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Abstract. Let R be a semi-prime Noetherian ring of injective dimension 1. Let
P be a minimal prime ideal of R. In this paper it is shown that R/P need not have
injective dimension 1. Necessary and sufficient conditions are given for R/P to have
injective dimension 1.
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1. Introduction. Let R be a semi-prime Noetherian ring of injective dimension 1.
Because hereditary rings have injective dimension 1, it is reasonable to hope that
results in the hereditary case may suggest properties which can be proved about the
more general ring R. It was shown by Levy [3, Theorem 4.3] that in the hereditary
case R is a direct sum of prime rings, but this does not generalise in a straightforward
way because the integral group ring �[G] of any non-trivial finite group G is a semi-
prime Noetherian ring of injective dimension 1 but it is not a direct sum of prime
rings. Thus, if P is a minimal prime ideal of R, we cannot expect R/P to be a direct
summand of R, but we might at least hope that R/P has injective dimension 1. The two
purposes of this paper are firstly to show that R/P need not have injective dimension 1
(Example 2.1) and then to give a necessary and sufficient condition for R/P to have
injective dimension 1. The condition is that (I + P)/P is an invertible ideal of R/P,
where I is the intersection of all the minimal prime ideals of R except P (Corollary 3.11).

2. The example. It is well known that if G is any finite group then the integral
group ring �[G] is a semi-prime Noetherian ring of injective dimension 1. Using A4 as
usual to denote the alternating group on four symbols, we shall show that �[A4] has a
prime factor ring which does not have injective dimension 1 (we believe that A4 is the
smallest group with this property).

EXAMPLE 2.1. Set S = M3(�). We start by constructing a specific representation
of A4 inside S. Let H consist of all elements of S of the three following types, where in
each case a, b, c are any integers with abc = 1:




a 0 0
0 b 0
0 0 c


 ;




0 a 0
0 0 b
c 0 0


 ;




0 0 a
b 0 0
0 c 0


 .

It is routine to check that the twelve elements of H form a group under multiplication
and that H ∼= A4.
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Let R be the subring of S generated by H. We shall use eij to denote the 3 × 3
matrix with 1 in the (i, j)-position and 0’s elsewhere. By taking sums of pairs of elements
of H it is easy to show that 2eij ∈ R for all i and j. Thus 2S ⊆ R. We shall identify
S/2S with M3(F) where F = �/2�. Then R/2S is the group algebra F [C3] where C3

is the cyclic group of order 3 generated by the element e12 + e23 + e31 of M3(F). Thus
R is the subring of S such that 2S ⊆ R (from which it follows that R is a prime ring)
and R/2S = F [C3], and R/2S is the direct sum of a field with 2 elements and a field
with 4 elements. In order to match the notation used in [1] we set T = 2S. Then T
is the intersection of those maximal ideals of R which contain the ideal 2S of S, and
λ(R/T) = 2 where λ denotes length as an R/T-module. Set

T∗ = {w ∈ M3(�) : wT ⊆ R}.
Clearly S ⊆ T∗ and S/R has 26 elements. Also S/R is an R/T-module where R/T is
the direct sum of two fields as above, from which it follows that λ(S/R) ≥ 3. Therefore
λ(T∗/R) �= λ(R/T), so that R does not have injective dimension 1 [1, Theorem 5.7].
But R ∼= �[A4]/P for some minimal prime ideal P of �[A4]. �

3. The condition. Throughout this section R will denote a semi-prime Noetherian
ring of injective dimension 1 with quotient ring Q, and I and J will denote ideals of
R such that each is the annihilator of the other (note that if U and V are ideals of
R then, because R is semi-prime, we have UV = 0 if and only if VU = 0 if and only
if U ∩ V = 0). We need to establish some general properties of R, I , and J before we
can prove the necessary and sufficient condition for R/P to have injective dimension 1
where P is a minimal prime ideal of R.

NOTATION 3.1. For a subset X of Q set

X∗ = {q ∈ Q : qX ⊆ R}
and

X∗ = {q ∈ Q : Xq ⊆ R}.
The following result will be needed; it is an easy consequence of a result in [2] and

we shall only give it in the form which we need.

THEOREM 3.2. (Jans) Let W be a finitely-generated right R-submodule of Q such
that if q ∈ Q with qW = 0 then q = 0. Then W = (W ∗)∗.

Proof. Because WR is finitely generated, there is a regular element c of R such that
cW ⊆ R. Thus WR embeds in RR, so that WR is torsionless. Also it follows from the
other assumption made on W that we can identify W ∗ with Hom(WR, RR) and (W ∗)∗
with Hom(R(W ∗),R R). Because WR is torsionless and R has injective dimension 1, it
follows from [2, Corollary, p. 72] that WR is reflexive and hence W = (W ∗)∗. �

We shall now study R, I , and J as defined in the first paragraph of this section.

PROPOSITION 3.3. We have J∗ = J∗ = IQ + R = {q ∈ Q : qJ ⊆ J} = {q ∈ Q : Jq ⊆ J},
and similarly with I and J interchanged.

Proof. There are central idempotents e and f of Q such that e + f = 1,
eQ = IQ = QI , and f Q = JQ = QJ. We shall first show that (I + J)∗ = eR + f R.

https://doi.org/10.1017/S0017089505002569 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002569


SEMI-PRIME NOETHERIAN RINGS 337

Set H = eR + f R. Clearly R ⊆ H. By 3.2 we have H = (H∗)∗. Let w ∈ H∗. Then ew =
we ∈ R and ewJ = 0, so that ew ∈ I . Similarly f w ∈ J, and w = ew + f w ∈ I + J.
Thus H∗ ⊆ I + J. On the other hand IH = IeR + If R with If = 0. Hence IH = IeR =
Ie = I , so that I ⊆ H∗. Similarly J ⊆ H∗, and it follows that I + J = H∗. Therefore
H = (H∗)∗ = (I + J)∗. But, because e and f are central, we have H∗ = H∗ ={q ∈ Q :
qe ∈ R and q f ∈ R}, so that by symmetry we also have H = (H∗)∗ = (I + J)∗.

Next we shall show that J∗ = IQ + R. We have IQJ = 0, so that IQ + R ⊆ J∗. Let
x ∈ J∗. Then x = xe + x f with xeJ = 0. Hence xe ∈ J∗ and so also x f = x − xe ∈ J∗.
We have x f I = 0 so that x f ∈ I∗. Thus x f ∈ I∗ ∩ J∗ = (I + J)∗ = H = eR + f R, from
which it follows that x f ∈ f R. Therefore x = xe + x f ∈ eQ + f R = eQ + R = IQ +
R, which completes the proof that J∗ = IQ + R.

By symmetry we also have J∗ = IQ + R. Also J∗JI = 0 with J∗J ⊆ R, so that
J∗J ⊆ J. Therefore J∗ = {q ∈ Q : qJ ⊆ J}. �

PROPOSITION 3.4. The injective dimension of I as an R/J-module is 1.

Proof. By symmetry, it does not matter whether we work on the right or the left.
Because Q/R is R-injective it follows that J∗/R (being the annihilator of J in Q/R) is
R/J-injective. But by 3.3 we have J∗/R = (IQ + R)/R ∼= IQ/(IQ ∩ R) = IQ/I . Also
Q is R-injective so that IQ (being the annihilator of J in Q) is R/J-injective. Thus
both IQ and IQ/I are injective as R/J-modules. We note also that IQ is the injective
envelope of I as an R/J-module. �

PROPOSITION 3.5. The ring R/(I + J) is QF.

Proof. Set K = I + J and H = eR + f R as in the proof of 3.3 (where it was shown
that H = K∗). Thus H/R is the annihilator of K in Q/R. Because R has injective
dimension 1 we know that Q/R is R-injective and hence H/R is R/K-injective. We
shall prove that R/K is a self-injective ring by showing that R/K ∼= H/R as right
R-modules. Define a : R → H/R by a(x) = ex + R for all x ∈ R. Then a is a right
R-module homomorphism, and a is surjective because eR + R = eR + f R = H. It
is now enough to show that Ker(a) = K . Let x ∈ R. The following statements are
equivalent: ex ∈ R; ex ∈ R and f x ∈ R (because f x = x − ex); ex ∈ I and f x ∈ J;
x ∈ I + J. Therefore a(x) = 0 if and only if x ∈ K . �

We next study the quotient ring of R/J, and we find it necessary to be very careful
as follows about the notation to be used.

NOTATION 3.6. Let ′ denote image in the semi-simple ring Q′ = Q/f Q. Then
R′ = (R + f Q)/f Q ∼= R/(R ∩ f Q) = R/J. Thus we can identify R/J with R′, and the
quotient ring of R′ is Q′. Also I ′ = (I + f Q)/f Q ∼= I/(I ∩ f Q) ∼= I because I ∩ f Q = 0.
Similarly I ∼= (I + J)/J. Therefore it follows from 3.4 that I ′ has injective dimension 1
as an R′-module, and from 3.5 that R′/I ′ is a QF ring.

PROPOSITION 3.7. With the notation of 3.6 set

W = {w ∈ Q′ : wI ′ ⊆ I ′}.
Then W = R′.

Proof. Clearly R′ ⊆ W . Let w ∈ W . We have w = q′ for some q ∈ Q. Because
wI ′ ⊆ I ′ we have (qI)′ ⊆ I ′, i.e. qI ⊆ I + f Q. But I ⊆ eQ where e is central and ef = 0.
Therefore qI ⊆ I . Hence by 3.3 we have q ∈ JQ + R = R + f Q, so that w = q′ ∈ R′. �
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COROLLARY 3.8. Let x ∈ Q′. Then xI ′ ⊆ R′ if and only if I ′x ⊆ R′.

Proof. Suppose that xI ′ ⊆ R′. Then I ′xI ′ ⊆ I ′, so that I ′x ⊆ R′ by 3.7. �
PROPOSITION 3.9. The R′-module Q′/I ′ is injective.

Proof. This is because Q′ is the injective envelope of I ′, and I ′ has injective
dimension 1 as explained in 3.6. �

We can now prove our main result.

THEOREM 3.10. The ring R/J has injective dimension 1 if and only if (I + J)/J is an
invertible ideal of R/J.

Proof. With the notation of 3.6 we need to show that R′ has injective dimension 1 if
and only if I ′ is an invertible ideal of R′. Suppose that R′ has injective dimension 1. By
3.5 we know that R′/I ′ is a QF ring. Set W = {w ∈ Q′ : wI ′ ⊆ R′} and note that by 3.8
we also have W = {w ∈ Q′ : I ′w ⊆ R′}. Then WI ′ is an ideal of R′ with I ′ ⊆ WI ′. Let
x ∈ R′ with xWI ′ ⊆ I ′. Then xW ⊆ R′ by 3.7. Adapting the notation of 3.1 to R′ and
Q′ rather than R and Q, we have W = (I ′)∗ = (I ′)∗ and x ∈ W ∗. But R′ has injective
dimension 1, so that W ∗ = ((I ′)∗)∗ = I ′ by 3.2. Therefore x ∈ I ′. Thus the ideal WI ′/I ′

of the QF ring R′/I ′ has zero left annihilator, so that WI ′/I ′ = R′/I ′, i.e. WI ′ = R′.
By symmetry we also have I ′W = R′, so that I ′ is an invertible ideal of R′.

Conversely suppose that I ′ is an invertible ideal of R′. By 3.9 we know that Q′/I ′

is an injective R′-module. It follows from 3.12 (below) that Q′/R′ is injective, and so R′

has injective dimension 1. �
COROLLARY 3.11. Let R be a semi-prime Noetherian ring of injective dimension 1,

and let J be a minimal prime ideal of R. Let I be the intersection of all the minimal prime
ideals of R other than J (with I = R if there are none). Then the ring R/J has injective
dimension 1 if and only if (I + J)/J is an invertible ideal of R/J.

LEMMA 3.12. Let R be any ring with an ideal I which is invertible in some over-ring
Q of R. Then Q/R is a direct summand of the direct sum of a finite number of copies of
Q/I (as right R-modules).

Proof. We can fix x1, . . . , xn ∈ I and w1, . . . , wn ∈ Q such that w1x1 + . . . +
wnxn = 1 and wiI ⊆ R for all i. Set X = (Q/I)(n) and define a : Q/R → X by

a(q + R) = (x1q + I, . . . , xnq + I)

for all q ∈ Q. Then a is a right R-module homomorphism. Define b : X → Q/R by

b((q1 + I, . . . , qn + I)) = w1q1 + · · · + wnqn + R

for all qi ∈ Q. It is easy to check that ba(q + R) = q + R for all q ∈ Q, so that a splits
and Q/R is isomorphic to a direct summand of X . �
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