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ABSTRACT. Reversals in the ice/air surface slope are important in geomorphic and glaciological
contexts, thus motivating consideration of the conditions under which they form. Surface slope reversals
are seen in numerous places, such as ice rumples on ice shelves, as surficial lakes, and at the down-
glacier end of Vostok lake, Antarctica. Such slope reversals can reduce or reverse the subglacial
hydrological gradient, thereby rerouting subglacial water transport and possibly leading to the creation
of subglacial lakes. Supraglacial lakes produced by slope reversals in ablation zones may aid in driving
water-filled cracks that allow surface water access to the bed. Surface slope reversals, in the absence of
a concomitant reversal in ice flow, indicate a local violation of the so-called ‘shallow-ice’ approxi-
mation, and in this circumstance the longitudinal deviatoric stress becomes critical in the stress
equilibrium. Using a simple numerical model, we have explored the conditions under which surface
slope reversals form for certain simple scenarios. The results indicate that ice which initially possesses a
normal slope will tend toward a reversed slope if the ice is thinned, the bed is strengthened or the
downstream buttressing is increased.

1. LIST OF SYMBOLS

A Driving stress strength
Bi Ice hardness (Pa s1/n)
D Sill depth scale (m)
f Buttressing parameter
G Basal drag strength
g ð¼ 9:81Þ Gravitation acceleration (m s–2)
H Thickness scale (m)
hðxÞ Thickness (m)
h0 Upstream thickness (m)
L Length scale (m)
m Basal flow-law exponent
n ¼ 3 Ice flow-law exponent
rsw Non-dimensional sea-water density
t Time (s)
U Along-flow velocity scale (m s–1)
u Along-flow velocity component (m s–1)
u0 Upstream velocity (m s–1)
x Along-flow coordinate (m)
@=@x Longitudinal derivative (m–1)
� Viscosity (Pa s)
�i ð¼ 917Þ Density of ice (kgm–3)
�b Dynamic basal drag scale (Pa)

2. INTRODUCTION
A local reversal in the surface slope of an ice sheet or ice
stream is of interest both because slope reversal indicates
anomalous basal conditions and because subglacial water
flow is sensitive to the potential gradient provided by the ice/
air surface slope.

Reversed ice/air surface slopes are observed in nature in
the form of ice rumples on ice shelves (Swithinbank and
Lucchitta, 1986), lakes on the surface of the Greenland ice

sheet and on the surface of Matanuska Glacier, Alaska, USA
(Alley and others, 2003), and perhaps most importantly, on
the down-glacier side of Vostok lake, Antarctica (Studinger
and others, 2003). Ice flowing over any localized reduction
in basal lubrication or any bedrock high will tend to slow,
thereby reducing the magnitude of the surface slope up-
glacier of the obstacle or reversing that slope, and
steepening the slope over the obstacle. Owing to the
important role of longitudinal stresses over distances of less
than a few ice thicknesses (Budd, 1970), there is no
prohibition on local reversal of ice/air surface slope.

Here we examine the tendency to form such a slope
reversal for an ice shelf grounding over a sill. We focus our
efforts on the equilibrium profile of the ice flowing over a flat
sill. This requires the simultaneous solution of the steady-
state force and momentum balance. We next describe the
model we use for this solution.

3. MODEL DESCRIPTION
The model equations used here are derived in detail in
chapter 2 of Dupont (2004), and the notation, listed above in
section 1, is adopted from chapter 4 of Dupont (2004). A
brief derivation is included here as an Appendix. Our treat-
ment of the force balance is similar to the one-dimensional
approach of Van der Veen (1986), and, although one-
dimensional, is also similar in approach to the two-
dimensional (plan-view) treatments found in Morland
(1987) for ice shelves, and appendix A of MacAyeal (1989)
for ice streams and shelves. We adopt the geometry shown
in schematic form in Figure 1 and the dimensional scales
shown in Table 1. All variables are non-dimensional unless
otherwise noted. The flow is from left to right, with x being
designated the along-flow coordinate direction, and with the
point x ¼ 0 specified as the initial grounding point.

One scale of special note is the thickness scale H. For the
present study we specify that this scale correspond to the
flotation thickness for a sill depth of D given the ratio rsw of
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sea-water density to ice density, such that

H ¼ rswD: ð1Þ
This scaling implies that where the non-dimensional
thickness is greater than unity the ice is grounded, and
where the thickness is less than or equal to unity the ice is
afloat.

3.1. Governing equations
If we neglect, primarily for the sake of simplicity, cross-flow
variations in velocity and thus lateral drag, then the
appropriate governing equation for the x-directed force
balance is the depth-integrated Stokes equation, which in
non-dimensional form is
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where h is the thickness, u is the velocity and m is the
exponent for basal friction. The effective viscosity � is
defined as
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where n ¼ 3 is the flow-law exponent for ice. The non-
dimensional constants A and G measure the importance to
ice flow of thickness gradients and basal drag, respectively.
The values of A and G are determined by the choice of
scales and parameter values according to the following
definitions:
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, ð6Þ

where �i is the density of ice, g is the acceleration due to
gravity, H ¼ rswD is the thickness scale, Bi is the ice
hardness, U is the velocity scale, L is the length scale and
�b is the basal stress scale. Table 1 lists the values or range of
values adopted for these scales and constants, as well as the
resulting range of values for A and G.

There are two boundary conditions for the force balance.
The first is that we prescribe the velocity at the inlet (x ¼ 0),

uð0Þ ¼ u0: ð7Þ
The second boundary condition is imposed at the terminal
end (x ¼ 1),
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where f is an ice-shelf buttressing parameter and hð1Þ is the
(undetermined) ice thickness at the terminal end of the
domain. Equation (8) is simply a linear combination of two
reasonable end-members for the stress state at x ¼ 1, with
the weight we give each end-member being determined by
the value we prescribe for f . The first end-member, found by
imposing f ¼ 0, is the usual ice-front condition, where the
difference between the depth-integrated glaciostatic and
hydrostatic pressures is balanced by a tensile depth-inte-
grated longitudinal deviatoric stress, implying a positive
longitudinal strain rate @u=@x. This is the stress state one
would expect at an ice front or at the junction with a freely
floating ice shelf. The second end-member, found by setting
f ¼ 1, is a ‘fully buttressed’ condition, with zero depth-
integrated deviatoric stress, resulting in zero longitudinal
strain rate. The utility of f is that it allows for situations
where the ice beyond x ¼ 1 could be losing some mo-
mentum due to local grounding or perhaps lateral shear. In
such a situation, the momentum flux that must be
transmitted upstream (into the modeled domain) is reduced
relative to the case of a free-floating ice shelf; we model this
situation by setting f to something greater than zero.

Mass balance is governed by the evolution equation

@h
@t

¼ � @ uhð Þ
@x

, ð9Þ

where t is the non-dimensional time coordinate, and we
neglect any source (or sink) of mass via accumulation
(ablation). Equation (9), which is derived from mass
continuity, simply states that the time rate of change in
thickness is equal to the convergence of horizontal mass
flux. At the upstream boundary (x ¼ 0) we prescribe the
thickness

hð0Þ ¼ h0: ð10Þ

Fig. 1. Schematic geometry for the model problem. Flow is from left
to right in the x direction. The domain extends from the upstream
and downstream limits of the sill, at x ¼ 0 and x ¼ 1, respectively.

Table 1. Scales used to non-dimensionalize the force- and mass-
balance equations along with their boundary conditions. The range
of scales for A and G are those resulting from the full range of the
scales on which these parameters depend

Variable Scale Value or range of scale assumed here

h H ¼ rswD 1.12� (1–5�102)m
x L (3� 103)–(3� 104)m
u U 2–6� 10–3m s–1

t L=U 5–150�107 s
Bi Bi 1–2� 108 Pa s1/3

�b �b (5� 103)–(2� 105)
A �igrswDL1=3

BiU1=3
2–60

G �bL4=3

rswDBiU1=3
(5� 10–2)–(6�10–2)
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Given that we are interested in scenarios where the ice is at
least partially grounded as it flows across the sill, and given
that we have defined the thickness scale such that h � 1
implies flotation, we restrict the upstream thickness to being
greater than unity,

h0 > 1: ð11Þ

3.2. Numerical model and experiments
Our goal, given values for our poorly known parameters A,
G, u0, f and h0, is to find out if the resulting equilibrium
thickness distribution has a slope reversal. To find an
equilibrium thickness distribution, we start at some initial
guess for the thickness and let Equation (9) evolve toward
steady state, subject to the boundary conditions (7), (8) and
(10), with the velocity given by Equation (3) at each instant in
the evolution. Linear finite elements are used to discretize
both Equations (3) and (9) in space. Equation (9) is dis-
cretized in time using semi-implicit finite differences, with a
Petrov–Galerkin upwind-weighting scheme adopted in the
spatial discretization to improve the stability and efficiency
(Dupont, 2004). An evenly spaced, 201-node mesh is used
for the spatial discretization. In order to satisfy the strain-rate
dependent viscosity and the force-balance equation (3)
simultaneously, a simple substitution iteration is employed,
usually requiring fewer than eight of these iterations to reach
convergence within a given time-step. The numerical
implementation of the force balance was tested against
analytic solutions for steady-state ice shelves, with maximum
errors less than 10–5. Implementation of the mass-balance
component was checked using the analytic solution for an
advected step function, showing maximum errors smaller
than 10–4, as discussed in appendix B of Dupont (2004).

4. RESULTS AND DISCUSSION
We perform five sets of experiments, as outlined in Table 2.
Within each set of experiments, we set the values for h0, u0,
f andm and find equilibrium profiles for a range of A and G.
For each profile we ask whether the profile has a surface
slope reversal. We also ask whether the ice is grounded over
the full extent of the domain, in which case we designate the
profile as having ‘no shelf’, as it is fully grounded; otherwise
the profile is designated as having a ‘partial shelf’, as the ice
along some portion of the domain is floating.

The results for the standard experiment are shown in
Figure 2. There is clearly a transition from normal to reversed
surface slope within the range of A and G chosen. The
tendency is toward normal slope and partial grounding in
the high-driving-stress, low-basal-drag portion of the space,
and reversed slope and full grounding in the low-driving-
stress-strength, high-basal-drag portion of the region. Two
profiles are shown in Figure 2, as examples of the no-shelf
(fully grounded), reversed surface-slope case and the partial-
shelf, normal surface-slope case. Note that the other two
possible cases, those of partially grounded, reversed surface-
slope and fully grounded, normal-slope profiles, do in fact
occur but occupy a smaller region of the parameter space
explored.

Figures 3 and 4 show how perturbations in the standard
set of parameter values affect the position, in A–G space, of
the normal/reversed slope and no-shelf/partial-shelf trans-
itions. The results of perturbing the bed rheology exponent
(m) show essentially no difference from the standard

experiment. This is because it is the non-dimensional
velocity u, which is always near unity, that the inverse of
this exponent acts on in Equation (3). In effect, our non-
dimensionalization precludes a strong response to variations
in m. Because of this lack of sensitivity, we elect not to plot
these results in the figures.

Decreasing the upstream thickness produces an expan-
sion of the area of reversed surface slope for low driving
stress and low basal drag. For higher driving stress and
higher basal drag, decreasing the upstream thickness
produces a contraction of the region of reversed surface
slope. Thus, systems that are near the slope transition should
be expected to seal (unseal) when low (high) in driving stress
and basal drag and subjected to an upstream thinning.
Similarly, upstream thinning produces an expansion of the
partially grounded region in A–G space. This is expected in
the sense that, as the ice thins upstream, the whole of the
flow must thin, which will allow ice near flotation to reach
flotation and unground. This ungrounding, for high driving
stress and basal drag, leads to a transition to normal slope as
the area over which basal drag operates is reduced.

Increasing the upstream velocity relative to the standard
case produces an expansion of the reversed surface-slope
and fully grounded regions of A–G. This is expected because
higher velocity makes the profile become more advection-
dominated. Similarly, introducing buttressing expands the
reversed surface-slope and fully grounded regions. This
follows from a weakening of the stretching required within
the ice as buttressing is introduced at the downstream end.

5. CONCLUSIONS
From our exploration of parameter space, we see that the
reversed surface-slope region invariably occupies the
lower A, higher G portion of parameter space. Because
these parameters are, respectively, directly and inversely
proportional to the thickness scale, we see that thinning
tends toward slope reversal. Similarly, making the bed
stickier, as measured by G, tends toward slope reversal.
Conversely, decreasing buttressing tends toward normal
slopes. Thus we see that a transition to slope reversal is
favored by thinning, strengthening the bed and increasing
ice-shelf buttressing.

Given that the parameter values used in this study are
well within reasonable glaciological values, we can say with
confidence that we should expect slope reversals. To the
extent that these slope reversals aid in trapping water within
subglacial lakes, we can say that these results are at least
consistent with outburst flooding, as described by Alley and
others (in press).

Table 2. Sets of parameter values for the various numerical
experiments. Note that the ranges for A and G adopted here fall
within the broader range noted in Table 1

Experiment A G h0 u0 f m

Standard 2–30 0.1–6 1.1 1 0 1
�h0 2–30 0.1–6 1.01 1 0 1
þu0 2–30 0.1–6 1.1 1.5 0 1
þf 2–30 0.1–6 1.1 1 0.5 1
þm 2–30 0.1–6 1.1 1 0 12
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APPENDIX
NON-DIMENSIONAL TREATMENT
The goal of this appendix is to arrive at the non-dimensional
forms of the depth-integrated force-balance equation and
the terminal boundary condition (Equations (3) and (8),
respectively). Dimensional versions of the simplified force-
balance equation and boundary condition will first be
derived. Through the introduction of a non-dimensional
mapping, these equations will be rendered into the forms
used in the main body of the paper.

Force-balance equation
We begin with equation (1) of MacAyeal (1989), which is an
x-directed momentum balance equation appropriate for ice
streams and shelves. Using different notation, the dimen-
sional equation is

@
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where h is the ice thickness, zs is the ice/air surface ele-
vation, x and y are the along-flow and cross-flow co-
ordinates, u and v are the depth-averaged x- and y-directed
velocities, �i is the density of ice, and g is the gravitational
acceleration. �bðuÞ is the basal friction. We assume the basal

Fig. 2. Results of the standard experiment. The upper left panel shows the transition, in A–G space, from normal to reversed surface slope.
The upper right panel shows the transition from profiles with no shelf (fully grounded) to those with a shelf on some portion of the domain.
The lower panel shows the equilibrium surface and bed profiles for the two points in A–G space marked on the upper panels, chosen to
exemplify profiles on either side of the transitions. The grounding point for the normal-slope, partial-shelf profile is at x ¼ 0:38. For the
reversed-slope, no-shelf profile, the slope changes sign at x ¼ 0:21.
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rheology follows a power-law form �bðuÞ � Bbu1=m, where
m is the basal flow-law exponent and Bb is the basal friction
coefficient.
� is the depth-averaged effective viscosity,
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where Bi is the ice hardness parameter and n is the flow-law
exponent. The stress/strain-rate relation adopted here is �i �
2� _"ii, where i can be either x or y and the strain rate may
accordingly be _"xx ¼ @u=@x or _"yy ¼ @v=@y, respectively.

For simplicity we now focus our efforts on wide, but
confined, channelized flow, with negligible cross-flow
velocity. This restriction allows the neglect of terms in
Equations (A1) and (A2) involving the cross-flow velocity v
and the cross-flow gradient @=@y. We also restrict con-
sideration to flow over a flat sill of depth D, such that
grounded ice has a basal elevation zb ¼ �D, floating ice has
a basal elevation of zb ¼ �r�1

sw h, and the condition for
flotation is h � rswD, where rsw ¼ �sw=�i is the ratio of the
density of sea water to that of ice.

Adopting these simplifications and noting that the ice/air
surface and basal elevations are related by zs ¼ h þ zb, the
expressions for the force balance and viscosity, Equa-
tions (A1) and (A2), respectively, reduce to
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Equations (A3) and (A4) are the dimensional forms of
Equations (3) and (4).

Terminal boundary condition
Here we wish to derive a representation of the stress
condition at the terminal end of the domain, where x ¼ L. It
is useful to note that the expression within the braces on the
lefthand side of Equation (A4) is depth-integrated longi-
tudinal stress,

h�x ¼ 4h�
@u
@x

� �ig
2

h2:

If the terminal end of the domain is an ice front, then at this
point the depth-integrated longitudinal stress within the ice
must balance the depth-integrated longitudinal stress pro-
vided by the sea water. Because sea water is effectively
inviscid compared to ice, the depth-integrated longitudinal
stress within the ocean is, to good approximation, the depth-
integrated hydrostatic pressure. With sea level set to z ¼ 0,
the ice-front stress condition is then

h�x½ �ice ¼ 4h�
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This condition is also appropriate for the junction with a
freely floating, laterally confined ice shelf. The condition
implies a positive (stretching) depth-integrated longitudinal
deviatoric stress, thus producing a longitudinal gradient in
velocity at this point. We refer to this condition as
unbuttressed.

An alternative to this unbuttressed, ice-front-like condi-
tion is one in which there is no longitudinal deviatoric stress.
In this situation, the ice at the terminal end is buttressed by
lateral or basal drag acting on ice downstream of x ¼ L; for
this fully buttressed case, the depth-integrated longitudinal

Fig. 3. Effect of perturbations in upstream thickness (h0), upstream
velocity (u0), and buttressing (f ), on the position of the transition
line from normal to reversed surface slope. The specific values of
the perturbations to the various parameters are listed in Table 2.
Note that the results of a perturbation in the basal rheology
exponent (m) are not shown, as they are indistinguishable from the
standard experiment.

Fig. 4. Effect of perturbations in upstream thickness (h0), upstream
velocity (u0) and buttressing (f ), on the position of the transition
from a fully grounded (no-shelf) to partially grounded (partial-shelf)
profile. The specific values of the perturbations to the various
parameters are listed in Table 2. Note that the results of a
perturbation in the basal rheology exponent (m) are not shown,
as they are indistinguishable from the standard experiment.
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stress is purely due to the depth-integrated glaciostatic
pressure,

h�x½ �ice ¼ 4h�
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Ideally, we would like to examine scenarios intermediate
between these fully buttressed and unbuttressed cases. A
simple way to accomplish this is through a linear combin-
ation of these two end-members,
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where f is the buttressing parameter, defined such that f ¼ 1
and f ¼ 0 imply a fully buttressed and unbuttressed
condition, respectively. Equation (A5) is the dimensional
form of Equation (8).

Non-dimensionalization
To isolate key parameters we now introduce a non-
dimensional mapping of the variables. The terms on the
lefthand side of this map are dimensional variables. The
terms on the right consist of the non-dimensional versions of
these same variables, multiplied by a constant scale. The ice
density, �i, gravitational acceleration, g, and the ice hard-
ness, Bi, are all treated as constants, thus requiring no non-
dimensionalization.
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where L, U and H are the scales for length, velocity and
thickness, respectively. The scale for the basal drag, �b, is
introduced as concatenation of the arbitrary basal friction
parameter Bb and U1=m. Note that the scale for the thickness
is defined such that ice with a thickness of H is just at
flotation over the sill of depth D.

Inserting this non-dimensional mapping into Equa-
tions (A3–A5), and doing a little algebra yields
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where the parameters G and A result from division of the
scales for basal drag and the longitudinal gradient in depth-
integrated glaciostatic pressure, respectively, by the scale of
the longitudinal gradient in the depth-integrated longitudinal
deviatoric stress,

A ¼ depth-integrated glac: pressure grad:
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