Canad. Math. Bull. Vol. 31 (3), 1988

EVENTUAL DISCONJUGACY AND RIGHT DISFOCALITY OF
LINEAR DIFFERENCE EQUATIONS

BY
P. W. ELOE

ABSTRACT. Leta = 0,1, = {a,a + 1,...} and consider the nth
order linear difference equation Pu(m) = 37 a;(m)A" Ju(m) = 0,
m € I, ay(m) = | on I,. Summability conditions are placed on the
coefficients a;(m), | = j = n, such that the equation Pu(m) = 0 is
eventually disconjugate. Conditions for eventual right disfocality are
also given.

Introduction. Let a be a nonnegative real number and define the unbounded

set I, = {a, a + 1,...} . We consider the nth order linear difference
equation
(1.1) Pu(m) = 2 Bi(myu(m + j) = 0,

j=0

where B, (m) = 1, By(m) # 0 on I, and the independent variable m ranges over
1,. Define A%u@m) = u(m), Au(m) = u(m + 1) — u(m), and Au(@m) =
A(Afvlu(m) ), 2 = j = n. We shall also consider equation (1.1) in the form

n

(1.2) Pu(m) = 2 o;(m)A" Ju(m),
j=0

where ay(m) = B,(m) = 1 on I,
We now list several definitions. The first three can be found in Hartman’s
paper [4].

DEFINITIONS. (i) For a sequence u: u(a), u(a + 1),...,m = a is a node for u
if u(a) = 0 and m > a is a node for u if either u(m) = 0 or u(m — Du(m) < 0.

(1) For a sequence u: u(a), u(a + 1), ..., m = a is a generalized zero for u if
u(a) = 0 and m > a is a generalized zero for u if either u(m) = 0 or there is an
integer k, 1 = k = m — a, such that (-l)ku(m — ku(m) > 0 and, if k > 1,
um —k + 1) = ... =uim— 1) = 0.

(iii) The difference equation (1.2) (and thus, (1.1)) is disconjugate on I, if no
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solution u # 0 has more than n — 1 generalized zeros on I,
(iv) The difference equation (1.2) is right disfocal on 1, if the only solution u of
(1.2) satisfying A" has a node at m,m; € 1,1 = j=n wherea =m =
L=myisu = 0.
(v) The difference equation (1.2) is eventually disconjugate (eventually right dis-
Jocal) if there exists my = a, my € I, such that the equation (1.2) is disconjugate
(right disfocal) on L,

Willett [8] showed that the linear differential equation

(1.3) Y+ py TV + o+ p )y =0

is eventually disconjugate if

oo
f K p()dt] < 00,1 = k = n.

Trench [6], [7] weakened these conditions for absolute integrability and showed
that conditional convergence of the integrals can be allowed. To weaken
the integrability conditions, Trench [6], [7] constructed a fundamental set of
solutions {yg,...,y,—} of (1.3) satisfying the Polya criterion for discon-
jugacy [3],

W .- @) >0,1 =k =n,

on some interval [¢,, co). Here, W denotes the usual Wronskian determinant.
Eloe and Henderson [2] have obtained analogues of these integrability condi-
tions for the eventual right disfocality of (1.3).

In this paper, we shall provide summability conditions on the coefficients
a;(m) analogous to the integrability conditions given by Willet [8], Trench [6],
[7] and Eloe and Henderson [2] for the eventual disconjugacy and eventual right
disfocality of (1.2). In section 2, we shall provide several lemmas concerning the
calculus of finite differences. In section 3, we shall obtain summability con-
ditions on the coefficients a;(m) for the eventual disconjugacy of (1.2); the
technique of proof presented here is analogous to that of Trench [6], [7], which
is described in the above paragraph. In section 4, we shall indicate how the
method of section 3 can be adapted to obtain summability conditions for
the eventual right disfocality of (1.2).

2. Preliminary lemmas. We present four lemmas. The first three lemmas are
elementary results from the calculus of finite differences; the reader is referred
to Fort’s text [3] for a thorough treatment of the calculus of finite differences.

LEMMA 2.1. Let k be a positive integer.
() If k = 2, then

Am(m — 1) ... (m — (k — 1)) = km(m — 1) ... (m — (k — 2)).
In particular, if k = 1, then
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Amm — 1) ...(m — (k — 1)) = k.

(i) If k = 1, then
Am™ b o m+ k=1 "= —km™' . m+ k), m>o.

PrOOF OF (1). Let kK = 2. Then

Amm — 1)...(m — (k — 1))

=m+Dm.. m+1—Ck-—-1)—mm-—1...(m— (k—1))
=(m+ 1D —(m—=(k-—D)mm—1...0m—(k—2))]

=km(m — 1)...(m — (k — 2)).

Now, A¥(m(m — 1) ... (m — (k — 1)) = k! for k = 1 follows by

induction.

LEMMA 2.2. Let j and k be positive integers. Then

k
Di(i+ ... (i+j—D=ktk+1)...¢k+ /G + 1.

i=1
Proor. The proof follows by induction on k.
LEMMA 2.3. Let m € 1, let a(m) be defined on I, and assume that the following

infinite sums converge.
oo

i) A(Sg” a(s)) = —a(m), A(sg (m—1— s)a(s)) = =2n als),

and for k = 3,

A(E m-1—5s)...(m — (k — l)—s)a(s))

S=m

—k—1D X m—1—5)...(m— (k — 2) — s)a(s).

s=m

Thus, for k = 2,
A"'(E m-1—s)...m—(k— 1) — s)a(s)) = —(k — Dla(m).

(ii) For m — 1 = m,,
m—1

A( > a(s)) = a(m).

s =my

Form — 2 =0,
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m—2 m—1

A( S m—1-— s)a(s)) = > as).

s =ny s=my

Fork =23 andm — k = my,

m—k
A(Z m—=1—s)...(m— (k — 1)—s)a(s))

m—(k—1)
=k—-1 X m—1—=s)...(m— (k—2) — s)a(s).

Thus, for k = 2,
m—k
A"( SXm—1—5)...0m—(k — 1) — s)a(s)) = (k — 1)la(m).
ProoF oF (i) Let &k = 3.
A(_E m—1—s)...(m—(*k—1 —s)a(s))

= X (m—s)...(m— (k —2) — s)als)

s=m+1

m—1—s)...(m —(k—1) — 5)a(s)

!
18

[ee]

k-1 X (m—1—3)...

s=m+1
m—(k—2) —s)as)) — (=D ... (—(k = 1))a(m)
k-2 m—=1—=5)...(m — (k —2) — s)a(s).

Now, for k = 2,

A"(Z m—1—5)...0m—(k—1) —s)a(s)) = —(k — Dla(m)

follows by induction.

LEMMA 2.4. Let a(m) be defined on 1, let k Z 2 and assume
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DG+ D...s+ k— Das)

converges. Define

o0

2.1) So(m: &) = a(m), Sy(m; @) = 2 a(s),

s=m

and

22 Smay= 2 (+1—m)...(s+ (=1 —mi(— DHhas).

s=m
2= =k
Then, for 1 = j = k,
(2.3) 1S;(m; @) | = 28(m)m’~*/(j — 1)!
oo
(2.4) 8(m) = sup g r+ ...+ k— Dalr)|.

Proor. We first note that each sum in (2.1) and (2.2) converges by Abel’s test
since

s+1—=—m)...(s+ (G — 1) — mals)
=G+ D...(s+ k= Da@s)1 — (m/(s + 1)) ...
A—m/s+ G =D+ 1.+ K&=—1) "
To obtain (2.3), set

Um) = > (s + 1) ... + k — Da(s).

S=m
Then, for2 = j = k — 1,

DG+l —m...(s+ (G —1) — mas)

s=m

= —2 ad—-—m/(s+D))...d —m/s + G — 1))

X s+ ) Vo s+ k—DAUG)
= _2 UM — m/s)...(1— (m/s + (j — 2))))

X(s+j—D " ..s+k—2".
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Thus,
DQGc-—m+D...¢s+ G — 1) — ma(s)
éS(m)( DA+ - 1)"...(s+k*2)7"
+ m/ TN A = mss) ... —m/(s+j—2))i)
= 28(m)m’ k.
For j = k,
DG+l —=—m...(s +*k—1) — mas)
= 2 USAA —m/s)y...(1 —ml(s + (k —2))))
and so,

DG+l —m...(s+ k=1 —mais)| = 8(m) = 28(mm”* *.

For j = 1,
g a(s) = _é,, s+ D71+ k= DTAUE)
=m '...m+ k-2 ""Um)
+ % UM ...+ k—2)7h.

Thus, |32, a(s) | = 28(m)m' k. (2.3) now follows for 1 = j = k.
REMARK. It can be shown using (2.3) that

(e}
(2.5) Simia) = 2 S;_((s;@). 1 =)=k
s=m
3. Eventual disconjugacy. For the remainder of the paper, let a = 0 for

simplicity. Hartman [4, Theorem 5.1] obtained a Polya criterion for the
disconjugacy of linear difference equations. Let m; be a nonnegative integer.
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(1.2) is disconjugate on L, if and only if there exists a fundamental set of
solutions {u, ..., u, } of (1.2) on I, such that

3.1 W(ug, ..., u,_)(m) = det{u;(m + j)} >0, m € ImO’

i, j=0,...,k — 1,1 = k = n. Note that by properties of determinants and
elementary row operations,

(3.2) Wi(ug, . .., u_)(m) = det{Au,(m) },
Lhj=0,....,k—1,1=k

A

n.

ReEMARK. The Polya criterion can be employed to show that the equation
A"u = 0 is disconjugate on ;. Set

B3 vpy=Lvi=mvyv=mm-—1)...m—(k— D)k!,2=k =n.

By Lemma 2.1 and (3.2), W(vy, ..., _p(m) = lonly 1 = k = n.
We now follow the lead of Trench [6], [7] and show that under suitable
summability conditions on the coefficients a;(m) in (1.2), there exists a

fundamental set of solutions {u,, ..., u,_;} of (1.2) on I, such that
, Alv(m)(1 + o(1)), 0 = j =i,
3.4 Alu,(m) = .
om’ ™ N, i+ 1=j=n-—1,

where o denotes behaviour as m — oo and v;(m), 0 = i = n — 1 are given by
(3.3). It will then follow that

(3.5) Wy, ..., u_)(m) = W(g, ..., v_)m)(1 + o(1)),
I = k = n, and hence, (1.2) is eventually disconjugate.

THEOREM 3.1. Suppose the sums Z° mk~la,(m), 1 = k = n, are finite and
228k 1(m; @) | < 00, 1 = k = n. Then (1.2) is eventually disconjugate.

Proor. First note that if 3 m* ™', (m) converges, then 3 (m + 1) ...
(m + k + Da,(m) converges by Abel’s test.

Let Z be a fixed integer, 0 = £ = n — 1. Let m,, be a nonnegative integer and
define the Banach space

By(mg) = {u:l,, — IR such that Au(m) = 00’ ), 0 =i = n — 1},

with norm

n—1
(3.6) [lull, = sup {2 mii/lA"u(m) | ]

m=my \ =0

In this paper, 0 also denotes behavior as m — oco.
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Define Q(m)= 2}’:1 aj(m)A"_ju(m). For ¢ = 0, define the transformation

(3.7) Tou(m) = wim)

+

s

M8

Il

m

(m—1—=5)...0m— (n — 1) — 5)/(n — D)Qu(s)

and for | = ¢ = n — 1, define the transformations
m—¢
(3.8) Tu(m) = vy(m) + E (m—1—=s)..(m—(—1) —s)/(— 1))

s=my

X(E((s— 1—r)...6—(n—¢—1) —r)(n—¢— 1)!)Qu(s).

It follows from Lemma 2.3 that A"T,u(m) = — Qu(m); thus if u, is a fixed point
of T, then u,(m) is a solution of (1.2).

The remainder of the proof is to show that each transformation 7,, 0 = 7 =
n — 1, has a fixed point v, € B,(m;) and the set{u, ..., u,_,} satisfies (3.4)
and thus, (3.5). We first show that for m, sufficiently large each T, maps B,(m)
into itself and is a contraction map. Thus, each 7, will have a unique fixed
point u,.

For0 =/ = n — 2, define

Jmyu)y= 2 (s+1)...(s +n—¢— DQu(s)
and define
Ty m w) = 2 Qufs).

Fix 2 € {0,...,n — 2}, let m; = 0 and let u € B,(m). Applying (2.5) and
repeated summation by parts, we have that for each 2 = j = n,

2+ D+ n— ¢ — Do(s)A Yu(s)

sS=m
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(3.9)  Ji(m; u)

n j—1
= ( 2 SmAi—LapA T (s + ... (s +n—¢ = DA Vus))
Jj=2 \‘i=1

+2(Z 50+ nw
J=1\s=m
XA N s+D)...(s+n—¢— I)A"_ju(s))).

Similarly,

n Jj—1
(3.10) J,_(m; u) = 2 (2 Si(m + i — 1; a,)A"'-/’*""'u(s))
Jj=12 \i=1 ’

n

+ 2 (2 Sjois +J = 1 a_,-)A"“u(s)).

Jj=1 \s=m

Now,
AN s+ D) ...(s+n—¢— DA us))
=G+ D...s+n—2¢— DA 7T ) + ...
+ K, s +n—¢— DAYy 40— £ —2)
+ K,_, AT s+ — £ — 1),

where each K is constant and K, = 0if » = i. Since u € B,(m,) with ||u||, given
by (3.6), we have that

G AT+ D s+ = ¢ = DA u@s)) | = Kllullm!

for 1 =i = j, where K is a constant depending only on i and .
Also, from (2.3) it follows that

(3.12) IS;m + i — 1; 0) | = 28,(mym’ /(i — D, 1 =i =,

where 6/(m) is given by (2.4) with a = ;. From (3.9), (3.10), (3.11) and (3.12) it
follows that '

(3.13) [Je(m; ) | = o(m) llull,
where
n ,j—1 [e's} [e's)
o(m) = %(ZI 2K, 8,(m)/(i — 1)!) + 21 19,( 2S5 6+ la))
Jj= i= Jj= s=m

Note that o(m) is nonincreasing and lim,,_,., o(m) = 0.
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Define
o m) = 2 (m—1—s)...(m— (n— 1) — s)/(n — 1)!Qu(s)

and for 1 = / = n — 1, define
m—+¢

uy(m) = D m—1—=s)...(m—(¢—1)— )/~ 1)

s=my

o0
X (2 (5—=1=r)...s—(m—¢—=1) —r)/(n—¢— 1)!Qu(r))).
Applying Lemma 2.3, for/ =i =n — 1,
) oo
Adym)y= 2D m—1—s)...(m—(n—i—1)—s)/(n—i— 1)!Qu(s)
and so, applying Lemma 2.4 and (3.13), with « = Qu,
(3.14) (AL (m) | = 20(m) llull,m” '/ — i — D).
If £ = 1, note that
m—<{¢
tim)= 2 m—1—s)...(m— (£ — 1) — s)/(£ — DIA%s)
s=my
and so,for0 =i =7/ — 2,
(3.15)  |A'iy(m) |
m—7{(+i

D m—1—s)...(m—(—i—1)— )/ —i— DIA%s)

s=my

= 2ull,/(n — £ — 1)

m—{(+i
><( Do m—1—=s)..m—C—i—1)—s)/(£—i— 1)!)

(3.16) = KQllull,0(me)/(n — ¢ — DI — DHhm'™

where K depends on m,. (3.14) and (3.16) show that 7, maps B,(m) into B,(my).
Also, since o(m) — 0 as m — oo, it is readily shown using (3.14) and (3.16) that
T, is a contraction map and thus, 7, has a unique fixed point u,.

The proof is now complete if we show {u, ..., u,_,} satisfies (3.4), where
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ug(m) = vy(m) + 2 (m—1—s)...(m — (n — 1) — s)/(n — 1)! Que(s)

and
m—{¢
u,(m) = vy (m) + —2 (m—1—s)...m—(—1) —s)/( — 1Y

x(g((s— l—r...s—(n—¢—=1) —r)n—¢— 1)!)Qu,,(r))

forl1=/=n—1For/Z =i =n — 1, (3.14) readily implies that
m"‘/}A"uZ(m) | = 0 as m — oo.

For0 =i = ¢ — 1, (3.15) implies

m—{—i
m' A (m) | = Qllugl,/n — ¢ — DI — i — Dhm™ " X o(s) =0

s=my
as m — oo since (2™ o(s) )/m — 0 as m — co. Thus, the proof is complete.

CoroOLLARY 3.2. If 2% mk_llak(m)l < oo, 1 = k = n, (1.2) is eventually
disconjugate.

ProoF. 3% m* oy (m) | < 00,1 = k = n, implies that IS, _ (m; a;) |
< oo, 1 = k = n. We point out that the corollary can be proved directly by
showing the operators 7, are contraction maps. However, the inequalities em-
ployed are straight forward and the lemmas from section 2 are unnecessary.

4. Eventual right disfocality. The techniques of section 3 are readily adapted
to obtain the following theorem.

THEOREM 4.1. Assume the hypotheses of Theorem 3.1. Then (1.2) is eventually
right disfocal.

We outline the proof here. In [1], we obtained a Polya type criterion for right
disfocality. Let wy, ..., w,_, be sequences defined on I,,, . Let k € {1,...,n}
andlet 1 = i, < ... < i,_, = n. Define

D(ig, . .., i )(m) = det{Ai " "wm)}, j, £ =0,...,k — 1.

Note that D(1, ..., k)(m) = W(w,, ..., w,_)(m). Then (1.2) is right disfocal
on 1, if and only if there exists a fundamental set of solutions {w, ..., w, |}
of (1.2) on L, such that

4.1 DG,...,i — k — 1)(m) > 0,
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1§i§n~k+1,1§k§n,melm0.

Let (4, . .., u"~ '} be the fundamental set of solutions constructed in section
3. By Theorem (5.1) [4], (3.1) implies

W, ...ty )m)>0,0=i=n—k 1

1

IA
>~

IA
R

for m sufficiently large. Set w; = (— l)jun_jAl, 0 = j = n — 1. Then it follows
from (3.4) that {w,...,w,_,} satisfies (4.1) and (1.2) is eventually right
disfocal.
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