A NOTE ON LIE ISOMORPHISMS

BY
WALLACE S. MARTINDALE, 3RD

The purpose of this note is to remove the assumption of characteristic different from 3 from a recent result of ours ([1], Theorem 11) so as to obtain

Main Theorem. Let S be a prime ring with 1, of characteristic different from 2 and containing two non-zero idempotents e_{1} and e_{2} whose sum is 1 . Let ϕ be a Lie isomorphism of S onto a prime ring R with 1 . Let Q be the complete ring of right quotients of R, let C be the center of Q, and let $T=R C$. Then ϕ is of the form $\sigma+\tau$, where σ is either an isomorphism or the negative of an anti-isomorphism of S into T and τ is an additive mapping of S into C which maps commutators into zero.

For notation, definitions, and background results we refer the reader to our paper [1]. We remark parenthetically that the ring $T=R C$ coincides with what we have subsequently called the central closure of R (see [2]). We recall that the ring T is (anti)isomorphic to the ring $T_{r}\left(T_{l}\right)$ of right (left) multiplications of T (acting on T); T_{l} is isomorphic to T^{\prime}, the opposite ring of T. Because of its importance in this note we restate [1], Theorem 5 as a

Lemma. Let R be a prime ring with 1 and let $T=R C$. Then $T^{\prime} \otimes_{c} T \cong T_{l} T_{r}$, according to the rule:

$$
a \otimes b \rightarrow a_{l} b_{r}, \quad a \in T^{\prime}, \quad b \in T .
$$

As the Main theorem is already known to be true in case char. $S \neq 2,3$ we assume henceforth without loss of generality that char. $S=3$ (and thus char. $R=3$). The only place where char. $\neq 3$ was used in [1] was in the proof of [1], Theorem 6. This result in turn was used only in the proof of [1], Theorem 7 in order to assert that $\phi\left(e_{i}\right)=c_{i}+f_{i}, f_{i}$ an idempotent in $T, c \in C, i=1,2$. Therefore the validity of the Main Theorem will have been established when we complete the proof of the following.

Theorem. If e is an idempotent $\neq 0,1$ in S, then $\phi(e)=c+f, f$ an idempotent in $T=R C, c \in C$.

Proof. For $s \in S$ it is easily verified that $[[[s e] e] e]=[s e]$ (here [$x y]$ means $x y-y x)$. Setting $x=\phi(s), a=\phi(e)$, and applying ϕ to this equation, we obtain

$$
\begin{equation*}
[[[x a] a] a]=[x a] \tag{1}
\end{equation*}
$$

for all $x \in R$ (and hence for all $x \in T$). (1) may be written as

$$
\begin{equation*}
x\left(a^{3}-a\right)=\left(a^{3}-a\right) x \tag{2}
\end{equation*}
$$

for all $x \in T$, making use of the fact that char. $R=3$. In other words we have

$$
\begin{equation*}
a^{3}=a+\lambda, \quad \lambda \in C \tag{3}
\end{equation*}
$$

We next choose a non-zero element u of $e S(1-e)$ and note that $e u-u e=u$. Setting $b=\phi(u)$ and applying ϕ to this equation we obtain

$$
\begin{equation*}
a b-b a=b \neq 0 \quad \text { (thus } a b=b+b a) \tag{4}
\end{equation*}
$$

For $s \in S$ one easily verifies that $[[[s e] u] e]=0$. Setting $x=\phi(s)$ and applying ϕ we have

$$
\begin{equation*}
[[[x a] b] a]=0 \tag{5}
\end{equation*}
$$

for all $x \in R$ (and hence for all $x \in T$). (5) may be rewritten as
(6) $(a b a)_{r}-a_{l}(a b)_{r}-b_{l}\left(a^{2}\right)_{r}+(a b)_{l} a_{r}-a_{l}(b a)_{r}+\left(a^{2}\right)_{l} b_{r}+(b a)_{l} a_{r}-(a b a)_{l}=0$
or, via the Lemma, as
(7) $1 \otimes a b a-a \otimes a b-b \otimes a^{2}+a b \otimes a-a \otimes b a+a^{2} \otimes b+b a \otimes a-a b a \otimes 1=0$

Partial replacement of $a b$ by $b+b a$ from (4) enables us to rewrite (7) as

$$
\begin{equation*}
1 \otimes a b a-a \otimes(a b+b a)+a^{2} \otimes b+b \otimes\left(a-a^{2}\right)+b a \otimes 2 a-a b a \otimes 1=0 \tag{8}
\end{equation*}
$$

At this point we suppose that $1, a, a^{2}$ are C-independent. If $b=\alpha+\beta a+\gamma a^{2}, \alpha, \beta$, $\gamma \in C$, then $a b-b a=0$, a contradiction of (4). Therefore $1, a, a^{2}, b$ are C-independent. Suppose

$$
\begin{equation*}
b a=\alpha+\beta a+\gamma a^{2}+\delta b, \quad \alpha, \beta, \gamma, \delta \in C \tag{9}
\end{equation*}
$$

Then $a b a=\alpha a+\beta a^{2}+\gamma a^{3}+\delta a b$ and, by making use of (3), (4), and (9), we see that

$$
\begin{equation*}
a b a=(\gamma \lambda+\delta \alpha)+(\alpha+\gamma+\delta \beta) a+(\beta+\delta \gamma) a^{2}+\left(\delta+\delta^{2}\right) b \tag{10}
\end{equation*}
$$

Partial substitution of (9) and (10) in (8) yields

$$
\begin{align*}
& 1 \otimes\{a b a+2 \alpha a-(\gamma \lambda+\delta \alpha)\}+a \otimes\{2 \beta a-a b-b a-(\alpha+\gamma+\delta \beta)\} \tag{11}\\
& \quad+a^{2} \otimes\{b+2 \gamma a-(\beta+\delta \gamma)\}+b \otimes\left\{-a^{2}+(2 \delta+1) a-\left(\delta+\delta^{2}\right)\right\}=0 .
\end{align*}
$$

It follows in particular that $-a^{2}+(2 \delta+1) a-\left(\delta+\delta^{2}\right)=0$, a contradiction to the independence of $1, a, a^{2}$. Therefore we must assume that $1, a, a^{2}, b, b a$ are C independent.

Now suppose

$$
\begin{equation*}
a b a=\alpha+\beta a+\gamma a^{2}+\delta b+\mu b a, \quad \alpha, \beta, \gamma, \delta, \mu \in C . \tag{12}
\end{equation*}
$$

Partial substitution of (12) in (8) gives

$$
1 \otimes(a b a-\alpha)-a \otimes(a b+b a+\beta)+a^{2} \otimes(b-\gamma)+b \otimes\left(a-a^{2}-\delta\right)+b a \otimes(2 a-\mu)=0
$$

In particular $a-a^{2}-\delta=0$, again contradicting the independence of $1, a, a^{2}$. Therefore 1, $a, a^{2}, b, b a, a b a$ are C-independent. But this clearly violates (8), and so we must conclude that $1, a, a^{2}$ are C-dependent. Since $a \notin C$ we may thus write

$$
\begin{equation*}
a^{2}=\alpha a+\beta, \quad \alpha, \beta \in C, \tag{13}
\end{equation*}
$$

whence

$$
\begin{equation*}
a^{3}=\left(\alpha^{2}+\beta\right) a+\alpha \beta \tag{14}
\end{equation*}
$$

Equating (3) and (14) yields

$$
\begin{equation*}
\alpha^{2}+\beta=1 \tag{15}
\end{equation*}
$$

Using (13) and (15) and char. $R=3$, one verifies directly that $f=a+2(1-\alpha)$ is an idempotent, and thus $a=f+c$, where $c=1-\alpha \in C$.

Acknowledgement. The research involved in this paper was partially supported by the National Science Foundation (GP-12090).

References

1. W. S. Martindale, 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc. 142 (1969), 437-455.
2. W. S. Martindale, 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

University of Massachusetts, Amherst, Massachusetts

