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ON THE SOLUTIONS OF THE MATRIX EQUATION 
f(X, X*) = g(X, X*) 

BY 

P. BASAVAPPA 

It is well known that the matrix identities XX*=I, X=X* and XX* = X*X, 
where X is a square matrix with complex elements, X* is the conjugate transpose 
of X and / is the identity matrix, characterize unitary, hermitian and normal 
matrices respectively. These identities are special cases of more general equations 
of the form (a)/(Z, X*)=A and (b)/(Z, X*)=g(X, X*\ where/(x, y) and g(x, y) 
are monomials of one of the following four forms: xyxy.. .xyxy, xyxy.. .xyx, 
yxyx.. .yxyx, and y xyx... yxy. In this paper all equations of the form (a) and (b) 
are solved completely. It may be noted a particular case of f(X, X*)=A, viz. 
XX'=A, where Xis a real square matrix and X' is the transpose of X was solved 
by Weitzenbôck [3]. The distinct equations given by (a) and (b) are enumerated 
and solved. 

Most of the terminology is standard. All the matrices are matrices of complex 
numbers. By a projection is meant a matrix E such that E=E*=E2. 

The main tools used in the solutions of the equations are: (1) the principal axis 
theorem for a nonhermitian matrix [1] and (2) the polar decomposition of a matrix 
[2]. These are stated as lemmas for later use. 

LEMMA 1. Let X be any rectangular matrix. Then there exist unitary matrices U 
and V such that 

UXV = dmg(xl9..., xr90,.. .,0), 

where xu ..., xr, 0 , . . . , 0 are singular values of X. 

LEMMA 2. Let X be any square matrix. Then X can be written as 

X = HU{VK) 

where H(K) is p.s.d. and is unique and U(V) is a unitary matrix. Moreover H(K) 
and U(V) commute if and only if X is normal. 

THEOREM 1. A matrix X is a solution of the matrix equation 

iff 

X = U* diag (a]l2p,..., aV2p, 0 , . . . , 0)V* 
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where U is any unitary matrix such that 

UAU* = diag («!, . . .5« r ,0, . . . ,0) 

and V is any unitary matrix. 

Proof. Assume X is a solution of the equation. By Lemma 1 we have 

(1) UXV = diag (xl9..., x„ 0 , . . . , 0). 

Since X is a solution of the equation, we get 

(2) ((UXV)(UXV)*y = UAU*. 

Therefore if aly..., ar, 0 , . . . , 0 are the characteristic roots of A, by making use of 
(1) in (2) we get 

diag {x\p
9. . . , x2p, 0 , . . . , 0) = diag (al9..., a„ 0 , . . . , 0) 

which implies that 

UXV = diag (aî /2p,..., ar
1/2p, 0 , . . . , 0) 

or 

X = U* diag (a\12*,..., ar
1/2p, 0 , . . . , 0)V*. 

It is easily verified X in the above form satisfies the equation. Note that if p— 1 
and X is a real square matrix, we get Weitzenbock's result. 

THEOREM 2. A matrix X is a solution of the matrix equation 

(XX*)PX = A 

iff 

X = U* diag («î^+ 1>,. . . , «//«*+«, 0 , . . . , 0)F* 

where al9..., ar, 0 , . . . , 0 are the singular values of A and U and V are the unitary 
matrices such that 

(7^lF=diag(a1 , . . . ,a r ,0, . . . ,0). 

Proof. Let X be a solution of the equation. Let U and V be matrices as in 
Theorem 1. From the given equation, we get 

((uxv)(yxv)*yuxv = UAV. 
or 

diag (xip+\ ..., x?p+\ 0 , . . . , 0) = UAV. 

Thus if the singular values of A are al9..., ar, 0 , . . . , 0 we get 

diag (xl9..., xr9 0 , . . . , 0) = diag (al'<2" + 1>,..., a ^ + V 0, . . . , 0). 
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Thus by (1) we get 

X = U* diag(a\K2p + 1\ . . . , ar
1/(2"+1>, 0 , . . . , 0)V*. 

If X is in the above form, it follows easily that X satisfies the equation. 

THEOREM 3. A matrix X is a solution of the matrix equation 

(xx*y = (xx*y, p>q>i 

iff each nonzero singular value of X is 1. 

Proof. Assume X is a solution of the equation. 
By making use of Lemma 1 and using the same method as in the proof of Theorem 

1, we get 

diag (*!*,..., x2\ 0 , . . . , 0) = diag (xp,..., x2\ 0 , . . . , 0) 

which implies xx = • • • =xr = 1. 
Now suppose JHs a matrix with each of its nonzero singular value 1. 

Then by Lemma 1, we have 

UXV= diag ( 1 , . . . , 1,0,. . . ,0). 

or 

JT= U* diag ( 1 , . . . , 1,0,. . . 90)V*. 

It is easily checked X in the above form satisfies the equation. 

THEOREM 4. A matrix X is a solution of the equation 

(xx*yx = (xx*yx, p>q>o 

iff each nonzero singular value of X is 1. 

Proof. The proof as in Theorem 3 works. 

THEOREM 5. A matrix X is a solution of the matrix equation 

(XX*y = (X*X)\ p,q>h p*q 

iff X is normal with each of its nonzero singular value 1. 

Proof. Note here X must be square. Assume X is a solution of the equation. 
By Lemma 2, we can write 

X= UK 

Thus from the given equation, we get 

(3) UH2pU* = H2q. 

https://doi.org/10.4153/CMB-1972-010-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-010-9


48 P. BASAVAPPA [March 

It follows that H2p and H2q have the same eigenvalues. If the eigenvalues of H 
are Xx> • • • > Ar> Ar+1 = • • • = An=0, we get 

A?* = A?«, / = l , . . . , r . 

Thus X± = • • • = Ar = 1. Hence H is a projection and from (3) we see that H and U 
commute. Therefore by Lemma 2, H is normal. If X is normal with each of its 
nonzero singular value one, as in the proof of Theorem 3, it follows that X satisfies 
the equation. 

THEOREM 6. A matrix X is a solution of the matrix equation 

(xx*yx = (xx*y 
iff X is a projection. 

Proof. Assume Zis a solution of the equation. Then by making use of Lemma 2, 
from the given equation, we get 

(4) H2p+1U = H2q = H2qI 

By the uniqueness of H9 we get 

Thus H is a projection. From (4), we have 

HU= H 
X = HU= H 

is a projection. 
The converse is obvious. 

THEOREM 7. A matrix X is a solution of the matrix equation 

(xx*yx = (x*xyx*(p > o) 
iff X is hermitian. 

Proof. Assume X is a solution. Then 

(xx*)2p+1 = ((xx*yx)(x*(xx*y) 
= i(x*xyx*)(x(x*xy) 
= (X*X)2p+1. 

Therefore by the uniqueness of root extraction we get 
XX* = Z*X 

Hence X is normal. Therefore each eigenvalue of X satisfies 

|À|*À = |A|pÂ. 

It follows that nonzero eigenvalues of X are real. Hence X is hermitian. The con
verse is obvious. 
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THEOREM 8. A matrix X is a solution of the matrix equation 

(xx*yx = (x*xyx*, p^q, 
iff X is hermitian with 0, 1, — 1 as the only eigenvalues. 

Proof. Assume X is a solution of the equation. As in the proof of Theorem 7, 
we get 

(5) (XX*)2p+1 = (X*X)2q+1. 

Since the eigenvalues of XX* and X*X coincide, it follows that any eigenvalue 
of XX* is 1 or 0. 

Therefore XX* and X*X are projections. From (5) we see that 

(6) XX* = X*X. 

From (6) X is normal, therefore the eigenvalues À of X satisfy the same equation 
asZ: 

|A|pA = |A|*A. 

Since XX* is a projection, |A| = 1 or 0. These facts immediately combine to give 
A=0,1, or — 1. The converse is easily checked. 
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