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Abstract

This paper gives non-embeddings and non-immersions for the real flag manifolds RF(1,1,n —2),n > 3
and shows that Lam’s immersions for n = 4 and 5 and Stong’s result for n = 6 are the best possible.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 57R20, 57R40, S7TR42.

1. Introduction

The real flag manifold

RF(1,1,n—2) = O) . nx3
0(1) x O(1) x O(n — 2)
is a smooth connected compact homogeneous manifold of dimension 2n — 3.

In [4, Corollary 5.2], Lam’s immersion result on general real flag manifolds gives
better results than Whitney’s [11, 12] in the case of RF(1, 1,n — 2) only forn = 4,5
and 6.

We shall use dual Stiefel-Whitney classes of RF(1, 1, n —2) to prove the following
theorem:

THEOREM. (a) For2'™'+2<n <2 —1lands =2', we have:
RF(I,I,n—2)¢R2~"_2, RF(I,I,H—z)szS_:;;

() RF(1,1,n—=2) ¢ R 2 RF(1,1,n-2) ZR» 3, ifn =2""1;
() RF(1,1,n—2) ¢ R*™3 RF(1,1,n —2) € R*S ifn = 27! 4+ 1, where
X C Y denotes X embeds in Y, and X C Y denotes X immersesin Y.
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2. Proof of theorem

Let F = RF(1, 1, n — 2). Then from [4], the tangent bundle of F is given by

=R (n®E)

where y; and y, are the two canonical line bundles, £ is the complementary (n — 2)-
plane bundle and y, @ y, @ £ is an n-plane trivial bundle, all over F. By considering
VD @E (1 @y, ®E&) one sees that

TN y)dnEd (i ®r) @ (1, )

is an n%-plane trivial bundle, where né stands for the n-fold Whitney sum of &.
Taking the total Stiefel-Whitney classes and using the Whitney product formula,
we have

w(F) = whmwy ® y2)

where w is the dual total Stiefel-Whitney class to w. Let x = wi (1), y = w,(y2)
be the first Stiefel-Whitney classes of y, and y», respectively. Put oy = x + y and
oy = xy. Then

(1) wE) =1 40, +0)"U+0o) "

Note that from [1], H*(F; Z,) is generated by x and y subject to the relations g,_; =
0 =06,sothatx” = 0 = y", where 6; = 0;(x, y) denotes the i-th complete symmetric
function in x and y. Also an additive basis for H*(F;Z) is the set {x'y/ |0 < i <
n—1,0<j<n-—2}sothatof #0,1 <s<n-—2andoy #0,1 <k <n-2.

We now use the fact that if M" is a smooth manifold of real dimension n, then
wi(M) # 0 implies M" & R™*~! and M" ¢ R, (see [5, p. 120]).

Nowifs = 2", wehave (1+0,+0,)° = 140 +0; =14+x°+y*+x°y* = 1 since
s > n+1for2""! < n < 2" — 1. Hence from (1) above, the total dual Stiefel-Whitney
class of F is given by

(2) w(F) =0 +0)(1 +0o+0)"".
Hence

- . s—n = 0, 1fn = 2r_lv 2’—1 + 1
Wos-20+1(F) = 010, £0 if 2r-1 +2<np<2 -1

It follows that

RF(1,1,n~2) ¢ R*2, RF(,1,n—2) g R
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if27'4+2 <n < 2" —1ands = 2". This proves part (a) of the theorem.

If n = 27!, then (2) becomes W(F) = (1 + a,)(1 + 0, + 62)" = 1 + a3, since
(14+0,+0)"'=14+x"+y"+x"y" = 1. Hence w,(F) = o, # 0. This proves part
(b) of the theorem.

If n = 27! + 1, then (2) above becomes w(F) = (1 + o))(1 + 0y + 05)* ' ~! =
(1+0)Y2, 7" (1 + 0,)"'~'~'s}. This implies that

21 r—1 : r—1 ;
- 2 — 2t — i1 i
e L |(0 )+ (0o

ar-t_q r—l .

_ 27 =i\ g

= . 0y 5
i=0 !

ar-3_1 el .
270 =28+ I\ gy 2 . even

= ' ', since =0, mod?2
2 ( 2i )0‘ %2 S odd

i=0
2r-3_4 -1 .
_gi] 2 2 =2i+1
r—1_4:_ .
= E of T4 'a},  since . =1, mod?2.
i=0 2i

When r = 3, w3 = 0} = x> + x2y + xy? + y* # 0, since a basis for cohomology
is {1,x,y,x2, y2, xy, x3, x%y, xy?, y3, x*, 23y, x?y?, xy*}).

When r = 4, w; = o] + 0302 = x7 + x® + xy® + y7 # 0, since a basis for
cohomology is {x'y’ :0<i<8,0<j <7}

We now prove, by induction for r > 4, that

_ -1 -2 gr-2 2r-3 8 4 7 3.2

wn—2=(al +0'2 )(01 +02 )"'(01 +02)(01 +0102)'
When r =35,

_ N 2

b5 = 0° +0,'0} +0/0; + 00y = (07 +0;)(0] + 0707).

Assume as an inductive hypothesis, that the formula for w,_, when s = r — 1 is true.
Now for s = r,

- r—)_ r—=1_ r=1_ r=2 r=3__
oy = (0 '+ 0¥ Pol ol o)+ -+l ol

+ (0_1 ’_2_1022’_3 + 012’-2_50227—3+2 R 030221—2_2)
= 012'_2 012'_2" + 012'_2‘5022 4+ 4 013022'_3‘2)

AN G R T )
=@+ Yol T ol ek + R

= (crlz'_l + 022'_1)(012'_2 + 022'_3)((712'_3 + 022'_‘) (ot + o) (o] + ola)),

(by the inductive hypothesis).
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Hence, by the principle of mathematical induction, the formula for w,_, is true for all
r > 4. Now

By = 7 4y + XY YT YT
@Y T+ xCy +xy® +y)
= x¥"' 4+ y¥~! 4 (lower powers of x and y) # 0

since a basis for cohomology is {x‘'y/ :0<i<2,0<j <2" -1} Thusw,, #0
for r > 3. This proves part (c) of the theorem.

REMARKS. 1. Part (a) of the theorem is strongest if n = 2"~! + 2 when
RFE(1,1,2""") ¢ R¥"'~3 and by Whitney’s classical result, RF(1,1,2"") € R¥"'+,
Whenn = 6, RF(1, 1,4) € R" and Lam’s result in [4] shows that RF(1, 1, 4) € R".
In fact, Stong showed in [9] that RF(1,1,4) € R and RF(1, 1,4) ¢ R", 5o that
this is the best possible result.

2. If n =4, part (b) of the theorem becomes

RF(1,1,2) ¢ R®, RF(1,1,2) Z R°.
Also if n = 5, part (c) of the theorem becomes
RF(1,1,4) ¢ R, RF(1,1,4) € R°.
Thus Lam’s immersion results given in [4] that
RF(1,1,2) CR® and RF(1,1,4) CR"

are the best possible.
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