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Abstract

The problem of rmtlin}- « pouJr-i,. tuning given points JCO.*! in a connected complete Riemannian
manifold requires miKh n»»r rft.ic than determining a geodesic from initial data. Boundary value
problems of this type a»c v«i>nimc> *>Ued using shooting methods, which work best when good initial
guesses are available cprxuiK »hrn «... jt, are nearby. Galerkin methods have their drawbacks too.
The situation is much ituwc d.tr^ui! »ith general variational problems, which is why we focus on the
Riemannian case

Our global algorithm •- \ c vimpk- h> implement, and works well in practice, with no need for an
initial guess. The prm.i i>( n ^ a v r i k c is elementary and very carefully stated, with a view to possible
generalizations later on We Kj»r «r minj the much larger class of interesting problems arising in optimal
control especially frmn mr\ tum.* cf rnernng

1991 Mathematics ta^r, r. .„. . -. j - , .« , Amrr Math. Soc): primary 34B15, 49M05; secondary 53C22.

1. Introduction

Let N be a C* path-connected Riemannian /i-manifold where n > 1 is finite. When
Af is complete with respect to the Riemannian distance function d the classical Hopf-
Rinow theorem says that an\ x{). x i € N are joined by a minimal geodesic, namely a
curve y : [0, 1] —• N of minimum length with respect to the Riemannian structure.
When the geometry of N is very well understood all geodesies can be written down
in closed form [1,6], but in general finding y is not easy.

There always exists a coordinate chart of Af containing the image of y, but finding
the chart may not be easy either, unless y is given or xQ, x\ are nearby. Putting that
difficulty to one side, y solves a second order non-linear system of n ordinary differ-
ential equations defined in the chart coordinates, as well as the boundary conditions
y(j) = Xj for J = 0, 1. So the search for y can be considerably narrowed by solving a
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38 Lyle Noakes [2]

2-point boundary value problem, at least if a suitable coordinate chart has been found.
Solving a 2-point boundary-value problem is much harder than solving an initial-

value problem. In particular, some kind of completeness assumption, such as we have
made in the Riemannian case, is needed to ensure that a solution to the initial-value
problem exists for all time. Typically the boundary-value problem does not have
a unique solution, and in the general case a solution need not exist. In the single
shooting method [3, Chapter 2] for 2-point boundary-value problems the unknown
initial data is estimated, or just guessed when no basis exists for making an estimate.
Then the corresponding initial-value problem is solved to obtain an estimate y of the
solution to the boundary-value problem. The error y(l) — X\ in the terminal value is
used to update the initial guess. When the initial guess is good the estimates obtained
by iterating this procedure converge to a solution of the boundary-value problem.
The success rate does not seem to be high in other cases, and in general there is no
guarantee of convergence.

When XQ,X\ are nearby they determine a useful estimate of the initial velocity y(0),
which is the extra initial data that we need for single-shooting. Usually in such cases,
which we call the local version of our problem, single shooting works well and is
possibly the method of choice. When x0, X\ are distant we have the global problem
and the performance of single-shooting is critically dependent on the quality of the
initial guess.

Error accumulation in solutions of initial-value problems can be especially trouble-
some for non-linear systems. To cope with this and other difficulties, single shooting is
sometimes replaced by multiple shooting [3]. Then [0, 1] is divided into small subin-
tervals whose initial data is simultaneously updated at each step. This ameliorates
chaotic effects but performance is still heavily dependent on the quality of the initial
guess. As an added computational burden, the number of variables is substantially
increased. As for single shooting there is usually no guarantee of convergence.

The global algorithm of the present paper resembles multiple shooting in that [0, 1]
is subdivided and geodesies are found separately over each subinterval. So we do
not expect to be troubled by the non-linear dynamics either. The most important
differences between the global algorithm and multiple shooting, as described in [3],
are

(1) Each step of the global algorithm updates only n real variables at a time.
(2) The curves of the global algorithm satisfy both boundary conditions at every

step of the iteration.
(3) The global algorithm always converges, without the need for an initial guess.

Usually there is no need to search for convergent subsequences. The entire sequence
of approximations is proved to converge under fairly general conditions.

The present paper exploits the success of single shooting by treating the local
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[3] A global algorithm for geodesies 39

problem as essentially solved. This opens up the possibility of solving the global
problem by building approximations from local solutions. This idea is certainly not
new. For example in [6, IILSection 16] the space of all piecewise-C1 curves joining
x0, *, is approximated by a C°° finite-dimensional manifold B of piecewise-geodesics.
Restricting the energy integral £ to a suitable compact subset of B suffices to prove
the Hopf-Rinow Theorem. So it appears we might be on the right track.

Indeed the method of gradient descent applied to the C°° function E' = E\B on
B can be used to solve the global problem. Alternatively, gradient descent can be
applied directly to suitable infinite dimensional manifolds of curves [11]. The gradient
of £ ' is a vector of velocity increments at the junctions of a piecewise geodesic and is
readily calculated in practice. However a practical difficulty with gradient descent is
that each iteration requires a choice of step-size. The most satisfactory way to make
the choice is to base it on a local quadratic approximation to £" namely by reference
to the Hessian H of £'. Usually H does not need to be updated at every step, but the
need to calculate it at all substantially increases the computational effort required. The
dimension b of B is nj where j is the number of junctions in the piecewise-geodesics.
When step-sizes are determined by human intervention, gradient descent takes place
in Kb. Once the process is fully automated H represents a further b(b + l)/2 scalars.

The Gauss-Seidel algorithm is an iterative scheme for the solution of large systems
of affine equations. Each iteration adjusts a single variable, and for large systems
Gauss-Seidel is much more efficient than Gaussian elimination. We are faced with
not dissimilar difficulties in the application of gradient descent to the global problem,
especially when b is large. So it seems natural to imitate Gauss-Seidel. (An alternative
way of motivating the global algorithm is by comparison with the non-linear corner-
cutting techniques of [7-9].)

Consider a piecewise-geodesic curve co : [0, 1] —*• N from x0 to x\, parameterized
proportionally to arc-length, and whose j geodesic segments occur within convex
subsets of N. Then a> is uniquely defined by the y-tuple (vi, v2 , . . . , y>) e Nj

of junctions of geodesic segments. Instead of applying gradient descent to the nj-
dimensional ./-tuple we adjust each y, separately as follows. Set y0 = x0, yq = x{

where q — j + 1 and suppose that for each 1 < i < q all three of y,_,, y,, y,+,
lie inside some convex subset of N. Then moving y, onto the minimal geodesic
joining y,-_i, y,+i achieves the largest possible decrease in length while keeping other
variables fixed. There is some uncertainty about where on the minimal geodesic y,
should go but in order to focus the discussion we settle on the midpoint. The global
algorithm consists of iterating this procedure so that all y, are moved infinitely often
where 0 < / < q. More precisely, in the present paper let i run from 1 to q — 1 and
then start over again. This generates a sequence £2 = {coa : [0, 1 ] —> N : a > 1} of
piecewise-geodesics whose lengths are decreasing.

A little attention to detail shows that Q has a uniformly convergent subsequence. It
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is plausible, true, but not quite obvious that the limit y is a geodesic. (However y need
not be a minimal geodesic.) What complicates the proof a little is that the (q +1 )-tuple
determining y might contain redundancies. So we obtain a useful algorithm which is
not very demanding of computational resources.

Even greater efficiencies are possible when £2 is known to be convergent, because
then we do not have to look out for convergent subsequences. We prove that £2
converges when N has everywhere non-positive sectional curvature, and in many
other situations as well. We do not know whether £2 is always convergent. The only
case where we might have to go to subsequences is where there are distinct geodesies
Yi : [0, 1] -> N of the same length, which are homotopic through curves from x0

to Xi.

EXAMPLE 1.1. If A7 = S" with the usual Riemannian metric then £2 converges
unless x0 = — xt. If x0 = — xx we might have to go to subsequences. Finding
geodesies on 5" is no trouble at all because the geometry is so well understood. The
same goes for the next two examples.

EXAMPLE 1.2. If N = RP" with the usual Riemannian metric then £2 converges
unless d(xo,X\) = n.

EXAMPLE 1.3. If N is the n -dimensional flat torus S ' x S ' x - x S 1 then £2
converges for any choice of x0, xt.

Before going into the details of the global algorithm we mention an alternative and
very attractive method of constructing solutions to non-linear variational problems,
namely the use of pseudomonotone operators in non-linear functional analysis. Except
for the difficulty already mentioned (which is not a problem for the global algorithm)
of finding a suitable coordinate chart, the problem of joining x0, xt by a geodesic can
also be approached using a very general result of Brezis [16, Theorem 27.A]. Apart
from its wide range of possible applications, for us the most interesting aspect of
this theorem is that it gives an effective construction using a sequence of Galerkin
approximations. The approximations are found by solving a non-linear system of
equations in R* for increasing values of k, appealing to the Brouwer fixed point
theorem each time. Turning the Brouwer theorem into a constructive procedure is not
without its practical difficulties, and of course this has to be carried out time after time
as k increases.

A more serious difficulty with the Galerkin approximations is that k is unbounded,
namely, there is an explosion in the number of variables that need to be considered.
So Brezis' very important theorem seems somewhat deficient as a practical method of
solving variational problems and in particular for finding geodesies. The global algo-
rithm does not suffer from the same limitations because the space B of approximating
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curves actually contains the geodesic and its dimension is n(q — 1) where q depends
on the geometry of N.

Galerkin approximations have nonetheless been used to achieve impressive suc-
cesses in solving practical problems in optimal control, for example in the work of
Teo and his co-workers [14]. For instance there is no doubt at all that the MISER
software package can find geodesies. However it must also be admitted that the com-
putational effort required for these successes is sometimes very large, as would be for
an implementation of the proof of Brezis' theorem. It was to ease this computational
burden that a version of the global algorithm for optimal control was proposed in
stimulating conversations between K. L. Teo, the present author, and their research
student Y. C. Liu. These conversations were motivated in part by the work of Zuo
[17] on an algorithm for discrete-time optimal control problems, but our efforts were
soon abandoned due to difficulties of proving (or even verifying) convergence. The
algorithm in the present paper is a continuous-time analogue of Zuo's. The present
author will revisit optimal control in future papers. However there are some challeng-
ing problems calling for the computation of geodesies. One problem which seems
more accessible now, in light of the present paper, is the following

EXAMPLE 1.4. In the statistical problem of computing Rao distances between mul-
tivariate Gaussian distributions with different means [5,12,13] the Riemannian dis-
tances are very difficult to compute in closed form. There is a single exception,
reducing to planar hyperbolic geometry.

For future work we have in mind the much larger class of interesting problems
arising in optimal control especially from mechanical engineering [2,10].

2. Midpoint maps

A subset W of N is said to be convex when

(1) for any *0, *i € W, there is a minimal geodesic y : [0,1] -*• W of N from x0

(2) y is the only geodesic from x0 to X\ defined on [0, 1] whose image is entirely
contained in W;
(3) y depends differentiably on x0, Xi.

By [15] N has an open cover by convex sets.
Let L(co) be the Riemannian length of a piecewise-C! curve co : [a, b] —> N. Let

d be the Riemannian distance function namely the metric d on N given by
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where to : [0, 1] -*• N varies over piecewise-C1 curves from x0 to xx. Let the metric
space (N, d) be complete. Then the closure of any open ball B(x0, r) is compact.

Given a piecewise-C1 curve a>: [0, 1] -*• N, let 68 > 0 be a Lebesgue number of
an open cover {Wa : a e A} of the closure of B(co(0), L(co)) by convex subsets of TV.
Let X be the union \JaeA Wa.

Let D = {(x0,*,) € X x X : d(xo,xt) < 28} and define M : D ->• Â  by
Af(*o, X,) = y ( l / 2 ) where y : [0, 1] -»• Af is the minimal geodesic from x0 to JCI-
Because of the following simple result M maps into X.

LEMMA 2.1. For (x0, xt) e D, M(x0, xt) e X.

PROOF. Because d(x0, X\) < 35, x0, X\ € Wa for some a e A. Then M(x0, X\) e
Wa because Wa is convex. This proves the lemma.

Now M is C°° and

(1) d(xo, M(x0, xt)) = d(x0,

for all (*0,JCi) 6 £>.
Choose 0 = t0 < h < ••• < tq — 1 so that rf(o;(r,_i), w(r,)) < 8 for all

/ = l,2,...,q. Because each L(co\[0, r,-]) < ^(<w), <w(O e X. In other words
(<y(/0), co(t]), • • • ,co(tq)) is an element of the set Y of all (q + l)-tuples y =
O o , y , , . . . ,
y,) € A""+1 satisfying rf(y,_,, v,) < 5 for all / = 1, 2 , . . . , q.

For 1 < p < q define Gp : Y -» X«+l by

GpCy) = (y0, y , , . . . , yp_,, zp, yp + l , yp+2,... , yq)

where zp = M ( ^ _ , ,yp+\).

LEMMA 2.2. Gp(y) e K.

PROOF.

d(yp-\,zP) =d(zp,yp+i) = d(yp-uyp+i)/2

< (2<S)/2.

The lemma is proved.

So Gp : Y -> Y where 0 < /? < q. Since Af is C°° so are the Gp. Define a C°°
function F : Y -*• Y as the composite Gp_, o Gp_2 o • • • o G,. Then F(y) e y is the
(q + 1)-tuple z defined inductively by
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[7] A global algorithm for geodesies 43

(1) Za = yo,

(2) Zi = M(zi-u y,+1) for 1 < i < q,

(3) Zg = y q .

Note that F(y) does not depend on y,.
Just as the piecewise-C curve u> has length so does y e Y: define A(v) =

S/_i.2 qd(yi-\, yi). Then d(y0, yq) < X(y) < L(a>) and X : Y -» IR is continuous.

LEMMA 2.3. For 0 < p <q and all y €Y, k(Gp(y)) < X(y).

PROOF. k(y) - X(Gp(y)) is

d(yp-i,yp)+d(yp, yp+i) - d(yp-Uzp) - d{zp, yp+i)

= d(yp-u yP) + d(yp, yp+i) -d(yp-UyP+\) > 0.

This proves the lemma.

Thus q — 1 applications give

LEMMA 2.4. For all y€ Y, X(F(y)) < My).

Let dq+l be the uniform metric on Y induced by d, namely:

d"+l(y,z)= max
i01i=0.1 q

LEMMA 2.5. d"+](y, F(y)) < 25.

PROOF. Write z = F(y). Then rf(y0, Zo) = d(yg, z,) = 0. For 0 < i < q

8

because z € Y. But y e Y also and so d(yt, y,-+,) < 5. Therefore cf(y,, z,-) < 25 and
this proves the lemma.

3. Multiplicities and curves

So as to simultaneously study (q +1 )-tuples for different values of q, the notation of
Section 2 is supplemented when necessary with superscripts (q) referring to (q + 1)-
tuples. So Y(q) is the space Y defined in Section 2 and Y{p) is the same but with
(p + 1 )-tuples instead of (q +1 )-tuples. The same symbol is used for F in the context
of (q + l)-tuples regardless of the value of q.
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DEFINITION 3.1. y has multiplicity > k — j + 1 in position 0 < j < q when
v, = yj+] = • • • = yk. The multiplicity of y in position 0 < j < q is the largest
1 < m < q such that y has multiplicity > m in position j .

The reduction p(y) of y € y(l?> is defined by discarding consecutive repetitions in
positions 0 < j < q. Note

(1) for some 0 < r < q, p(y) e Y(r) and has multiplicity 1 in every position
0 < j < r;
(2) p(jy) = y if and only if y has multiplicity 1 in every position 0 < j < q. In

such a case y is said to be irreducible.

The expansion e(w, m) of w e y(r ) by an (r + l)-tuple m = (m0, m i , . . . , mr) of
positive integers is obtained by replacing each iu, with m, copies of itself. Any y € Y
can be written in the form e(w, m) for some m, where w is the irreducible p(y). The
cune of a (q + l)-tuple y e Y is a piecewise-geodesic joining the y, in order, and
parameterised proportionally to arc-length. More precisely

DEFINITION 3.2. For y € Y and 0 < / < q let yt : [0, 1] ->• AT be the minimal

from y,_i to _y,. The curve of y € y is coy : [0, 1] —• Â  where

= y, (ltk(y) - J2 d(yj-^yj)J /d{y,-uyi)

Noie the following simple consequences of the definitions of coy, k and L.

(2) L(o>y) = k(y),

<3) COp(y)=Q)y.

From now until the end of this section coy will be a geodesic y : [0, 1] -*• N. This
exceptional situation occurs in the proof of Lemma 4.2, as the result of a limiting
process. In such a case we have

(4) coF{y) = coy

We can write F(y) = z where z,- = / ( « , ) and u0 = 0, M, = (w,_i + ti+l)/2 for
0 < / < (j, uq = 1.

LEMMA 3.1. When a \ w a geodesic, with «,, ?, 05 above,
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[9] A global algorithm for geodesies 45

(1) ui < ti+] for 0 < i < q;

(2) ^ < M,+1 for 0 < i < q\
(3) iftj-i < tj = tj+\ = • • • = tk then M, < ti+x for j - 1 < i < k.

PROOF. We first prove that M, < ti+] by induction on 0 < i < q. When / = 0 we
have M0 = 0 and t\ > t0 = 0. For i > 0 suppose inductively that «,_) < r,. Then
«; 5 (t, + ti+l)/2 < r,+1 and so the assertion is proved.

The second assertion holds trivially when i — q — 1. For 0 < i < q — 1 we have

according to the first assertion.
The last part of the lemma is proved by induction. When j = 1, w0 = 0 < t} by

assumption. When / = j — 1 > 0, M;_I = («;-2 + tj)/2 < (f;_, + tj)/2 according to
the first assertion. Since r,_, < tj we obtain Uj-\ < tj.

Now for,/ —1 < i < k suppose inductively that M,_I < t,. ThenM, < (r,+r,+i)/2 =
/,+i which completes the proof of the lemma.

The following result is not used in the present paper. It is included for completeness.

LEMMA 3.2. Let a>y be a geodesic y. Then the sequence {Fa(y) : a > 1} C Y
converges to the uniformly distributed (q + l)-tuple

(yo,y(l/q),yQ/q),... ,Y(i/q),... ,y<,).

PROOF. If q — 2 the result is clear since F(y) is independent of y\ and the limit is
achieved immediately as F(y). For q > 2 write

t = (t2, t3, . . . , f,_,)r, U = (Il2, M3, • • • , « , - l ) r € K9"2.

If F(y) = z then t = Au + b where A is the (q — 2) x (q — 2) matrix whose rows are

1/22 1/2 0 - - -0

1/23 1/22 1/2 0- - -0

1/2'-' 1/2"-2 1/29"3 - - -1 /2 2

and b = (0, 0 , . . . , 0, 1/2)7" € K«-2. It follows that Fa(y) is

where M<0) = r and, for a > 0,

M(a) = fc + Afc + A2b + • • • + Aa~lb + Aat.
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This converges since ||A|| < 1, and the limit M<00) satisfies w(00) = AM(OC> + b. It
is readily verified that w(oo) = (2,3,... ,q — I ) 7 /q is the unique solution, and this
proves the lemma.

4. Extremes

Let y € Y and define s(a) = F"(y) for a > 1. By Lemma 2.4 the sequence
{A(s(a>) : a > 1} converges to its infimum A<00> € [d(y0, yq), qS].

Because (N, d) is complete the closure B of B(y0, qS) is compact. Because Y
is closed in the cartesian power Bq+l, Y is compact. Let {s(Oj) : j > 1} be any
convergent subsequence of {s{a) : a > 1} C Y. Write lim^_0O5(^) = s(00) e Y, where
*«»> = ( j ^ , s\°°\ ... , s^). Because A is continuous X(s{oo)) = A(oo).

Given (x0, X\) G Z) say that u; e Af is between xo,X\ when w lies in the image of the
minimal geodesic y : [0, 1] ->• N fromx0 t o* , . In such acase (x0, iy), (u;,^i) € D.
Note also the following.

(1) x0 and x, are between x0, xt;
(2) w is between x0- ^i if and only if w is between x\, x0.

Call w e Y(p) extreme when io, is between io,-_i, wi+\ for all 1 < i < p.

LEMMA 4.1. An irreducible w e Y{p) is extreme if and only ifww is a geodesic.

PROOF. Suppose that w is extreme and for 0 < / < q let y, : [0, 1] -*• N denote
the minimal geodesic from «;,_[ to wi+]. By contrast the minimal geodesies in
Definition 3.2 from u;,_, to iu, are y, : [0, 1] -*• N.

Because iy, is between «;,-_i, wi+\, wt = y,(5) where s € (0, 1) since w is irre-
ducible. Then s is the ratio

The restrictions y,|[0, s] and y,|[s, 1] are minimal geodesies, from u>,_i to w-, and
from io, to wi+\ respectively. So in Definition 3.2

Yi(t) = / / ( ' A ) and y+ 1(f) = y,((? - 5)/(l - s)).

Consequently ^y,(l) = (1 — s)yi+] (0), and substituting for s:

DEHNITION 4.1. Let a continuous curve y be defined over a closed interval [a, b]
and suppose that c € (a, b). Then the restrictions of y to the subintervals [a, c] and
[c, ft] are called track-summands of y, and y is the track-sum of its track-summands.
More generally y may be repeatedly decomposed into a track-sum of finitely many
summands.
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[11] A global algorithm for geodesies 47

So the left and right derivatives of a>w agree at the junctions of the track-sum,
namely when tL(w) = E0<;<,(i(u;J_i, Wj) for 0 < i < p. So cow is C1, as well as a
track-sum of geodesies. This proves that u>w is a geodesic when w is extreme.

Suppose now that cow is a geodesic. For 0 < i < p the restriction <w, of cow to the
interval

is a geodesic from io,_i to u\-+i. The diameter of the image of a> is at most 28 and
35 is a Lebesgue number of an open cover of N by convex sets. So the geodesic <£>,
maps into some convex subset of N. So a>, is a minimal geodesic from u>,_| to wi+]

and, after reparameterisation, Wj is seen to be between u>,_i, u>,+1. This completes the
proof.

The first two parts of the following result come from Lemma 2.4 and the definition
of F (they are included here only for convenience). The proof of the third assertion is
complicated by the need to allow for the possibility that y might not be irreducible.

LEMMA 4.2. (1) A.(F(y)) < X(y);
(2) ifcoy is a geodesic then k(F(y)) = X(y);
(3) ifk(F(y)) = X(y) then a>v is a geodesic.

PROOF. TO prove the third assertion write y = e(w, m) where w = (w0, W\,... ,
wr) G Yir) is irreducible and m is an (r + l)-tuple of positive integers. Suppose coy

is not a geodesic. Then w is not extreme by (3) of Section 3 and Lemma 4.1. Let
1 < p < r be the largest integer such that w = (w0, wu ... , wp) e Y{p) is extreme.
Then w' = {w0, w\,... , wp, wp+i) is not extreme. By Lemma 4.1, a)A is a geodesic
and a v is not. Note that a v is a track-sum of co^ with a minimal geodesic y from wp

to u;p+|. ForO < i < k = Y,j=l p/ny write _y, = o^O,) where

0 = t0 < f, < ? 2 < • • • < t j - i < tj = t j + l = --- = t k = \ .

Write y = ((Ou(t0), (Wu,(fi),... , co^ih)). Then p(y) = ii), and a>y — cot, by (3). So
the track-sum of coy with y is not a geodesic. Then by (4), (3) the track-sum of cop(F(y))

with y is not a geodesic.
By Lemma 3.1, F(y) = (y0, z , , . . . , z,_,, z,-,... , z*_i, «;„) where z, = &;;,(«,) for

0 < i < k, and

(1) M, < f/+i forO < / < it;
(2) II,- < M , + 1 f o r O < / <<?;
(3) M, < /,+i for j — 1 < /' < k.

In particular Mt_i < tk = 1 andzt_i ^ iyp. Summarising:
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(1) the last two entries of F(y) are Zk-\, wp;
(2) since these are distinct they are also the last two entries of p(F(y)).

Because the track-sum of w^ffy)) with Y *s n o t a geodesic, wp is not between
Zk-\, wp+\. Otherwise, appending wp+\ to p(F(y)) gives an irreducible extreme,
whose curve is a geodesic by Lemma 4.1. However the curve is the track-sum of
o>P(F(y)) with y. So wp does not lie in the image of a minimal geodesic from Zk-\ to
wp+] and consequently

,wp) +d(wp,wp+i) -d(Zk-i,wP+i) > 0.

Now Zk-\, wp, wp+x are the entries in positions k — 1, k, k + 1 respectively of
y' = Gk~\ o Gk-2 o • • • o Gi(y). By Lemma 2.3,

*(FO0) = M<V> o G,_2 o • • • o G t ( / ) ) < k(Gk(y')) = k(y') - S <

since 8 > 0 and by Lemma 2.3 again. The third assertion is proved.

LEMMA 4.3. av°°> is a geodesic.

PROOF. By Lemma 2.4, and because k and F are continuous

k(s(oo)) > X(F(5(0O))) = lim k(Fa>+l(y)) > lim k(Fa'+'(y)) = A(oo)

j—*-oo j-+oo

again by Lemma 2.4. But *<o°> = k(s{ao)). Therefore k(F(sico))) = k(sia0)) and the
lemma follows from Lemma 4.2.

5. Geodesies between distant points

As in Section 2 let a> : [0, 1] -*• N be a given piecewise-C curve parameterized
proportionally to arc-length. Construct y € Y from co as in Section 2. Define
F : Y -»• y as in Section 2 and let s<00) be the limit of any convergent subsequence
of 5 = [F"(y) : a > 1}. Note that Y is compact so that at least one convergent
subsequence exists. Let y : [0, 1] -*• N denote the curve a>s<°°> of s(co) defined
as in Definition 3.2. Then y is the limit of the subsequence {av«>> '• J — 1} of
Q, = {o),(., :a > 1}.

THEOREM 5.1. (1) y is a geodesic;
(2) if co is already a geodesic then y = to;
(3) L(y) < L(a>) a/w/ Z-(y) < L(co) unless <o is a geodesic;
(4) y is homotopic to co through curves joining co (0), co (1);
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(5) £2 is uniformly convergent to y, unless there exists a geodesic y ^ y : [0, 1] —>
N from x0 to xt but homotopic to y through curves joining xQ, xu and satisfying
Liy) = L(y).

PROOF. Lemma 4.3 says that y is a geodesic. For every z = F"(y) we have
Zo = y0 = <w(0). c, = >„ = o>( 1) and so this holds for the limit s{0O) as well. Then
from Definition 3.2 y(0) = w(0). y(l) = <w(l).

If L(co) — L(y) then Liu>) = k(y) because L{y) < k(y). Then for 0 < i < q
each a)\[tj-\,ti+\] has the same length as the minimal geodesic joining _y,_l;y,+i
and consequently is a minimal geodesic. Here we are using the hypothesis that co
is parameterized proportionally to arc-length. So w = coy. By (4) of Section 3
Q)Fiy) = coy. Arguing inductively. &>,.«> = coy for all a > 1. Restricting attention to the
convergent subsequence \\" j > 1), y — coy. Therefore u> = y.

For 0 < / < q and 0 •_ u < 1 replace <w|[?,_i, r,_i + u(tt — ?,_])] by the minimal
geodesic defined o%cr the \amc subinterval and joining the same two points. Doing
this for every / g i \ c a h»»nv>«opy from co to o>y through piecewise-C1 curves from
co(0) tou>(\).

Any z € }' is also J point in the Cartesian power Nq+l which is a Riemannian
manifold, complete »ith respect to the uniform metric dq+x. By Lemma 2.5 there is a
minimal geodesic frinri .- i«> / i; i whose image is entirely contained in

> •- \-- • \"' : w0 = co(0),d(Wi-.i,Wi) <58

forO < i < q. f. - « I
So for a = 0. 1 2 in |0. 1 ] -»• Y be the minimal geodesic from s{a~]) to

s(a) _ /r^.u-1 , h c . r c , v Choose j so large that dq+l(s(a<\ s(oo)) < 28 and let
Yoo '• [0, 1] — ) fx- the minimal geodesic from s(ai) to s(oc). A track-sum of these
minimal geodesic*. pi\c>. J continuous path h : [0, I] -*• Y from ^ to 5<oo).

The curve construction «>< Dchnmon 3.2 applies also to elements of Y because 8
was chosen conservatively in Section 2. (If the homotopy is not required then 8 can be
taken twice as large in Section 2.) Applying the curve construction to each point on
the continuous path h yields a homotopy from coy to y through piecewise-geodesics
joining <w(0), w(l).

To prove the last assertion suppose that there is no geodesic y with the properties
listed. Then the limit s'x> of any other convergent subsequence of 5 gives rise to the
same geodesic y. Let

0 = {<oy : [0, 1] -*• N : y e Y}

with the quotient topology from Y, namely the topology of the uniform metric. Then
0 is compact and y is the only accumulation point of the subset £2. This completes
the proof.
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COROLLARY 5.1. Let N have everywhere non-positive sectional curvature. Then

{coa : a > 1} is convergent.

PROOF. By [4, Theorem 8.1] the exponential exp^o : TNXn —> N is a covering map

and y, y would lift to the curves t —> ty(O), ty(O) in TNXo. A homotopy from y to

y would lift to a homotopy in TNXo. But expj1 (JCI) is discrete, and the contradiction

proves the corollary.
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