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Abstract

This paper gives non-embeddings and non-immersions for the real flag manifolds R F ( 1 , l,n — 2),n > 3
and shows that Lam's immersions for n = 4 and 5 and Stong's result for n = 6 are the best possible.
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1. Introduction

The real flag manifold

is a smooth connected compact homogeneous manifold of dimension In — 3.
In [4, Corollary 5.2], Lam's immersion result on general real flag manifolds gives

better results than Whitney's [11, 12] in the case of RF(1 , 1, n - 2) only for n = 4, 5
and 6.

We shall use dual Stiefel-Whitney classes of R F( 1, 1, n — 2) to prove the following
theorem:

THEOREM, (a) For 2r~' + 2 < n < 2r - 1 and s = 2'', we have:

RF(1, 1, n - 2) £ R2j-2, RF(1, 1, n - 2) g R2s~3;

(b) R F ( 1 , 1, n - 2) <£ R2""2, R F ( 1 , 1, n - 2) g R2""3, ifn = 2 1 - 1 ;

(c) R F ( 1 , \,n - 2) £ R3""5, R F ( 1 , l , n - 2) g R3""6, ifn = 2r~x + 1, where

X C Y denotes X embeds in Y, and X C Y denotes X immerses in Y.
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2. Proof of theorem

Let F = RF(1, 1, n — 2). Then from [4], the tangent bundle of F is given by

T(F) = (Yi <g> y2) © (yi ® £) © (y2 ® £)

where Y\ and y2 are the two canonical line bundles, £ is the complementary (« — 2)-
plane bundle and y, © y2 © f is an n-plane trivial bundle, all over F. By considering
(Y\ © Yi © S) ® (yi © /2 © ?) one sees that

t(F) © (yj <g> y,) © nt- © (y, ® y2) © (y2 <g> y2)

is an n2-plane trivial bundle, where n£ stands for the n-fold Whitney sum of ^.
Taking the total Stiefel-Whitney classes and using the Whitney product formula,

we have

w(F) = w{n%)w{Y\ ® Yi)

where w is the dual total Stiefel-Whitney class to w. Let x = u>i(yi), v = i«i(y2)
be the first Stiefel-Whitney classes of Y\ and y2, respectively. Put ox = x + y and
a2 = xy. Then

(1) w(F) = (l+al+a2)"(l+alr\

Note that from [1], //*(F; Z2) is generated by x and >> subject to the relations on-\ —
0 = an so that x" = 0 = j " , where CT, = CT, (x, y) denotes the i-th complete symmetric
function in x and y. Also an additive basis for H*(F;Z) is the set {x'y> \ 0 < i <
n - 1, 0 < j < n - 2}, so that a{ ± 0, 1 < s < n - 2 and a\ ^ 0, 1 < it < n - 2.

We now use the fact that if M" is a smooth manifold of real dimension n, then
w*(M) ^ 0 implies M" g R"+t-' and M" £ Rn+k, (see [5, p. 120]).

Now if 5 = 2r ,wehave(l+c71+a2y = l+a, s+a2
s = l+xs + ys+xsys = 1 since

s > n + 1 for 2 r - 1 < n < 2r - 1. Hence from (1) above, the total dual Stiefel-Whitney
class of F is given by

(2)

Hence

It follows that

RF(1, 1, n - 2) ^ R2i-2, RF(1, 1, n - 2) g R2j"3

https://doi.org/10.1017/S1446788700036260 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036260


[3] Non-embeddings of a real flag manifold 53

if 2r~' + 2 < n < 2r - 1 and s = 2r. This proves part (a) of the theorem.
If n = 2 r " \ then (2) becomes w(F) - (1 + CTi)(l + ox + a2)" = I + au since

(1 + cr, + <72)" = 1 + x" + y" + xny" = 1. Hence il>i (F) = ax ^ 0. This proves part
(b) of the theorem.

If n = 2 r - ' + 1, then (2) above becomes w(F) = ( 1 + CT0(1 + a, + CT2)
2r"'-' =

(1 + CTOE^'C1 + CT,)2'"'-1-'^. This implies that

i=0

-I'C 2/ Jl 2 ' V o d d ; '
2 ^ ' 2--4,-, 2, • / 2 ' - 1 - 2 / + l \ , . .

= > a: o; , since = 1 , mod 2.

When r = 3, u}3 = CT3 = x3 + x2y + xy2 + y3 ^ 0, since a basis for cohomology
is {1, JC, y, x2, y2, xy, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3}.

When r = 4, ui7 = a\ + o\o\ = x1 + x6y + xy6 + y1 ^ 0, since a basis for
cohomology is {xiyi :0<i<S,0<j < 7}.

We now prove, by induction for r > 4, that

Wn_2 = ( a 2 ' " + CTf-'XCT2'-2 + a 2 ' " 3 ) • • • (CT8 + CT2
4)(CT,? + CT3CT2).

When r = 5,

Wl5 = a / 5 + CT/'CT2 + CT7CT4 + CT,3CT2
6 = (CT,8 + CT4)(CT7 + CT^CT,2).

Assume as an inductive hypothesis, that the formula for wn_2 when s = r — 1 is true.
Now for s = r.

+ (a2-2- 'a2'"3 + a r 2 - 5 ^ 2 + • • • + afa2'"2-2)

= a2'-'(err2'' + ° V - S ° \ + •••+ o l o l ' - 2 )

+ o r { a 2 - 1 - 1 + ° r - * ° i + • • • + ° w 3 - 2 )
= (a2'"2 + arl){o2'-2-X + o2;-2-'o\ + ••• + a^r-2)
= (a2'"' + al'~l){a2"2 + CT2

2'"3)(a2'"3 + of"4) • • • (af + a4)(CT,7 + a 3 a 2 ) ,

(by the inductive hypothesis).
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Hence, by the principle of mathematical induction, the formula for wn_2 is true for all

r > 4. Now

wn_2 = (x2'-' + y2'-' + *2'V~2)(*2'"2 + y 2 " + * 2 ' V ~ 3 ) • • •
• • • (x* + y* + / / ) ( J C 7 + x6y + xy6 + y1)

= x2"1 + y2'~x + (lower powers of x and y) ^ 0

since a basis for cohomology is {x'yj :0<i<2r,0<j < 2r — 1}. Thus u}n_2 ^ 0

for r > 3. This proves part (c) of the theorem.

REMARKS. 1. Part (a) of the theorem is strongest if n = 2r~l + 2 when

RF(1 , 1, 2r" ') g R2'+'-3 and by Whitney's classical result, RF(1 , 1, 2r"') c R2'+l+1.

Whenw = 6,RF(1, 1,4) g R13 and Lam's result in [4] shows that RF(1, 1,4) c R15.

In fact, Stong showed in [9] that RF(1 , 1, 4) c R14 and RF(1 , 1,4) g R13, so that

this is the best possible result.

2. If n = 4, part (b) of the theorem becomes

R F ( 1 , 1 , 2 ) £ R 6 , RF(1, l , 2 ) g Rs.

Also if /i = 5, part (c) of the theorem becomes

RF(1, 1, 4) £ R10, RF(1, 1, 4) 2 R9-

Thus Lam's immersion results given in [4] that

RF(1 ,1 ,2)CR 6 and RF(1, 1,4) c R10

are the best possible.
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