where A is a bounded operator, we do not know whether
the analogue of Theorem 3.3 holds for integrated semigroups.

4. Volterra equations

The previous results on semigroups are only special cases of a more general theorem
on (scalar-type) Volterra equations. In this case one is given a function a ∈ L1

loc[0, ∞)

and one considers the abstract Volterra equation

u = x + A(a ∗ u) (x ∈ X). (4.1)

The well-posedness of this equation corresponds to the existence of a strongly
continuous solution family (S(t))t≥0 satisfying∫ t

0
a(t − s)S(s)x ds ∈D(A) and S(t)x − x = A

∫ t

0
a(t − s)S(s)x ds,
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for every x ∈ X, t ≥ 0. In short notation, this means just

S − I = A(a ∗ S).

In case a ≡ 1, S is a semigroup. It is convenient (and usual) to assume that a and S are
of finite exponential type ω0 ≥ 0. In that case S and a are Laplace transformable and

H(z) := L(S)(z) = R(z, z(La)(z)A) (Rez > ω0).

As in the case of semigroups, one can ask under what conditions and in what sense the
inversion of the Laplace transform converges to S. The definition of KN now reads

KN (t) :=
1

2π i

∫ ω+i N

ω−i N
et z H(z) dz, (4.2)

where as usual ω > ω0 is fixed. The following result is the exact generalization of the
corresponding result for semigroups.

THEOREM 4.1. Let a, S, A, H, KN as above, and let λ ∈ %(A) be arbitrary. Then

lim
N→∞

t KN (t)R(λ, A) = t S(t)R(λ, A),

in norm, uniformly in t from bounded subintervals of [0, ∞).

PROOF. By definition of a solution family, one has S = I + A(a ∗ S), so S R =

R + (a ∗ S)C , where R := R(λ, A) and C := AR(λ, A). Therefore, the proof of
Theorem 3.5 carries over almost literally. 2

The analogue of Theorem 3.3 is not so easy to obtain, and in general will not hold
without additional assumptions on a. The assumptions we make are of a technical
kind, chosen to make our proof work. However, they are weaker and easier to verify
than those in [3].

THEOREM 4.2. Let S and a be as before. Suppose that there exists b ∈ L1
loc[0, ∞)

such that the following holds:
(1) (a ∗ b)(t) = ta(t), t ≥ 0;
(2) bω ∈ L2(0, ∞);
(3) (b′

∗ S)ω is uniformly L2.
(Here b′ is the distributional derivative of b on R.) Define

KN (t) :=
1

2π

∫ N

−N
et (is+ω)H(is + ω) ds.

Then if X is a UMD space, limN→∞ t KN (t)x = t S(t)x uniformly in t from compact
subsets of [0, ∞), for each x ∈ X.
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Before we give the proof, which is more or less along the lines of the semigroup
case, let us comment on the theorem. Condition (1) says that L(b) = −L(a)′/L(a).
The crucial point in applying the theorem is therefore to be able to recognize
L(a)′/L(a) as a Laplace transform. The second is no essential condition, as we might
always choose ω large enough. The third is more delicate, as it imposes regularity on
b. We need that b′

∗ S is meaningful, hence b′ should be a Radon measure, that is
b ∈ BVloc[0, ∞). A feasible condition that implies (2) and (3) is that bω0 is bounded
and (b′)ω is a bounded measure.

EXAMPLE 1. Let α = 0 or Re α > 0, a(t) = tα (t > 0), and ω > 0. Then b(t) ≡ α + 1
clearly satisfies (1) and (2). Moreover, b′

= (α + 1)δ0 and so (3) is also satisfied. The
case α = 0 recovers the semigroup case; the case α = 1 corresponds to S being a cosine
function.

Example 1 also appears in [3, p. 191]; however, in our case it is much easier
to verify.

PROOF OF THEOREM 4.2. As in the semigroup case we apply Lemma 2.2 and obtain

e−ωt t KN = t (DN ∗ Sω) ∼ DN ∗ [t S(t)]ω,

so we have to analyse L(t S(t)) = −H ′ further. Observe that 1 ∗ b′
= (1 ∗ b)′ =

1′
∗ b = δ0 ∗ b = b and hence

z(Lb)(z) = zL(1 ∗ b′)(z) = z
1
z
(Lb′)(z) = (Lb′)(z) (Rez > ω0).

Since H(z) = R(z, z(La)(z)A), a little computation finally reveals that

H ′(z) =

(
−

(
1
z

+
(La)′(z)

(La)(z)

)
+ z

(La)′(z)

(La)(z)
H(z)

)
H(z)

= (−(L1)(z) + (Lb)(z) − z(Lb)(z)H(z))H(z);

see [3, Lemma 1]. (We used that (Lb)(La) = L(ta(t)) = −(La)′.) Hence,

L(t S(t)) = −H ′
= (L(1 − b) + L(b′

∗ S))(LS)

= L([1 − b + (b′
∗ S)] ∗ S),

and by uniqueness of Laplace transforms, we obtain

t S(t) = [1 − b + (b′
∗ S)] ∗ S = C ∗ S,

with C := [1 − b + (b′
∗ S)]. Thanks to hypotheses (2) and (3), Cω is uniformly L2,

and so the same arguments as in the proof of Theorem 3.3 yield what we wanted
to prove. 2

Let us point out that Theorem 4.2 is an improvement in comparison to [3,
Theorem 1]. There it was required that:
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(1) a(t) is 3-regular;
(2) La = O(|z|−1) for |z| > 1;
(3) z(La)′(z)/(La)(z) is locally analytic.
The authors do not specify the region of local analyticity, but from the proof it is
clear that they mean locally analytic on C∞

+ . Since (La)(z) does only exist for
Rez > ω0 the whole set of hypotheses seems a little strange; for example, in their
definition of 3-regular (taken from [8, Definition 7.3]) one considers functions living
on C+. However, with the help of our Theorem 4.2 we can relax hypotheses in the
following way.

COROLLARY 4.3. Let S be an exponentially bounded solution family for the scalar-
type Volterra equation (4.1), and let ω0 := max{ω0(a), ω0(S)}. Suppose that the
function z(La)′/(La) is locally analytic on (Re z > ω0) ∪ {∞}. Then the hypotheses,
and hence also the conclusion, of Theorem 4.2 hold true.

PROOF. Let F(z) := z(La)′/(La). Then F(z + ω0) is locally analytic on C∞
+ .

So we may apply [8, Lemma 10.1] to conclude that there is a constant c and a
function g ∈ L1(0, ∞) such that c + Lg = F(z + ω0), that is, F = c + Lg−ω0 . Let
b := 1 ∗ g−ω0 + c1. Then bω0 = 1ω0 ∗ g + c1ω0 is a bounded function and (b′)ω =

(g−ω0)ω + cδ0 = gω−ω0 + cδ0 is a bounded measure. Hence, conditions (2) and (3)
of Theorem 4.2 are satisfied. Furthermore, Lb = z−1(Lg−ω0 + c) = z−1 F(z) =

(La)′/(La), and this is condition (1). 2
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