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IRREDUCIBLE DECOMPOSITION OF THE
MAGNUS REPRESENTATION OF THE TORELLI GROUP

MASAAKI SUZUKI

In this paper we describe the irreducible decomposition of the Magnus representation
of the Torelli group.

1. INTRODUCTION

Let E9 be a closed oriented surface of genus g and E9)i be an oriented surface obtained
from E9 by removing an open disk. We denote by Mg<\ the mapping class group of E9|1

relative to the boundary, that is, the group of path components of the group of orientation
preserving diffeomorphisms of ESii which restrict to the identity on the boundary. Let
X9,i be the Torelli group of E9ii, namely the normal subgroup of M9JI consisting of all
the elements which act on the homology of E9ii trivially. Various results concerning
the structure of the mapping class group and the Torelli group have been obtained (for
example see [5, 7]).

We investigate the Magnus representation of the Torelli group. The aim of this
paper is to give the irreducible decomposition of this representation. The Magnus repre-
sentations are denned for a wide class of subgroups of automorphism group of free groups
(see [2] for details). For example, the classical Burau representation and the Gassner
representation, for braid groups and pure braid groups respectively, belong to this class.
The Magnus representation for the mapping class group Mg<\

r : M,tl -> GL(25;Z[r0])

was studied in [6], where Fo = 7Ti(E9il). This mapping is not a group homomorphism. We
restrict it to the Torelli group J9ii and reduce the coefficients to Z[#] which is induced by
the Abelianisation a : Fo -* H, where H — H\(Egy, Z). Then we obtain a homomorphism

f:I9il—>GL(2g;Z[H}).
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We call this mapping r the Magnus representation of the Torelli group. In Section 2,
we recall the definition of the Magnus representation of the Torelli group more precisely
from [6].

Each of the Burau and Gassner representations has a 1-dimensional trivial subrepre-
sentation. In Section 3, we show that the Magnus representation of the Torelli group also
has a 1-dimensional trivial subrepresentation. In contrast to the classical cases, however,
this 1-dimensional trivial subrepresentation is not a direct summand. In Section 4, we
show that the quotient representation is reducible in our case. In fact, it has a (2g - 2)-
dimensional irreducible subrepresentation. That is to say, we arrive at the following main
result of this paper.

MAIN THEOREM. For g ^ 2 there exsists a non-singular matrix P € GL{2g;R)
such that for any element ip € X9il

7{<p) P =

f \
0

*

PB(<P)

0 ••• 0

*

*

1

Moreover, pB is a (2g — 2)-dimensional irreducible representation of I9 i l .

Here R = i[xi±l, y*1, l / ( l -yi)] (D Z[H]) where xi; yt (i = 1,... ,g) is a symplectic
basis of H obtained by Abelianising a system of generators a*, Pi of Fo as shown in
Figure 1. We show that the representation pB is irreducible by making use of Formanek's
technique used in [4] to determine whether the reduced Burau representation obtained
by the complex specialisation is irreducible or not. His technique was also used in [1]
to give a necessary and sufficient condition for the specialisation of the reduced Gassner
representation to be irreducible.

In Section 6, we give some remarks and applications of the irreducible decomposition.

2. DEFINITION OF THE MAGNUS REPRESENTATION

We denote by Z[T0] the integral group ring of Fo = TT^E^I). We fix a system of
generators a\.,...,ag,fii,...,fig of the free group Fo as shown in Figure 1. Let us simply
write 71 , . . . , 729 for them.

DEFINITION 2.1: We call the following mapping

r : Mo GL(2g-Z[T0})
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[3] Irreducible decompositions

aa :

^

Figure 1: Generators of Fo

the Magnus representation for the mapping class group Mg\. Here •=— is the Fox

derivation and : Z[F0] —> Z[F0] is the antiautomorphism induced by the mapping

7H->7-1.

However, this mapping r is not a group homomorphism.

PROPOSITION 2 . 2 . ([6]) For any two elements (p,ip e M9tU we have

where vr(ij)) denotes the matrix obtained from r(ip) by applying the automorphism ip :

Z[F0] ->• Z[F0] Oil each entry.

We restrict this mapping r to the Torelli group ISii and reduce the coefficients to

Z[H]. Since the Torelli group X9ii acts trivially on H, we obtain a genuine homomorphism

This is the definition of the Magnus representation of the Torelli group.

3. R E D U C I B I L I T Y O F T H E M A G N U S R E P R E S E N T A T I O N O F T H E T O R E L L I G R O U P AND

A Q U O T I E N T R E P R E S E N T A T I O N

As is mentioned in [2], the classical Burau representation as well as the Gassner

representation has a 1-dimensional trivial subrepresentation. The Magnus representation

of the Torelli group has a similar property.

We define the vector v as follows. Let C be a simple closed curve on E9 i l which is

parallel to the boundary. We may regard f as an element of Fo.

The vector v is obtained by applying Fox derivations to the boundary curve £. That is,

we set

— t ( _ & j . . . - b g a i ••• a g )

where at, b{ are 1 - xt, 1 — y{ respectively and xt — x{~
1, y{ — yCx.
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PROPOSITION 3 . 1 . The Magnus representation of the Torelli group has a 1-
dimensional trivial subrepresentation. In fact, a l-dimensional subspace spanned by the
vector v is invariant under the action ofI9i\.

PROOF: For a given element ip € X9,i, we write simply

"ii,i • • •

Let Tf be the Dehn twist along a simple closed curve (,. By straightforward calculation,
we obtain the following matrix.

r(Ti) — hg + * (—b\ • • • — bg oi • • • ag)

Here /29 denotes the 2g x 2g unit matrix. Therefore

r(ipr() = r(tp)r(TC)

7711,1 " - • ^ 1 , 2 9

^ 2 g , l • - • "I29,2f l

bg)

" l l , l • • • 1^l,2g

m2gti • • • Tri2g,2g

-bo

a9 )

agbi ••• bg).

(3.1)

On the other hand, we can easily compute the same matrix directly by the definition,
because the action of y>r( € I9)i on TTI(E9)1) is given by

For example, the Fox derivations of them are computed as

-\fig,ag]

[/3g,ag] • • • [A

{Pg,<Xg\ • • • [Pi,ot\\<p{aj)[aupi)
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Since af 1 =

expressed as

and a(tp(aj)) = Xj, the (i, j)-component of the matrix r(<pT() is

Similarly we have the following (i, j — 1 , . . . , g).

Thus we obtain the matrix

(3.2) bg).

\ a9 J

We note that Z[H] is an integral domain. By comparing (3.1) with (3.2), we arrive at
the following equation.

-bg

\ "9 / \ "9 /

Hence we can conclude
f(tp)v = v.

This completes the proof. D

We define the matrix Pi as follows. First, we consider the following 2g elements

and set
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where

h

\ b9 b9

0>2

)

We can easily check that P\e\ — v where e\ = '(1 0 • • • 0). However, we note that TTI(E9I1)

is not generated by TJ, and also that Pi"1 is not contained in GL(2g;Z[xi
±l,yi

±1}) but
GLhg; Zfz^1, y{

±l, 1/(1 - yt)]\. Therefore we have the following.

COROLLARY 3 . 2 . For any element <p G I9ii, tie non-singular matrix Pi satisfies
tie equation

Pa{<P)

Pi'1 r{<p) P1 =
PA(<P)

I
The Burau representation is the direct sum of its 1-dimensional trivial subrepresenta-

tion and the quotient representation. The Gassner representation has the same property.
However, The Magnus representation of the Torelli group does not have this property.
In fact, we can deduce the following result.

PROPOSITIDN 3 . 3 . Tie Magnus representation of the Torelli group is not com-
pletely reducible.

PROOF: TO get a contradiction, suppose that r is completely reducible. Then there
exists a non-singular matrix U such that

\ /

(3.3) U- l 0

0

Pa(<P)

PA(<P)

I

u =
0

0

0 0

PA'(<P)

The coefficients of U belong to a field including Z[H]. By setting

u =

the equation (3.3) implies

(3.4)

(3.5)

u3

Pa(V>)Ua=0

PA(<P)U4 =

I
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Figure 2: Simple closed curve

On the other hand, we set (pt and v{ are the Dehn twists about simple closed curves Cj
and rii as depicted in Figure 2 and Figure 3 respectively and by direct calculation we
have

otherwise

otherwise

otherwise

Here 6 = [aci,Pi][ot2, P2] • • • [cti, Pi]. Thus we obtain

g-\ g-i

( 0 1 _ ^ 0 , -bibi+1,0,..., 0 , b i , . . . ,bi-i,VuO^^O) i = 1 , . . . , 5 - 1

i-l p-t-1 g-i

where pt = yi+l(l - &)(& + yi+l - Mi+i)- S i n c e w e h a v e t h e equation (3.4) for any
element ip £ Z9ii, t/3 is a zero column vector. Then we get det U = \J\ • det f/4 ^ 0 and it
implies that f/4 is a non-singular matrix. Therefore, by (3.5),

PA'W) = U<-lpA(<p)U4.
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Figure 3: Simple closed curve n,-

This means that PA is conjugate to pA- By explicit calculation we get PA{TQ) — hg-\-
Thus we can conclude PA'(T()

 = ^2g-\ and T̂  € ker r. However, we can check that r̂  is
not an element of ker r. This is a contradiction. D

4. REDUCIBLITY OF THE QUOTIENT REPRESENTATION PA

The quotient representation PA is irreducible for 5 = 1. However, for higher genera,
the quotient representation PA is reducible. That is, we have the following proposition.

PROPOSITION 4 . 1 . The representation PA has a (2g - 2)-dimensional subrep-

resentation ps for g ^ 2.

PROOF: We have defined the matrix Pi e GL(2g;R) such that

/
1

0

0

Pa(<P)

PA(<P)

We remark that pA is a homomorphism and that pa is a crossed homomorphism. That
is to say, for any elements y>, tp 6 ISii

PA(<fii>) = PA(<P)PA(IP) , Pa{<Plp) = PaM + Pai^PA^)-

Let T( be the Dehn twist along a simple closed curve on ESii which is parallel to the
boundary as before. Since

pA(rc) = I2g-2g-i

we have

+ Pa(<P) •
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We recall r^ip — (pr^ for any element ip € X9ii, because r̂  is central in Mg,\. Then we get

Pa{T()pA(<p) = Pa{T()

This means that VaC ĉ) is an eigenvector of the matrix 1PA{<P) with eigenvalue 1 for any
ip € Igti- Therefore there exists a non-singular (2g — 1) x (2</ — l)-matrix Qi such that

PA(<P) 'QI1 =

(I

0

( 1

*

0

1PB(<P)

• • • 0 ^

PB{<P)

By putting Q = where

we obtain

' 0 1 0 0 0 \

0 0 1 0 0

0 0 0 0 1

1 0 0 0 0 )

PB{<P)

\ 0 ••• 0

This equation means that the representation PA has a (2g - 2)-dimensional subrepresen-

tation PB- This completes the proof. D

REMARK 4.2. We define a non-singular matrix Qx by

Then we can easily check that Qid = (Pa(T<) where ex = '(1 0 • • • 0). In this way we

can construct (2g - 1) x (2g — l)-matrices Q\ and Q, which appear in Proposition 4.1,

explicitly.
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(I

0

*

PB{<P)

0 • • • 0

*

5. IRREDUCIBILITY OF THE REPRESENTATION pB

Combining Corollary 3.2 and Proposition 4.1, we obtain the following main result
of this paper.

THEOREM 5 . 1 . For g ^ 2 there exsists a non-singular matrix P € GL(2g; R)
such that for any element tp e Ig,\

P" 1 r{y) P =

Moreover,
pB:Ig,i—>GL(2g-2;R)

is a (2g — 2)-dimensional irreducible representation ofXg^.

We have only to set P = Pl- (Ii®Q) to obtain the above decomposition. It remains
to prove the irreduciblity of ps-

Let C" be the n dimensional complex vector space consisting of column vectors.
We denote by *Cn the transposed vector space consisting of row vectors. A matrix
X e M(n; C) is called a pseudoreflection if X — In has rank 1. If A" is a pseudoreflection,
then

X = In- AB,

for some A e Cn and B G lCn.

THEOREM 5 . 2 . (Formanek [4]) Let Xx = In - AXBU ...,Xn = In- AnBn be
n invertible pseudoreHections in M(n;C), where n ^ 2. Let T be the directed graph
whose vertices are 1,2,. . . , n, and which has a directed edge from i to j (i ^ j) precisely
when BiAj ^ 0. Let G be the subgroup ofGL(n; C) generated by Xlt... ,Xn. Then the
following are equivalent.

1. Spanc{G} =M(n;C)

2. For each ij^j,l^i,j^ n, the graph T contains a directed path from i
to j , {Ai,..., An} is a basis for C" and {Bi,..., Bn} is a basis for lCn.

3. For each i ^ j , 1 ^ i, j $J n, the graph F contains a directed path from i
to j and det(BiAj)ij / 0.

This theorem gives a criterion for a certain representation to be irreducible. This is
because, for a group G' and a representation T : G' -» GL(n\ C), if ImT spans M(n; C),
then T is an irreducible representation (see [3]). We shall prove that pg is irreducible by
making use of this method.
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1
o-

Figure 4: Simple closed curve d{

P R O O F OF THE IRREDUCIBILITY OF pB: Let PB(Z,W) be the representation

PBIM,W) • Ig,i —> GL(2g - 2; C)

obtained by specialising x,- i-» Zi, y* i-» Wj in /?B, where (z,w) = (z\,... ,zg, wi,... ,wg)
are complex numbers z< G C \ {0}, Wj € C \ {0,1}. We denote by Lg the subgroup of J9>1

generated by the 2 ^ - 2 elements unpiVi'1, ip'2, u2(p2U2~\ V>'3, •••, Vj - i^ j - i^ - i " 1 , ^ .
Let us simply write Vi, ̂ 2, • • •, ̂ 29-2 for them. Here ip'{ is the Dehn twist about a simple
closed curve cj as shown in Figure 4. We note the action of tp'{ on the generators jj.

otherwise

i otherwise

Because all tpt are BSCC maps, that is, the Dehn twists along 0-homologous simple closed
curves, the matrices pB(z,w)(iPi) are pseudoreflections, namely PBiz^i^i) — hg-2 + A{B{
for some At € C2?-2, Bt e tC29~2. By direct calculation, we get

2 t _ ! = «f 0 , . . . , 0, d'kdk+u 0 , . . . , 0, -d f c + 1 -

9tk \
, - d > t + 1 , 0 , . . . , OJ

ff+t+1

kzl
,0 , . . . ,0 ,-d f cd ' f c + 1 )0> . . . 10)

k k+l

( 0 , . . . , 0 , 1 , - 1 , 0 , . . . , 0 )
9 - 1

= g-\
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where dk — 1 — u>k,d'k = 1 — (1/wk)- We remark that z* does not appear in A{ and
Then we have the (2g — 2) x (2g - 2)-matrix (BjA,). • as follows:

0 dxd'2
0

-d2d'3

d'2d3

0
-d'2d3

d2d'3
0

0 dg^d'g

Thus we obtain

and the associated graph can be expressed as

1 2 3 2g-Z 2g-2
Therefore by virture of Theorem 5.2, the representation PB(Z,W)\L, is irreducible. Hence
PB(Z,W) and pB are irreducible. D

REMARK 5.3. If there exists a single (z,w) such that PB(Z,W)\L9 is irreducible, then
we can conclude pB is irreducible. However, the above proof shows that PB{Z,W)\L9 is
irreducible for any z{ € C \ {0} and w{ € C \ {0,1}.

6. SOME REMARKS AND APPLICATIONS

This section is devoted to give some remarks and applications of the irreducible
decomposition.

Let lg be the Torelli group of E9 and I9it that of E9 relative to the base point * € E9.
We have the following by explicit computations.

(6.6)

(6.7)

(6.8) PB0i) = Vihg-2

Here 5* € I9,i (respectively fa £ X9ii) is a product of the Dehn twist along ai+ (respec-
tively 0i+) and the inverse of the Dehn twist along c*i_ (respectively Pi-) as depicted in
Figure 5 (respectively Figure 6). The equation (6.6) means that pB factors through I9i».

PB : GL(2g - 2; R)
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Figure 5: Simple closed curves aj+ and a*_

Figure 6: Simple closed curves @i+ and /?;_

Moreover, the equations (6.6), (6.7) and (6.8) show that pB does not factor through Ig.
However, we write PGL(2g - 2; R) for the quotient group of GL(2g - 2; R) by all scalar
matrices, then we obtain the following representation

pB:lg—>PGL{2g-2;R).

From our previous paper [8], we know that the kernel of the Magnus representation
of the Torelli group is non-trivial for g ̂  2. As an application of the irreducible decompo-
sition, we shall obtain additional information about the kernel. To be more precise we can
mention the relation between ker f and the lower central series of X9il. We denote by J(n)
the n-th term in the lower central series of JSil so that I(0) = l9ii and X(n) = [I(n_i),J(0)].

PROPOSITION 6 . 1 . There exists no natural number n 6 N so that

J(n) C kerf.

PROOF: We define /„ inductively as follows.

/i = [v i ,5 i ] , / 2 = [/i,A],...,/2/fc_i = [f2k-2,ai],f2k = [hk-u3\], • • • •

Here ip\, 5i , ft are as above. Then /„ is an element of !(„). Now we use the irreducible
decomposition. Let f be the equivalent representation to r so that

By explicit calculation and an inductive proof, we get the following (i, j)-components of
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the matrix r ' ( / n ) .

1

-ax

0

1

i = j

2 i=hj=

otherwise

0 otherwise

Thus for any natural number n € N, we can deduce

/„ £ ker F.

This completes the proof. D

REFERENCES

[1] M. Abdulrahim, 'Complex specialization of the reduced Gassner representation of the
pure braid group', Proc. Amer. Math. Soc. 125 (1997), 1617-1624.

[2] J. Birman, Braids, links and mapping class groups, Annals of Math. Studies No. 82
(Princeton University Press, Princeton N.J., 1975).

[3] L. Dornhoff, Group representation theory Part A (Marcel Dekke Inc., New York, 1971).
[4] E. Formanek, 'Braid group representations of low degree', Proc. London Math. Soc. 73

(1996), 279-322.
[5] D. Johnson, 'A survey of the Torelli group', Contemporary Math. 20 (1983), 165-179.
[6] S. Morita, 'Abelian quotients of subgroups of the mapping class group of surfaces', Duke

Math. J. 70 (1993), 699-726.
[7] S. Morita, 'Structure of the mapping class groups of surfaces: a survey and a prospect', in

Proceedings of the Kirbyfest (1999), Geom. Topol. Monogr. Vol. 2 (Geom. Topol. Publ,
Coventyr), pp. 349-406.

[8] M. Suzuki, 'The Magnus representation of the Torelli group ZSii is not faithful for g ^ 2',
Proc. Amer. Math. Soc. 130 (2002), 909-914.

Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba
Meguro
Tokyo 153-8914
Japan
e-mail: macky@ms.u-tokyo.ac.jp

https://doi.org/10.1017/S0004972700033475 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033475

