NON-EMBEDDINGS OF THE REAL FLAG MANIFOLDS $\mathbf{R F}(1,1, n-2)$

DEBORAH O. AJAYI and SAMUEL A. ILORI

(Received 30 March 1998; revised 4 September 1998)

Communicated by W. D. Neumann

Abstract

This paper gives non-embeddings and non-immersions for the real flag manifolds $\mathbf{R F}(1,1, n-2), n>3$ and shows that Lam's immersions for $n=4$ and 5 and Stong's result for $n=6$ are the best possible.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 57R20, 57R40, 57R42.

1. Introduction

The real flag manifold

$$
\mathbf{R F}(1,1, n-2)=\frac{0(n)}{0(1) \times 0(1) \times 0(n-2)}, \quad n \geq 3
$$

is a smooth connected compact homogeneous manifold of dimension $2 n-3$.
In [4, Corollary 5.2], Lam's immersion result on general real flag manifolds gives better results than Whitney's [11, 12] in the case of $\mathbf{R F}(1,1, n-2)$ only for $n=4,5$ and 6.

We shall use dual Stiefel-Whitney classes of $\mathbf{R F}(1,1, n-2)$ to prove the following theorem:

Theorem. (a) For $2^{r-1}+2 \leq n \leq 2^{r}-1$ and $s=2^{r}$, we have:

$$
\mathbf{R F}(1,1, n-2) \not \subset \mathbf{R}^{2 s-2}, \quad \mathbf{R F}(1,1, n-2) \nsubseteq \mathbf{R}^{2 s-3} ;
$$

(b) $\mathbf{R F}(1,1, n-2) \not \subset \mathbf{R}^{2 n-2}, \mathbf{R F}(1,1, n-2) \nsubseteq \mathbf{R}^{2 n-3}$, if $n=2^{r-1}$;
(c) $\mathbf{R F}(1,1, n-2) \not \subset \mathbf{R}^{3 n-5}, \mathbf{R F}(1,1, n-2) \nsubseteq \mathbf{R}^{3 n-6}$, if $n=2^{r-1}+1$, where $X \subset Y$ denotes X embeds in Y, and $X \subseteq Y$ denotes X immerses in Y.
(c) 1999 Australian Mathematical Society 0263-6115/99 \$A2.00 +0.00

2. Proof of theorem

Let $\mathrm{F}=\mathbf{R} \mathrm{F}(1,1, n-2)$. Then from [4], the tangent bundle of F is given by

$$
\tau(\mathrm{F})=\left(\gamma_{1} \otimes \gamma_{2}\right) \oplus\left(\gamma_{1} \otimes \xi\right) \oplus\left(\gamma_{2} \otimes \xi\right)
$$

where γ_{1} and γ_{2} are the two canonical line bundles, ξ is the complementary ($n-2$)plane bundle and $\gamma_{1} \oplus \gamma_{2} \oplus \xi$ is an n-plane trivial bundle, all over F . By considering $\left(\gamma_{1} \oplus \gamma_{2} \oplus \xi\right) \otimes\left(\gamma_{1} \oplus \gamma_{2} \oplus \xi\right)$ one sees that

$$
\tau(F) \oplus\left(\gamma_{1} \otimes \gamma_{1}\right) \oplus n \xi \oplus\left(\gamma_{1} \otimes \gamma_{2}\right) \oplus\left(\gamma_{2} \otimes \gamma_{2}\right)
$$

is an n^{2}-plane trivial bundle, where $n \xi$ stands for the n-fold Whitney sum of ξ.
Taking the total Stiefel-Whitney classes and using the Whitney product formula, we have

$$
w(\mathrm{~F})=\bar{w}(n \xi) \bar{w}\left(\gamma_{1} \otimes \gamma_{2}\right)
$$

where \bar{w} is the dual total Stiefel-Whitney class to w. Let $x=w_{1}\left(\gamma_{1}\right), y=w_{1}\left(\gamma_{2}\right)$ be the first Stiefel-Whitney classes of γ_{1} and γ_{2}, respectively. Put $\sigma_{1}=x+y$ and $\sigma_{2}=x y$. Then

$$
\begin{equation*}
w(\mathrm{~F})=\left(1+\sigma_{1}+\sigma_{2}\right)^{n}\left(1+\sigma_{1}\right)^{-1} \tag{1}
\end{equation*}
$$

Note that from [1], $H^{*}\left(\mathrm{~F} ; \mathbf{Z}_{2}\right)$ is generated by x and y subject to the relations $\bar{\sigma}_{n-1}=$ $0=\bar{\sigma}_{n}$ so that $x^{n}=0=y^{n}$, where $\bar{\sigma}_{i}=\bar{\sigma}_{i}(x, y)$ denotes the i-th complete symmetric function in x and y. Also an additive basis for $H^{*}(\mathrm{~F} ; \mathbf{Z})$ is the set $\left\{x^{i} y^{j} \mid 0 \leq i \leq\right.$ $n-1,0 \leq j \leq n-2\}$, so that $\sigma_{1}^{s} \neq 0,1 \leq s \leq n-2$ and $\sigma_{2}^{k} \neq 0,1 \leq k \leq n-2$.

We now use the fact that if M^{n} is a smooth manifold of real dimension n, then $\bar{w}_{k}(M) \neq 0$ implies $M^{n} \nsubseteq \mathbf{R}^{n+k-1}$ and $M^{n} \not \subset \mathbf{R}^{n+k}$, (see [5, p. 120]).

Now if $s=2^{r}$, we have $\left(1+\sigma_{1}+\sigma_{2}\right)^{s}=1+\sigma_{1}^{s}+\sigma_{2}^{s}=1+x^{s}+y^{s}+x^{s} y^{s}=1$ since $s \geq n+1$ for $2^{r-1} \leq n \leq 2^{r}-1$. Hence from (1) above, the total dual Stiefel-Whitney class of F is given by

$$
\begin{equation*}
\bar{w}(\mathrm{~F})=\left(1+\sigma_{1}\right)\left(1+\sigma_{1}+\sigma_{2}\right)^{s-n} \tag{2}
\end{equation*}
$$

Hence

$$
\bar{w}_{2 s-2 n+1}(\mathrm{~F})=\sigma_{1} \sigma_{2}^{s-n} \begin{cases}=0, & \text { if } n=2^{r-1}, 2^{r-1}+1 \\ \neq 0, & \text { if } 2^{r-1}+2 \leq n \leq 2^{r}-1\end{cases}
$$

It follows that

$$
\mathbf{R F}(1,1, n-2) \not \subset \mathbf{R}^{2 s-2}, \quad \mathbf{R F}(1,1, n-2) \nsubseteq \mathbf{R}^{2 s-3}
$$

if $2^{r-1}+2 \leq n \leq 2^{r}-1$ and $s=2^{r}$. This proves part (a) of the theorem.
If $n=2^{r-1}$, then (2) becomes $\bar{w}(\mathrm{~F})=\left(1+\sigma_{1}\right)\left(1+\sigma_{1}+\sigma_{2}\right)^{n}=1+\sigma_{1}$, since $\left(1+\sigma_{1}+\sigma_{2}\right)^{n}=1+x^{n}+y^{n}+x^{n} y^{n}=1$. Hence $\bar{w}_{1}(\mathrm{~F})=\sigma_{1} \neq 0$. This proves part (b) of the theorem.

If $n=2^{r-1}+1$, then (2) above becomes $\bar{w}(\mathrm{~F})=\left(1+\sigma_{1}\right)\left(1+\sigma_{1}+\sigma_{2}\right)^{2^{r-1}-1}=$ $\left(1+\sigma_{1}\right) \sum_{i=0}^{2^{r-1}-1}\left(1+\sigma_{1}\right)^{2^{r-1}-1-i} \sigma_{2}^{i}$. This implies that

$$
\begin{aligned}
\bar{w}_{n-2} & =\sum_{i=0}^{2^{r-2}-1}\left[\binom{2^{r-1}-i}{i-1}+\binom{2^{r-1}-i}{i}\right] \sigma_{1}^{2^{r-1}-2 i-1} \sigma_{2}^{i} \\
& =\sum_{i=0}^{2^{r-1}-1}\binom{2^{r-1}-i+1}{i} \sigma_{1}^{2^{r-1}-2 i-1} \sigma_{2}^{i} \\
& =\sum_{i=0}^{2^{r-3}-1}\binom{2^{r-1}-2 i+1}{2 i} \sigma_{1}^{2^{r-1}-4 i-1} \sigma_{2}^{2 i}, \quad \text { since }\binom{\text { even }}{\text { odd }}=0, \quad \bmod 2 \\
& =\sum_{i=0}^{2^{r-3}-1} \sigma_{1}^{2^{r-1}-4 i-1} \sigma_{2}^{2 i}, \quad \text { since }\binom{2^{r-1}-2 i+1}{2 i}=1, \quad \bmod 2
\end{aligned}
$$

When $r=3, \bar{w}_{3}=\sigma_{1}^{3}=x^{3}+x^{2} y+x y^{2}+y^{3} \neq 0$, since a basis for cohomology is $\left\{1, x, y, x^{2}, y^{2}, x y, x^{3}, x^{2} y, x y^{2}, y^{3}, x^{4}, x^{3} y, x^{2} y^{2}, x y^{3}\right\}$.

When $r=4, \bar{w}_{7}=\sigma_{1}^{7}+\sigma_{1}^{3} \sigma_{2}^{2}=x^{7}+x^{6} y+x y^{6}+y^{7} \neq 0$, since a basis for cohomology is $\left\{x^{i} y^{j}: 0 \leq i \leq 8,0 \leq j \leq 7\right\}$.

We now prove, by induction for $r>4$, that

$$
\bar{w}_{n-2}=\left(\sigma_{1}^{2^{r-1}}+\sigma_{2}^{2^{r-2}}\right)\left(\sigma_{1}^{2^{r-2}}+\sigma_{2}^{2^{r-3}}\right) \cdots\left(\sigma_{1}^{8}+\sigma_{2}^{4}\right)\left(\sigma_{1}^{7}+\sigma_{1}^{3} \sigma_{2}^{2}\right)
$$

When $r=5$,

$$
\bar{w}_{15}=\sigma_{1}^{15}+\sigma_{1}^{11} \sigma_{2}^{2}+\sigma_{1}^{7} \sigma_{2}^{4}+\sigma_{1}^{3} \sigma_{2}^{6}=\left(\sigma_{1}^{8}+\sigma_{2}^{4}\right)\left(\sigma_{1}^{7}+\sigma_{1}^{3} \sigma_{2}^{2}\right)
$$

Assume as an inductive hypothesis, that the formula for \bar{w}_{n-2} when $s=r-1$ is true. Now for $s=r$,

$$
\begin{aligned}
\bar{w}_{n-2}= & \left(\sigma_{1}^{2^{r-1}-1}+\sigma_{1}^{2^{r-1}-5} \sigma_{2}^{2}+\sigma_{1}^{2^{r-1}-9} \sigma_{2}^{4}+\cdots+\sigma_{1}^{2^{r-2}+3} \sigma_{2}^{2^{r-3}-2}\right) \\
& +\left(\sigma_{1}^{2^{r-2}-1} \sigma_{2}^{2^{r-3}}+\sigma_{1}^{2^{r-2}-5} \sigma_{2}^{2^{r-3}+2}+\cdots+\sigma_{1}^{3} \sigma_{2}^{2^{r-2}-2}\right) \\
= & \sigma_{1}^{2^{r-2}}\left(\sigma_{1}^{2^{r-2}-1}+\sigma_{1}^{2^{r-2}-5} \sigma_{2}^{2}+\cdots+\sigma_{1}^{3} \sigma_{2}^{2^{r-3}-2}\right) \\
& +\sigma_{2}^{2^{r-3}}\left(\sigma_{1}^{2^{r-2}-1}+\sigma_{1}^{2^{r-2}-5} \sigma_{2}^{2}+\cdots+\sigma_{1}^{3} \sigma_{2}^{2^{r-3}-2}\right) \\
= & \left(\sigma_{1}^{2^{r-2}}+\sigma_{2}^{r^{r-1}}\right)\left(\sigma_{1}^{2^{r-2}-1}+\sigma_{1}^{2^{r-2}-5} \sigma_{2}^{2}+\cdots+\sigma_{1}^{3} \sigma_{2}^{2^{r-3}-2}\right) \\
= & \left(\sigma_{1}^{2^{r-1}}+\sigma_{2}^{2^{r-1}}\right)\left(\sigma_{1}^{2^{r-2}}+\sigma_{2}^{2^{r-3}}\right)\left(\sigma_{1}^{2^{r-3}}+\sigma_{2}^{2^{r-4}}\right) \cdots\left(\sigma_{1}^{8}+\sigma_{2}^{4}\right)\left(\sigma_{1}^{7}+\sigma_{1}^{3} \sigma_{2}^{2}\right)
\end{aligned}
$$

(by the inductive hypothesis).

Hence, by the principle of mathematical induction, the formula for \bar{w}_{n-2} is true for all $r>4$. Now

$$
\begin{aligned}
\bar{w}_{n-2}= & \left(x^{2^{r-1}}+y^{2^{r-1}}+x^{2^{r-2}} y^{2^{r-2}}\right)\left(x^{2^{r-2}}+y^{2^{r-2}}+x^{2^{r-3}} y^{2^{r-3}}\right) \cdots \\
& \cdots\left(x^{8}+y^{8}+x^{4} y^{4}\right)\left(x^{7}+x^{6} y+x y^{6}+y^{7}\right) \\
= & x^{2^{r}-1}+y^{2^{r-1}}+(\text { lower powers of } x \text { and } y) \neq 0
\end{aligned}
$$

since a basis for cohomology is $\left\{x^{i} y^{j}: 0 \leq i \leq 2^{r}, 0 \leq j \leq 2^{r}-1\right\}$. Thus $\bar{w}_{n-2} \neq 0$ for $r \geq 3$. This proves part (c) of the theorem.

REmARKS. 1. Part (a) of the theorem is strongest if $n=2^{r-i}+2$ when $\mathbf{R F}\left(1,1,2^{r-1}\right) \nsubseteq \mathbf{R}^{2^{r+1}-3}$ and by Whitney's classical result, $\mathbf{R F}\left(1,1,2^{r-1}\right) \subseteq \mathbf{R}^{2^{r+1}+1}$. When $n=6, \mathbf{R F}(1,1,4) \nsubseteq \mathbf{R}^{13}$ and Lam's result in [4] shows that $\mathbf{R} F(1,1,4) \subseteq \mathbf{R}^{15}$. In fact, Stong showed in [9] that $\mathbf{R F}(1,1,4) \subseteq \mathbf{R}^{14}$ and $\mathbf{R F}(1,1,4) \nsubseteq \mathbf{R}^{13}$, so that this is the best possible result.
2. If $n=4$, part (b) of the theorem becomes

$$
\mathbf{R F}(1,1,2) \not \subset \mathbf{R}^{6}, \quad \mathbf{R} \mathrm{~F}(1,1,2) \nsubseteq \mathbf{R}^{5}
$$

Also if $n=5$, part (c) of the theorem becomes

$$
\mathbf{R F}(1,1,4) \not \subset \mathbf{R}^{10}, \quad \mathbf{R} \mathrm{~F}(1,1,4) \nsubseteq \mathbf{R}^{9}
$$

Thus Lam's immersion results given in [4] that

$$
\mathbf{R F}(1,1,2) \subseteq \mathbf{R}^{6} \quad \text { and } \quad \mathbf{R F}(1,1,4) \subseteq \mathbf{R}^{10}
$$

are the best possible.

References

[1] A. Borel, 'La cohomologie mod 2 de certains escapes homogènes', Comment. Math. Helv. 27 (1953), 165-197.
[2] A. Borel and F. Hirzebruch, 'Characteristic classes and homogeneous spaces', Amer. J. Math.: I, 80 (1958), 459-538; II, 81 (1959), 315-382; III, 82 (1960), 491-504.
[3] H. Hiller and R. E. Stong, 'Immersion dimension for real Grassmannians', Math. Ann. 225 (1981), 361-367.
[4] K. Y. Lam, 'A formula for the tangent bundle of flag manifolds and related manifolds', Trans. Amer. Math. Soc. 213 (1975), 305-314.
[5] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Stud. 76 (Princeton Univ. Press, Princeton, 1974).
[6] V. Oproiu, 'Some non-embedding theorems for the Grassmann manifolds $G_{2, n}$ and $G_{3, n}$ ’, Proc. Edinburgh Math. Soc. 20 (1976), 177-185.
[7] B. J. Sanderson, 'Immersions and embeddings of projective spaces', Proc. London Math. Soc. 14 (1964), 137-153.
[8] N. Steenrod, The topology of fibre bundles (Princeton Univ. Press, Princeton, 1951).
[9] R. E. Stong, 'Immersions of real flag manifolds', Proc. Amer. J. Math. 88 (1983), 708-710.
[10] E. Thomas, 'On tensor products of n-plane bundles', Arch. Math. 10 (1959), 174-179.
[11] H. Whitney, 'The self-intersection of a smooth manifold in $2 n$-space', Ann. of Math. 45 (1944), 220-246.
[12] - 'The singularities of a smooth n-manifold in ($2 n-1$)-space', Ann. of Math. 45 (1944), 248-293.

Department of Mathematics
University of Ibadan
Ibadan
Nigeria

Department of Mathematics
University of Botswana
Private Bag 0022
Gaborone
Botswana
e-mail: ilorisa@noka.ub.bw

