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Motivated by the need for compact descriptions of the evolution of non-classical wakes
behind yawed wind turbines, we develop an analytical model to predict the shape of
curled wakes. Interest in such modelling arises due to the potential of wake steering as
a strategy for mitigating power reduction and unsteady loading of downstream turbines in
wind farms. We first estimate the distribution of the shed vorticity at the wake edge due to
both yaw offset and rotating blades. By considering the wake edge as an ideally thin vortex
sheet, we describe its evolution in time moving with the flow. Vortex sheet equations are
solved using a power series expansion method, and an approximate solution for the wake
shape is obtained. The vortex sheet time evolution is then mapped into a spatial evolution
by using a convection velocity. Apart from the wake shape, the lateral deflection of the
wake including ground effects is modelled. Our results show that there exists a universal
solution for the shape of curled wakes if suitable dimensionless variables are employed.
For the case of turbulent boundary layer inflow, the decay of vortex sheet circulation
due to turbulent diffusion is included. Finally, we modify the Gaussian wake model
by incorporating the predicted shape and deflection of the curled wake, so that we can
calculate the wake profiles behind yawed turbines. Model predictions are validated against
large-eddy simulations and laboratory experiments for turbines with various operating
conditions.
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1. Introduction

Analytical models of various fluid mechanical phenomena in wind energy play an
important role for basic understanding and for design and control of wind farms. Prime
examples are models for the wind turbine wake velocity defect and its downstream
evolution commonly used in wind farm layout optimization (Jensen 1983; Stevens &
Meneveau 2017; Porté-Agel, Bastankhah & Shamsoddin 2020). In the classic Jensen
model, for instance, a linearly expanding wake with a top-hat shape is assumed. More
recent models allow for more realistic wake cross-sections with a Gaussian distribution
(Bastankhah & Porté-Agel 2014), and cross-sections that transition from top hat near the
turbine to Gaussian further downstream have also been proposed (Shapiro et al. 2019).

Analytical wake models can be particularly useful in implementation of wake mitigation
strategies such as wake steering, which has been receiving growing attention as an
important control approach for increasing wind farm power output (Fleming et al. 2014;
Gebraad et al. 2014; Bastankhah & Porté-Agel 2015; Campagnolo et al. 2016; Howland
et al. 2016; Schottler et al. 2017; Bartl et al. 2018; Lin & Porté-Agel 2019; Kleusberg,
Schlatter & Henningson 2020; Speakman et al. 2021). Achieving increased power output
through wake steering involves turbines, often in the front rows of wind farms, being
intentionally operated in yawed conditions to redirect their wakes away from downwind
turbines. Although this reduces the power produced by the yawed turbines, research has
shown that the total wind farm efficiency can improve as a result of more power generated
by downwind turbines (Park & Law 2016; Bastankhah & Porté-Agel 2019; Fleming et al.
2019; Howland, Lele & Dabiri 2019; King et al. 2021). Yawed turbine wake flows are
known to exhibit complex features which makes their modelling more challenging than
their unyawed counterparts. The most striking fluid-dynamic feature of a yawed turbine
wake is arguably its curled cross-sectional shape (i.e. a kidney-shaped cross-section).
This shape arises due to the action of a counter-rotating vortex pair (CVP) as detailed in
Howland et al. (2016). Counter-rotating vortex pairs are typically generated when forcing
with spatial cross-stream variations is applied perpendicular to the flow direction. One
of the most notable examples are vortices trailing from finite-span wings that roll-up and
lead to the formation of a CVP, i.e. wingtip vortices or wake vortices in the aerodynamics
literature. The formation and evolution of these vortical structures has been the subject
of numerous studies since seminal works of Prandtl and Lancaster (see Anderson (2011),
and references therein). As noted in Bastankhah & Porté-Agel (2016), the CVP observed
in yawed turbine wakes is also similar to those formed in many other free shear flows
with strong spanwise variations of cross-wind velocity such as cross-flow jets (see, e.g.
the review of Mahesh 2013).

In order to exploit the basic understanding of induced velocity and circulation of CVPs
generated by finite-span wings, Shapiro, Gayme & Meneveau (2018) proposed to regard
a yawed turbine as a lifting surface with an elliptical planform. Based on this approach,
the lateral component of the thrust force can be regarded as the transverse lift force. This
analogy made it possible to determine: (i) the distribution of circulation at the yawed
rotor modelled as a lifting line, and (ii) the transverse velocity (equivalent to downwash
velocity for finite-span wings) at the rotor disk due to the yaw offset. The latter enabled
modelling of the transverse displacement of the wake but the wake itself was still assumed
to retain a circular cross-sectional shape rather than the curled shape observed in practice.
The associated vorticity distribution was later used by Martínez-Tossas et al. (2019, 2021)
to develop a Lagrangian vorticity transport model that can predict the curled shape of
the wake after numerical integration. Recently, Martinez-Tossas & Branlard (2020) and
Zong & Porté-Agel (2020) have instead expressed rates of vorticity shedding at rotor
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blade tips using vortex cylinder theory (Coleman, Feingold & Stempin 1945; Burton et al.
1995; Branlard & Gaunaa 2016) to determine the trailing vorticity distribution behind a
yawed rotor. The numerical model developed by Zong & Porté-Agel (2020) also takes
into account the redistribution of point vortices in the wake due to their self-induced
velocities. More recently, Shapiro, Gayme & Meneveau (2020) have solved the linearised
mean streamwise vorticity transport equation to develop an analytical expression that can
predict the decay of the CVP due to atmospheric turbulence. Bossuyt et al. (2021) have also
experimentally demonstrated the impact of vortical structures shedding from a misaligned
(either tilted or yawed) rotor on the curled shape of the wake downstream.

Capturing the curled shape of the wake for yawed turbines is of great importance
since curling affects how much the wake will effectively overlap with downstream wind
turbines, thus affecting the predicted power generation. However, models of the curled
wake shape in the literature require numerical integration, and existing analytical wake
models (e.g. Bastankhah & Porté-Agel 2016; Qian & Ishihara 2018; Shapiro et al. 2018;
Blondel et al. 2020; King et al. 2021) cannot capture this deformation of the wake shape.
There are several advantages to analytically expressed models that represent the trends in
simple and explicit forms. Apart from their low computational cost, analytical flow models
(Meneveau 2019) often prove to be useful in revealing additional insights on flow physics
that may not be evident using numerical simulation tools. Therefore, the current study
aims at developing an analytical model to predict displacement and shape deformation
of the wake behind a yawed turbine. The proposed model is inspired by prior works on
two-dimensional vortex sheets (e.g. Rottman, Simpson & Stansby 1987; Coelho & Hunt
1989). The proposed analytical model predicts displacement and deformation of a vortex
sheet, shedding from the circumference of a yawed rotor, as it is convected downstream.
The vortex sheet model is then combined with a model for downstream evolution of wake
velocity deficit to predict the shape of the curled wake and velocity distribution downwind
of a yawed turbine.

The remainder of the paper is organised as follows. Section 2 derives the vortex sheet,
truncated power series solution for the yawed turbine wake in uniform, ideal flow, and
model predictions are compared with numerical simulation under laminar uniform inflow.
In § 3 the model is extended to cases with turbulent boundary layer inflow, and the results
are compared with corresponding large-eddy simulation (LES) data. Finally, § 4 provides
a summary of the developed model and our main conclusions.

2. Vortex sheet evolution in uniform, ideal flow

2.1. Evolving vortex sheet governing equations
As shown in Shapiro et al. (2020), among others, vortices shedding from the circumference
of the yawed rotor represented as an actuator disk form a tubular vortex sheet. The
objective of this section is to model the shape evolution of this vortex sheet with
downstream distance or, equivalently, with time. Only the streamwise component of the
shedding vorticity is modelled in this work because the lateral wake deflection and the
deformation of the wake cross-section are mainly due to the velocities induced by the
streamwise component of shedding vorticity (Martinez-Tossas & Branlard 2020). The
vortex sheet consists of semi-infinite streamwise vortex lines. In order to enable solving
the governing equations analytically, following Coelho & Hunt (1989) and Rottman et al.
(1987), we assume that the vortex sheet is planar and that its constituent vortex lines are
infinite instead of semi-infinite, an approximation that improves at increasing distances
from the origin.

933 A2-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1010


M. Bastankhah and others

y

z

CC

l

uc,r

uII,θuI,θ uI,r

Γr

γds
γds

ererer

uc,θ

ξ (θ,t)ξ (θ,t)ξ (θ,t)

eθeθeθ

θ′θ′ ξ′
ξ′ ξξ

θθθ

α

(a) (b) (c)

Figure 1. Schematic of the vortex sheet and different velocity terms on the right-hand side of (2.4). (a)
Self-induced vortex sheet velocity, uI . (b) Vortex sheet velocity induced by the point vortex at the vortex sheet
centre, uII . (c) Velocity of the vortex sheet centre, uc.

Figure 1 shows a schematic of the vortex sheet in the plane normal to the incoming flow.
The (x, y, z) coordinate system is defined with an origin at the rotor centre and with x in
the streamwise direction (i.e. parallel to the incoming flow) and y and z in the spanwise
and vertical directions, respectively. Alongside this Cartesian system, we define a polar
coordinate system of (r, θ) in the yz-plane (i.e. plane normal to the incoming flow). This
polar coordinate system is attached to the centre of the vortex sheet, denoted by C. The
position of C in the (x, y, z) coordinate system is denoted by (xc, yc, zc). As r is the radial
distance from C, one can write r2 = ( y − yc)

2 + (z − zc)
2. The polar angle θ is measured

from the positive y-axis toward the positive z-axis such that tan θ = (z − zc)/( y − yc).
The shape of the vortex sheet is represented by the polar function ξ(θ, t) that measures
the distance of the vortex sheet from the centre, where t is time. Our main objective is
to describe the evolution of the vortex sheet as a function of time t in a frame moving
downstream with the convection velocity Ucon, i.e. determine ξ(θ, t). This is equivalent
to determining the downstream spatial evolution of the vortex sheet, with x = Ucont. The
sheet location ξ(θ, t) obeys

ξ = ξ0 +
∫

ur(θ, t) dt, (2.1)

where ξ0 = ξ(θ, 0) and ur(θ, t) denotes the radial velocity of the vortex sheet, which is
affected by the strength of the evolving vortex sheet, whose evolution is treated next.

Let us denote the strength of the vortex sheet by γ = γ (θ, t), where the vortex strength
γ is defined as the amount of circulation per unit length. In addition to the vortex sheet,
there is a point vortex at C with a circulation of Γr (see figure 1b) to model the rotor root
vortex, which is elaborated later in § 2.3. We will show in § 2.3 that the initial condition
for the strength can be written as

γ0 = γ (θ, 0) = γr + γb sin θ at r = ξ0, (2.2)

Γr = −2πξγr at r = 0, (2.3)

where γr and γb are constants depending on turbine operating conditions. Later in § 2.3,
we show that γb is related to the vorticity generated due to turbine yaw, while γr and Γr are
related to the vorticity generated by turbine rotating blades. Our focus now is to predict the
deformation of the vortex sheet provided that the initial conditions are given by (2.2)–(2.3).
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The velocity of the vortex sheet u(θ, t) with respect to a coordinate system attached to
the centre C is given by

u(θ, t)︸ ︷︷ ︸
vortex sheet velocity

with respect to C

= uI︸︷︷︸
self-induced

vortex sheet velocity

+ uII︸︷︷︸
vortex sheet velocity induced

by point vortex at C

− uc︸︷︷︸
velocity

of C

. (2.4)

In (2.4) and hereafter, bold letters denote vectors. Next, we employ the Biot–Savart law
to determine the three velocity terms on the right-hand side of (2.4), starting with the
self-induced velocity uI = uI,rer + uI,θeθ , where er and eθ are unit vectors in the radial
and tangential directions, respectively. The radial uI,r and tangential uI,θ components of
the self-induced velocity at a given polar angle of θ are respectively given by

uI,r(θ, t) =
∫ 2π

0

γ (θ ′, t) sin α

2πl
ξ ′ dθ ′, (2.5)

uI,θ (θ, t) =
∫ 2π

0

γ (θ ′, t) cos α

2πl
ξ ′ dθ ′, (2.6)

where l and α are defined in figure 1(a), θ ′ is a dummy integration variable, and ξ ′ =
ξ(θ ′, t). According to the law of cosines, l2 = ξ2 + ξ

′2 − 2ξξ ′ cos (θ ′ − θ). The angle α

shown in the figure 1(a) can be related to l based on the law of sines for the drawn triangle,
which results in sin α = (ξ ′/l) sin (θ ′ − θ). For small values of time t and yaw angle β, we
can assume that the vortex sheet is approximately circular and, thus, ξ ≈ ξ ′. After some
trigonometric manipulations, (2.5) and (2.6) can be simplified to

uI,r(θ, t) = p.v.
1

4π

∫ 2π

0

γ (θ ′, t)
tan

[
(θ ′ − θ) /2

]dθ ′, (2.7)

uI,θ (θ, t) = p.v.
1

4π

∫ 2π

0

γ (θ ′, t) sin
[(

θ ′ − θ
)
/2
]

sin
[
(θ ′ − θ) /2

] dθ ′ = 1
4π

∫ 2π

0
γ (θ ′) dθ ′. (2.8)

Both integrals in (2.7) and (2.8) have singularities at θ ′ = θ and, thus, we use the Cauchy
principal values of these two integrals. While the principal value (p.v.) of the latter can
be simply obtained by removing sin[(θ ′ − θ)/2] from the numerator and the denominator,
the p.v. of the former needs to be determined for a given γ (θ, t).

Next, we determine the velocity of the vortex sheet induced by the point vortex at C as
shown in figure 1(b). We obtain

uII,r(θ, t) = 0, (2.9)

uII,θ (θ, t) = Γr

2πξ
= −γr. (2.10)

Finally, we determine uc, which is the velocity of C induced by the vortex sheet, shown in
figure 1(c). It can be readily shown that uc is given by

uc,r(θ, t) = 1
2π

∫ 2π

0
γ (θ ′, t) sin

(
θ ′ − θ

)
dθ ′, (2.11)

uc,θ (θ, t) = − 1
2π

∫ 2π

0
γ (θ ′, t) cos

(
θ ′ − θ

)
dθ ′. (2.12)

If we neglect streamwise (x-direction) straining, vorticity is a conserved quantity, so the
vorticity transport equation for the vortex sheet strength γ (θ, t) provides the additional
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required evolution equation (Moore 1978)

∂γ

∂t
+ ∂ (γ us)

∂s
= 0, (2.13)

where s is the arclength along the vortex sheet. At small values of time t and yaw angle β,
the vortex sheet remains approximately circular, so us and ∂s can be respectively replaced
with uθ and ξ∂θ . Therefore, (2.13) is simplified to

∂γ

∂t
+ 1

ξ

∂(γ uθ )

∂θ
≈ 0. (2.14)

Next, we use γb and ξ0 to non-dimensionalise variables in (2.4) and (2.14). This leads to
the following set of dimensionless equations:

ûr(θ, t̂) ≈ p.v.
1

4π

∫ 2π

0

γ̂ (θ ′, t̂)
tan

[
(θ ′ − θ) /2

]dθ ′ − 1
2π

∫ 2π

0
γ̂ (θ ′, t̂) sin

(
θ ′ − θ

)
dθ ′, (2.15)

ûθ (θ, t̂) ≈ 1
4π

∫ 2π

0
γ̂ (θ ′) dθ ′ + 1

2π

∫ 2π

0
γ̂ (θ ′, t̂) cos

(
θ ′ − θ

)
dθ ′ − χ, (2.16)

∂γ̂

∂ t̂
≈ −1

ξ̂

∂(γ̂ ûθ )

∂θ
. (2.17)

Here t̂ = tγb/ξ0, û = u/γb, γ̂ = γ /γb, ξ̂ = ξ/ξ0 and χ = γr/γb. Note that the
dimensionless time t̂ becomes negative for negative values of γb. In the following, we
solve (2.15)–(2.17) using the power series method.

2.2. Analytical solution using power series approximation
We write γ̂ (θ, t), ûr(θ, t) and ûθ (θ, t) as power series in the form of

γ̂ (θ, t̂) =
∞∑

n=0

γ̂n(θ)t̂n; ûr(θ, t̂) =
∞∑

n=0

ûrn(θ)t̂n, ûθ (θ, t̂) =
∞∑

n=0

ûθn(θ)t̂n. (2.18a–c)

According to (2.1), for ξ̂ and the factor 1/ξ̂ in (2.17), we have

ξ̂ = 1 +
∫

ûr dt̂ = 1 +
∞∑

n=0

1
n + 1

ûrnt̂n+1, (2.19)

1

ξ̂
=

∞∑
n=0

fn(θ)t̂n, (2.20)

where fns are Taylor series expansion coefficients of 1/ξ̂ . For example, the first three
coefficients, which are used in the final solution of this paper, can be shown to be f0 = 1,
f1 = −ûr0 and f2 = û2

r0 − 1
2 ûr1. We insert the power series (2.18a–c) and (2.20) into
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(2.15)–(2.17) and equating coefficients we obtain

ûrn(θ) ≈ p.v.
1

4π

∫ 2π

0

γ̂n(θ
′)

tan
[
(θ ′ − θ) /2

]dθ ′ − 1
2π

∫ 2π

0
γ̂n(θ

′) sin
(
θ ′ − θ

)
dθ ′, (2.21)

ûθn(θ) ≈ 1
4π

∫ 2π

0
γ̂n(θ

′) dθ ′ + 1
2π

∫ 2π

0
γ̂n(θ

′) cos
(
θ ′ − θ

)
dθ ′ −

{
χ, if n = 0,

0, if n > 0,

(2.22)

γ̂n+1 ≈ − 1
(n + 1)

⎛⎝ n∑
j=0

fj
n−j∑
i=0

∂(γ̂iûθ(n−j−i))

∂θ

⎞⎠ . (2.23)

The first term on the right-hand side of (2.21) is a Cauchy p.v. of an improper integral. The
following identities are useful to solve this integral:

p.v.

∫ 2π

0

sin nx
tan

[
(x − b) /2

]dx = 2π cos nb, (2.24)

p.v.

∫ 2π

0

cos mx
tan

[
(x − b) /2

]dx = −2π sin mb. (2.25)

Here n ∈ {1, 2, . . .}, m ∈ {0, 1, 2, . . .} and b ∈ [0, 2π]. The complete derivation of these
integrals can be found in the Appendix A.

From (2.2), γ̂0(θ) = sin θ + χ . One can insert γ̂0 into (2.21) and (2.22) to respectively
find ûr0(θ) and ûθ0(θ). Values of ûr0(θ), ûθ0(θ) and f0 can be then inserted into (2.23) to
find γ̂1(θ). This recursive process is repeated until reaching the desired order of evaluation
for the power series of (2.18a–c). After ûr(θ, t̂) is obtained using the developed recursive
relations, the dimensionless shape of the vortex sheet ξ̂(θ, t̂) is evaluated from (2.19). The
solutions for γ̂ , ûr and ûθ up to O(t̂3) and for ξ̂ up to O(t̂4) are written below,

γ̂ (θ, t̂) = sin(θ) + χ − 1
2

t̂ sin(2θ) + t̂2
(

−1
4
χ cos(2θ) + 3

16
sin(3θ) − sin(θ)

16

)
+ t̂3

(
1
12

χ2 sin(2θ) − 1
48

χ cos(θ) + 5
32

χ cos(3θ)

+ 5
96

sin(2θ) − 7
96

sin(4θ)

)
, (2.26)

ûr(θ, t̂) = −1
4

t̂ cos(2θ) + t̂2
(

1
8
χ sin(2θ) + 3

32
cos(3θ)

)
+ t̂3

(
1
24

χ2 cos(2θ) − 5
64

χ sin(3θ) + 5
192

cos(2θ) − 7
192

cos(4θ)

)
, (2.27)
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ûθ (θ, t̂) = 1
2

sin(θ) − 1
2
χ − 1

32
t̂2 sin(θ) − 1

96
t̂3χ cos(θ), (2.28)

ξ̂(θ, t̂) = 1 − 1
8

t̂2 cos(2θ) + t̂3
(

1
24

χ sin(2θ) + 1
32

cos(3θ)

)
+ t̂4

(
1
96

χ2 cos(2θ) − 5
256

χ sin(3θ) + 5
768

cos(2θ) − 7
768

cos(4θ)

)
.

(2.29)

One can compute higher-order terms of (2.26)–(2.29), which may become relevant at
increasing values of t̂. However, since the above solution is developed based on the
assumption that the vortex sheet remains approximately circular, increasing deformation
of the vortex sheet makes the solution inaccurate at large values of t̂. For practical
applications at large t̂, in Appendix B we propose an empirical formula that merges
smoothly with the theoretical expression at small t̂ (i.e. |t̂| ≤2), while it has desired
reasonable properties at large times (i.e. |t̂| >2). In the next section we prove the validity
of the initial conditions in (2.2) and (2.3). Moreover, values of ξ0, γb and γr are determined
as functions of turbine operating conditions.

2.3. Setting vortex sheet initial conditions at yawed turbine location
In this section we determine the vorticity shedding from a yawed rotor disk (i.e. γ0(θ) =
γ (θ, 0)). According to the Kutta–Joukowsky theorem, lift force is proportional to the
amount of circulation around a lifting airfoil. This means that an airfoil can be replaced
with a bound vortex. Also, for any airfoil with finite span, free vortices must trail
downstream from both sides of the bound vortex to infinity, forming a horseshoe vortex
(Anderson 2011). Turbine blades rotate and produce power due to their generated lift force,
and vorticity is shed from the root and the tip of rotor blades. In addition, the whole yawed
rotor can be assumed as a big finite-span airfoil with the lateral component of the thrust
force regarded as the lift force. Therefore, in order to find the total shedding vorticity at
the rotor disk, we need to determine those due to both yaw offset and rotating blades. In
the following, we assume that the yawed rotor can be modelled as a rotating actuator disk.

2.3.1. Vorticity shedding due to turbine yaw
Prior studies have suggested two different approaches to model the distribution of
circulation at a yawed disk. By modelling a yawed disk as a lifting line, the circulation
is concentrated on a vertical line at the centre of the rotor with an elliptical distribution
spanning from the bottom tip to the top tip of the rotor (Shapiro et al. 2018). Alternatively,
vorticity due to yaw offset can be assumed to shed from the circumference of the rotor
(Zong & Porté-Agel 2020). Martinez-Tossas & Branlard (2020) used vortex cylinder
theory to state the equivalency of these two methods. Shapiro et al. (2020) proved that
both vorticity distributions yield the same induced velocity inside the radius of the rotor
disk. To determine the reference circulation density γb needed in (2.2) and to provide more
physical insight, we build upon the literature to show that the equivalency of these two
vorticity distributions can be also verified simply by rearranging the position of horseshoe
vortices over a yawed disk.

Figure 2(a) shows a schematic of a yawed actuator disk modelled as a lifting surface
with a constant vortex strength of γb in the z̄-direction. The coordinate system (x̄, ȳ, z̄) is
defined based on the rotor plane as shown in figure 2(c), and its respective polar coordinate
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ds̄

U∞ U∞
U∞

dȳ
z̄ z̄

z, z̄ȳ
ȳ

ȳ

x̄

y

x
β β

β
θ̄

(a) (b) (c)

Figure 2. Vorticity shedding from a yawed actuator disk, modelled (a) as a lifting surface, and (b) as a lifting
line. (c) A schematic of different coordinate systems used in this paper.

system (r̄, θ̄ ) is defined such that r̄ =
√

ȳ2 + z̄2 and tan θ̄ = z̄/ȳ. The lifting surface shown
in figure 2(a) can be envisaged as a surface with an infinite number of horseshoe vortices
uniformly distributed across the yawed disk. The bound circulation at a given vertical
position z is given by

Γ (z̄) =
∫ √

R2−z̄2

−
√

R2−z̄2
γb dȳ = 2γb

√
R2 − z̄2, (2.30)

where R is the rotor radius. Note that according to (2.30), the vertical distribution of the
bound circulation for the lifting surface with a constant vortex strength γb is elliptical. This
means that if we concentrate all these horseshoe vortices on a vertical line at the centre
of the disk, the lifting surface is transformed to a lifting line with an elliptical distribution
of circulation, like the one used by Shapiro et al. (2018), as shown in figure 2(b). In this
case, trailing vortices shed from all along the lifting line, because it consists of horseshoe
vortices that vary in size. From (2.30), the maximum value of bound circulation for the
lifting line, denoted by Γb, occurs at z̄ = 0, and its value is equal to 2Rγb. From the lifting
line theory, we know that Γb = −UhCTR cos2 β sin β (Shapiro et al. 2018), where CT is
the turbine thrust coefficient. The value of CT is given by

CT = 2T

ρπR2U2
h cos2 β

, (2.31)

where T is the total magnitude of the turbine thrust force, ρ is the air density and Uh is the
inflow velocity at the hub height. Note that this definition is the same as the one used in
Shapiro et al. (2018), but it is different from the one used in some other prior studies (e.g.
Burton et al. 1995; Bastankhah & Porté-Agel 2016). Since γb = Γb/2R, the value of γb is
given by

γb = −1
2 UhCT cos2 β sin β. (2.32)

Next, we determine the distribution of trailing vortices shedding from the circumference
of the lifting surface. The circulation of the vortex shedding from an infinitesimal
circumferential element ds, where ds̄ = R dθ̄ , is dΓshed,yaw = γb dȳ. Given that dȳ =
ds̄ sin θ̄ , we obtain

dΓshed,yaw = γb sin θ̄ ds̄. (2.33)

For the lifting line, on the other hand, the magnitude of circulation of trailing vortex over
the segment dz̄ is equal to -(dΓ/dz̄) dz̄ (Anderson 2011). From (2.30) and Γb = 2Rγb,
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we obtain

dΓshed,yaw = Γbz̄ dz̄

R
√

R2 − z̄2
. (2.34)

Using the variable change z̄ = R sin θ̄ , one can easily show that dΓshed for the lifting
surface at any θ̄ (2.33) is half of that of the lifting line (2.34) at the respective height z̄.
Note that for the lifting surface, at a given height, trailing vortices shed at both angles of θ̄

and (π − θ̄ ) with the same magnitude of circulation. Therefore, trailing vortices shedding
from the lifting line and the lifting surface vary with height in a similar manner. It is also
worth mentioning that the results presented here are in agreement with those obtained from
the skewed vortex cylinder theory (Coleman et al. 1945; Branlard & Gaunaa 2016). By
modelling a yawed turbine wake as a skewed vortex cylinder, Martinez-Tossas & Branlard
(2020) stated that the dominant vorticity shedding from the rotor is the tangential vorticity
vector, which lies in the rotor plane. The streamwise projection of this tangential vorticity
is equal to the one found in the present work (2.33) (c.f. (9) in Martinez-Tossas & Branlard
2020).

2.3.2. Inclusion of wake angular momentum effects
In this section we determine the value of γr required in (2.2) and (2.3). Based on the
method of Joukowsky that models a turbine blade as one single horseshoe vortex with
constant bound circulation (see Okulov & Van Kuik (2012) for historical background),
two free trailing vortices with the same magnitude of circulation are shed from both root
and tip ends of each turbine blade. Under the assumption of a large number of blades,
this creates a vortex system consisting of a bound vortex disk, an axial root vortex and
a tubular vortex sheet as shown in figure 3(a). Let us denote the circulation of the root
trailing vortex with Γr. As the amount of circulation along any horseshoe vortice remains
constant, the bound circulation on the rotor disk at any radial position should be the same
as Γr. According to the Kutta–Joukowsky theorem, the bound circulation over an annular
ring at a radial position r̄ and thickness of dr̄ on the rotor disk generates a lift force dL,
which amounts to (Okulov & Sørensen 2010)

dL = ρV0 × er̄Γr dr̄, (2.35)

where V0 is the resultant relative wind velocity experienced by the blade element as shown
in figure 3(b). In this figure, φ denotes the angle between V0 and θ̄ -direction, and Ud is
the component of V0 in the x̄-direction. The tangential component of dL produces power
P, which is given by

dP = Ω dQ = ρΩΓrUdr̄ dr̄, (2.36)

where Ω is the turbine rotational velocity and dQ is the torque generated by the given
annular ring. From the axial momentum theory, the power generated by the annular ring
can be written as the product of Ud and dT , where dT is the thrust force exerted on the
annular ring. Therefore, we obtain an additional equation for dP as

dP = UddT = ρUdU2
∞CT cos2 β(πr̄) dr̄. (2.37)

Note that to derive (2.37), the local thrust coefficient for a given annular ring is assumed to
be the same as its value for the whole rotor defined in (2.31). This is a correct assumption
for the Joukowsky vortex model (Van Kuik, Sørensen & Okulov 2015). Equating (2.36)
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ds̄

U∞

β

z̄
ȳ

x̄

θ̄

ϕ

ϕ

V0
Ud

dL

Γr

Γr

Rotor plane

(a) (b)

Figure 3. (a) Modelling a turbine rotor as a rotating actuator disk. (b) The velocity triangle for a rotor blade
element.

and (2.37) leads to

Γr = πR
λ

UhCT cos2 β, (2.38)

where λ is the tip-speed ratio and defined as ΩR/Uh.
As seen in figure 3(a), the trailing vorticity sheds over the circumference of the

rotor disk. It is evident that the value of circulation for the vorticity shedding over the
circumferential element ds̄ is given by

dΓshed,rot = γr ds̄, (2.39)

where γr = −Γr/(2πR). The variable γr denotes the strength of the shedding tubular
vortex sheet, and from (2.38),

γr = − 1
2λ

UhCT cos2 β. (2.40)

It is important to note that as discussed by Branlard & Gaunaa (2016), the
above-mentioned shedding vortices are actually in the direction of the wake centreline
axis that forms an angle with the streamwise coordinate x. Prior studies (e.g. Coleman et al.
1945) however showed that the angle between the wake centreline and the x-coordinate is
expected to be much smaller than the turbine yaw angle. Therefore, we assume that both
axial root and tip shedding vortices are in the x-direction for simplicity.

2.3.3. Total vorticity shedding from a yawed turbine
From findings of §§ 2.3.1 and 2.3.2, we can determine the total vorticity shedding from a
yawed rotor due to both yaw offset and rotating blades as a function of turbine operating
conditions. From (2.33) and (2.39), the value of the dimensionless initial vortex strength
γ̂0 in the (r, θ) polar coordinate system is given by

γ̂0(θ) = γ0

γb
= sin θ + χ at r = ξ0, (2.41)

where from (2.32) and (2.40),

χ = γr

γb
= 1
λ sin β

. (2.42)

The variable χ , called the rotation rate, is the ratio of the strength of vortex generation
due to rotating blades to the one generated due to yaw offset. For the limiting cases of
λ = ±∞, χ is equal to zero, and the shedding vorticity is only due to the yaw offset. As
the tip-speed ratio λ goes to infinity, the amount of torque generated by the turbine goes
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to zero. Therefore, according to the conservation of angular momentum, there should be no
wake rotation downwind of the actuator disk in the limiting cases of λ = ±∞. Hereafter,
the term non-rotating wake refers to the wake of an actuator disk with an infinite tip-speed
ratio λ, while rotating wake refers to the wake of an actuator disk with a finite value of λ.

2.3.4. Initial shape of the vortex sheet
The vortex sheet sheds from the circumference of the rotor, so it initially has a shape similar
to the projected frontal area of the yawed disk, which is an ellipse with a semi-major
axis of R in the z-direction, and a semi-minor axis of R cos β in the y-direction. The
disk-averaged velocity normal to the rotor Ud is equal to U∞ cos β(1 − a), where a is the
turbine induction factor, and it is given by 0.5(1 −

√
1 − CT cos2 β) (Burton et al. 1995).

Behind the turbine, the rotor streamtube area expands further as pressure recovers to the
background value (Manwell, McGowan & Rogers 2010). At this location, the streamwise
velocity is given by U∞(1 − 2a) (Bastankhah & Porté-Agel 2016; Shapiro et al. 2018).
From continuity, A∗, the ratio of the expanded streamtube area to the projected frontal
area of the rotor is therefore given by

A∗ = (1 − a) cos β

1 − 2a
1

cos β
= 1 +

√
1 − CT cos2 β

2
√

1 − CT cos2 β
. (2.43)

Neglecting the distance between the rotor and the end of the streamtube expansion, we set
the initial wake area enclosed by the vortex sheet at t = 0 to be the projected frontal area
of the rotor times A∗. Therefore, ξ0(θ) has an elliptical shape expressed by

ξ0(θ) = R
√

A∗
| cos β|√

1 − sin2 β sin2 θ

. (2.44)

For a small yaw angle β, the vortex sheet initially has an approximately circular shape.
Therefore, one can approximate ξ0 with ξ̃0 given by

ξ̃0 ≈ R
√

A∗. (2.45)

2.4. Vortex sheet lateral deflection
The analytical solutions of the vortex sheet shape developed earlier are represented in the
(r, θ) polar coordinate system, which is attached to the vortex sheet centre C. Therefore, in
order to fully determine the locus of the vortex sheet with respect to a stationary coordinate
system, we also need to compute how yc and zc vary with time or downstream distance (i.e.
wake deflection). From figure 1(c), the Kutta–Joukowsky theorem can be used to obtain

ŷc = 1
2π

∫ t̂

0

∫ 2π

0
γ̂ (θ ′, t̂) sin θ ′ dθ ′ dt̂, (2.46)

ẑc = −1
2π

∫ t̂

0

∫ 2π

0
γ̂ (θ ′, t̂) cos θ ′ dθ ′ dt̂, (2.47)
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Figure 4. (a) Lateral deflection of the vortex sheet centre yc based on modelling the shed vorticity either as an
approximately circular vortex sheet (2.48) or a CVP (2.53). The empirical relation (2.55) provides predictions
similar to the former approach at small t̂, while it tends to the latter solution at large times. (b) Schematic of
modelling the CVP shedding from a yawed rotor.

where ŷc = yc/ξ0 and ẑc = zc/ξ0. Inserting γ̂ (θ, t̂) from (2.26) into (2.46) and (2.47) and
performing the integration lead to

ŷc = t̂
2

− t̂3

96
, (2.48)

ẑc = χ t̂4

384
. (2.49)

From (2.49), the vertical displacement of C is zero when χ = 0 (i.e. actuator disks with
non-rotating wake) as expected from symmetry and consistent with prior experimental and
numerical works (e.g. Bastankhah & Porté-Agel 2016; Howland et al. 2016; Bartl et al.
2018). Comparison of (2.48) and (2.49) for non-zero values of χ shows that ẑc is non-zero
but still considerably smaller than ŷc for small values of t̂. Therefore, we neglect ẑc in this
work for simplicity.

It is worth remembering that to derive the analytical solution for the deformation of
the vortex sheet, we assumed that the shape of the vortex sheet does not largely deviate
from a circle. Although this is an acceptable assumption for small values of yaw angle
and time, it is less accurate for large values of time, when the vortex sheet rolls up and
forms a CVP. As shown in figure 4(a), based on (2.48), the value of ŷc may even decrease
with an increase of t̂, which is clearly unphysical. Since we expect that at large times (or
downstream distances) a CVP can more realistically represent the vorticity shedding from
the yawed rotor, we enhance our model for ŷc so that at large distances it tends to the
situation of a CVP instead of using the truncated series vortex sheet solution.

Figure 4(b) shows a schematic of a CVP. The CVP has the circulation of Γb (Shapiro
et al. 2018) as shown in figure 4(b). The lateral position of the CVP is denoted by ycvp, and
the lateral distance between the wake centre C and the CVP is denoted by δc in the figure.
The vertical spacing between counter-rotating vortices is equal to 2ξ0 and it is assumed to
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remain constant. Initial values of yc, ycvp and δc are zero. In this analysis, only the vorticity
shed due to the yaw offset is considered as the effect of shed vorticity due to rotating blades
on the wake deflection is expected to be small. Our objective is to find the variation of yc
with time (or downstream distance), but let us first determine how δc varies with time.
According to the Biot–Savart law,

vc = 2Γb

2πL
cos α = Γbξ0

π
(
ξ2

0 + δ2
c
) , (2.50)

where vc is the lateral velocity of C induced by the CVP, and L and α are defined in
figure 4(b). The CVP also moves with a lateral velocity of vcvp = Γb/(4πξ0) due to its
self-induced velocity. Therefore, one can write

dδc

dt
= vc − vcvp = Γbξ0

π
(
ξ2

0 + δ2
c
) − Γb

4πξ0
= Γb

4πξ0

(
3ξ2

0 − δ2
c

ξ2
0 + δ2

c

)
. (2.51)

It is interesting to note that, according to (2.51), δc increases until δc approaches
√

3ξ0. At
this time vc = vcvp and, therefore, the relative position of C with respect to the CVP does
not change anymore, and δc remains equal to

√
3ξ0 afterwards.

Next, we approximate Γb ≈ 2ξ0γb in (2.51). We then integrate (2.51) (with separation of
variables, δc and t) and write the solution in the dimensionless form. This yields an implicit
expression for δ̂c(t̂) (it will be later expressed explicitly using an empirical formula),

t̂
2π

= −2√
3

ln

(√
3 − δ̂c√
3 + δ̂c

)
− δ̂c, (2.52)

where δ̂c = δc/ξ0. Note that to derive (2.52), we assume that δ̂c <
√

3. Given that ŷc =
δ̂c + ŷcvp, we have

ŷc = δ̂c + t̂
2π

. (2.53)

Predictions of ŷc based on modelling the vortex sheet as a CVP using (2.52) and (2.53)
are shown in figure 4(a). As discussed earlier, the solution for ŷc based on the CVP is
expected to provide acceptable predictions at large values of t̂, while the solution based on
an approximately circular vortex sheet (2.48) works better at short values of t̂. An empirical
formula that merges these two behaviours to leading order in both limits can be written as

ŷc = c1|t̂|3 + c2 t̂2 + c3|t̂|
c4 t̂2 + c5|t̂| + c6

sgn(t̂), (2.54)

where sgn(x) is the sign function of x, and c1, . . . , c6 are polynomial coefficients, which
need to be determined. Note that, similar to the vortex sheet and CVP solutions, the
empirical relation is an odd function, so the wake deflection is opposite for turbines
with opposite yaw angles. To find suitable values of polynomial coefficients (c1, . . . , c6),
we match the series expansion of (2.54) at t̂ → 0 and t̂ → ∞ with t̂/2 − t̂3/96 and
t̂/(2π) + √

3, respectively. This leads to a system of equations that needs to be solved.
So we obtain

ŷc = (π − 1)|t̂|3 + 2
√

3π2 t̂2 + 48(π − 1)2|t̂|
2π(π − 1)t̂2 + 4

√
3π2|t̂| + 96(π − 1)2

sgn(t̂). (2.55)

Equation (2.55) provides predictions similar to (2.48) at small values of t̂ and approaches
(2.53) at large values of t̂ as shown in figure 4(a).
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2.5. Comparison with numerical simulations
In this section we compare predictions of the vortex sheet (i.e. wake edge) shape ξ(θ, t)
based on the new proposed model with numerical simulation data. For simulations, the
pseudo-spectral LES code LESGO is applied. The LESGO code has been used in prior
works (Calaf, Meneveau & Meyers 2010; Stevens, Graham & Meneveau 2014; VerHulst &
Meneveau 2015; Martínez-Tossas et al. 2018; Shapiro et al. 2018; Stevens, Martınez-Tossas
& Meneveau 2018) to simulate flow past wind turbines and wind farms. It has been
validated by detailed comparisons with several other LES codes (Martínez-Tossas et al.
2018). Turbines are simulated using the actuator disk model with rotation (ADM-R). See
the Appendix C for more information about the LESGO code and the LES set-up of this
study. Under uniform inflow conditions the role of turbulence is minimal, and the code
runs mostly as an inviscid solver with regularization, as it was also used in Shapiro et al.
(2018). Simulations are performed for a range of local thrust coefficients C′

T = 0.8, 1.0
and 1.33, yaw angles β = 10◦, 20◦ and 30◦, and rotation rates χ = 0, 0.25 and 0.5. Note
that according to (2.32) this means that γb and t̂ are negative and the curling is expected
to be in the opposite direction of that shown in the sketch in figure 1, i.e. in the LES the
wake is being deflected in the negative y-direction. Also, it is worth remembering that the
rotation rate χ depends on both yaw angle β and tip-speed ratio λ. According to (2.42),
for a utility-scale wind turbine with a tip-speed ratio λ = 8 and yaw angle β = 15◦–30◦,
rotation rate χ varies between 0.25–0.5. The non-rotating case commonly used in the LES
corresponds to an infinite tip-speed ratio and reduces to the standard actuator disk model
(ADM) without rotation. The local thrust coefficient C′

T is related to the thrust coefficient
CT through CT = 16C′

T/(4 + C′
T cos2 β)2 (Shapiro et al. 2018). A fringe forcing region is

used to force the flow back to laminar inflow when using periodic boundary conditions
in the x-direction. Excluding this fringe region the effective domain has sides that are
Lx = 15.12D, Ly = 5.76D and Lz = 5.76D long. A uniform grid with Nx = 384 effective
grid points in the streamwise direction and Ny = Nz = 192 grid points in the spanwise and
vertical directions are used. The centre of the actuator disk is placed 3.6D from the inlet
of the domain.

In order to determine the shape of the wake edge based on the developed model, we
need to first compute the value of t̂ = γbt/ξ0, where ξ0 can be approximated with ξ̃0 (2.45)
and t = x/Ucon. Although the convection velocity Ucon in turbine wakes changes with
the streamwise distance, it is approximated with a constant value in this study, as done
in prior studies (e.g. Shapiro et al. 2020). For cases with no incoming turbulence, the
turbine wake does not significantly interact with the surrounding flow, and it experiences
a slow recovery. In this case, the streamwise velocity profile in the central part of the
wake can be modelled as a top-hat core (i.e. potential core) with a constant velocity U0

equal to Uin
√

1 − CT cos2 β (Bastankhah & Porté-Agel 2016; Shapiro et al. 2018), where
Uin is the incoming velocity. The top-hat core is surrounded by a shear layer in which
the velocity changes from U0 to Uin. Therefore, we approximate the convection velocity
with Ucon = 0.5(U0 + Uin). For instance, based on this definition, |t̂| = 2 (i.e. limiting
value for using the analytical model) corresponds to a streamwise distance in the range of
12R − 29R for a turbine with C′

T = 1.33 (i.e. CT ≈ 0.75 for β = 0), and β = 30◦–10◦.
The analysis presented in § 2 suggests that the wake shape, non-dimensionalised by

ξ0(θ), only depends on the dimensionless time t̂, and the rotation rate χ = 1/λ sin β. As a
first test of the model, we compare the dimensionless model predictions with LES results
normalised such that they can be presented as function of t̂ and χ . For the LES data, the
edges of the wake are identified by tracking the edge of the streamtube that passes through
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Figure 5. Dimensionless shape of the wake of yawed wind turbines in uniform inflow for C′
T = 0.8 (◦), C′

T = 1
(�) and C′

T = 1.33 (�) and yaw angles β = 10◦ (red), β = 20◦ (blue), β = 30◦ (green) at various evolution
times t̂ and rotation rates χ . The analytical model (black solid line) is shown for comparison. Note that results
of β = 10◦ are not shown for t̂ = −1.6 and −2.0 because for this yaw angle they correspond to downwind
distances that exceed the computational domain.

the face of the actuator disk which is appropriate in this case due to the lack of turbulent
mixing. Results are shown in figure 5, which shows that the LES data for turbines with
different operating conditions approximately collapse onto the same wake profile curve
for given values of t̂ and χ , in agreement with the proposed theory. The figure also shows
that the proposed analytical model is able to capture the scaled wake shape. At larger time
magnitudes and large rotation rates some discrepancies appear, especially in the bottom
right quadrant. The governing equations are developed by assuming small deviations of
the vortex sheet from its initial shape. In addition, a severely truncated series expansion
is used to solve governing equations. Therefore, the model cannot fully capture the vortex
roll-up and transition of the vortex sheet to a CVP at large times, and some discrepancies
are noticeable. For non-zero values of rotation rate, an additional level of vorticity γr sheds
from the rotor circumference due to blade rotation. Given the sinusoidal nature of vorticity
due to yaw offset (2.33), the additional shedding vorticity due to rotation increases the
vorticity magnitude on either bottom or top halves of the wake (e.g. bottom half for the
data shown in figure 5), which in turn accelerates the vortex roll-up. At larger values of
rotation rate, discrepancy is thus expected to be higher due to the earlier occurrence of
vortex roll-up. This is confirmed in figure 5 by comparing model predictions at the same
dimensionless time (e.g. t̂ = −1.6), but different values of rotation rate.

Next, we expand the comparison and plot the results in terms of physical parameters that
are more directly related to the flow configuration: downstream distance x/R, local thrust
coefficient C′

T , yaw angle β and dimensionless rotation rate χ . Figure 6 shows wake edge
predictions of the analytical model together with the LES data for different values of C′

T ,
β and χ , at several downwind locations. The figure shows that the degree of wake curling
increases with yaw angle, thrust coefficient and streamwise distance, as expected from
the analysis presented in § 2. Moreover, wake rotation breaks the vertical symmetry of
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Figure 6. Wake of yawed wind turbines in uniform inflow for yaw angles β = 10◦ (red), β = 20◦ (blue), β =
30◦ (green) at various downstream locations x/R and rotation rates χ . Large-eddy simulation measurements
are shown with symbols and modelled wake locations are shown with solid lines.

the wake. The results presented in figure 6 show that the wake shape depends strongly on
all of the varied parameters: thrust coefficient, yaw angle and rotation rate. The analytical
model developed is seen to agree well with the LES results, up to intermediate levels of
wake curling. The analytical model successfully predicts the shape of the wake for various
operating conditions. As the wake deformation grows further downstream or at increasing
C′

T , differences appear, as mentioned before due to the limitations of the model that is
based on a severely truncated series expansion. It is clear that there is reduced agreement
in the lower half of the wake for cases with large values of yaw angle and rotation rate. As
discussed earlier, for these cases, the lower half of the wake cross-section is subject to a
strong vortex roll-up caused by the cumulative vorticity due to both yaw offset and rotation.
Still, the model is able to predict many qualitative features of the wake shape, including its
vertical asymmetry for cases with rotation. In addition, the sideways displacement of the
entire wake is also captured quite well in all cases.

3. Vortex sheet evolution in turbulent atmospheric boundary layer

In this section we generalize the prior analytical model of a yawed wind turbine wake
that is applicable for ideal non-turbulent flow to the case of a wake with a turbulent
atmospheric boundary layer background flow. Here we seek a model for the entire mean
velocity distribution as a function of downstream distance as well as cross-stream position,
accounting for the fact that the wake will be curling due to turbine yaw.
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3.1. Vortex sheet evolution in turbulent atmospheric boundary layer
For the ideal flow case, we assumed that the vortex sheet does not decay as it moves
downstream, and the strength of the streamwise vorticity only evolves along the vortex
sheet in time following idealised vortex dynamics. Although this may be an acceptable
assumption for turbines with uniform non-turbulent inflows, it is not expected to be valid
for turbines immersed in turbulent environments such as the atmospheric boundary layer
(ABL). The vertically varying mean inflow velocity in the ABL can be approximated as
Uin(z) = (u∗/κ) ln(z/z0), where u∗ is the friction velocity, κ is the von-Kàrmàn constant
and z0 is the roughness height. As discussed in Shapiro et al. (2020), the vorticity shedding
from a yawed rotor decays due to the turbulent diffusion; i.e. γb(t) and γr(t) are functions
of time. Instead of solving the full governing equations for a diffusing vortex sheet, we
approximate the effects of diffusion by scaling γ and the velocities by the circulation
γb(t) that is decaying according to a previously obtained analytical solution for the decay
of CVP in a turbulent boundary layer (Shapiro et al. 2020). Specifically, we define new
scaled variables γ̂ , ûr and ûθ such that

γ (θ, t) = γb(t)γ̂ (θ, t̂), ur(θ, t) = γb(t)ûr(θ, t̂), uθ (θ, t) = γb(t)ûθ (θ, t̂). (3.1a–c)

If one defines scaled displacement and time according to

ξ̂(θ, t̂) = ξ(θ, t)
ξ0

, (3.2)

t̂(t) = 1
ξ0

∫ t

0
γb(t′) dt′, (3.3)

one recovers the original governing equations (2.15), (2.16) and (2.55) for the new
definition of variables γ̂ , ûr, ûθ , ξ̂ and t̂. An additional term is however introduced in
(2.17), so

∂γ̂

∂ t̂
+ 1

ξ̂

∂(γ̂ ûθ )

∂θ
≈ −ξ0γ̂

γ 2
b

dγb

dt
. (3.4)

It will be shown later in (3.8) that
∫
(γb/γb0) dt ∝ c(1 − exp(kvt/c)), where γb0 = γb(t =

0), c is a constant and kv is the expansion rate of the turbulent diffusive scale, and it is
modelled as u∗/Uin(z) (Shapiro et al. 2020). So the Taylor expansion of γb(t) is given by

γb(t) ≈ γb0(1 + O(kv)t + O(k2
v)t

2). (3.5)

For atmospheric flows, the value of kv at the hub height is equal to u∗/Uh << 1 (Shapiro
et al. 2020). Therefore, γb is a slow varying reference quantity, and the additional term
on the right-hand side of (3.4) is neglected for simplicity. This means that the solution
already developed in § 2.2 will still be used as a model for the decaying vortex sheet once
rescaled by the prescribed γb(t) evolution and using the modified time t̂. Note that for a
constant γb, (3.1a–c)–(3.3) become the same as dimensionless variables defined earlier for
a non-decaying vortex sheet.

Next, in order to evaluate the integral of (3.3) and derive a relationship for t̂ under
turbulent inflow conditions we need to specify a convection velocity under turbulent inflow
conditions. Due to atmospheric turbulence, the wake mixes and recovers more quickly than
in the laminar inflow case, and, thus, the mean velocity at the wake edge is comparable to
the incoming velocity. We therefore assume that in this case the vortex sheet at a height
z is convected downstream with the incoming velocity at that height Uin(z); thus, Ucon =
Uin(z) and t ≈ x/Uin(z).
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Vortex sheet model of curled wakes from yawed wind turbines

To evaluate (3.3), we must specify the decay of vorticity, i.e. of γb with streamwise
distance. In Shapiro et al. (2020) the decay of the total vortex circulation Γb(x) was studied,
its relationship with the density γb being γb = Γb/2R. The resulting derived model for the
total vortex circulation Γb(x) as a function of downstream distance x is given by

Γb(x)
Γb0

=
√

π

4
R

η(x)
exp

(
− R2

8η2(x)

)[
I0

(
R2

8η2(x)

)
+ I1

(
R2

8η2(x)

)]
, (3.6)

where Γb0 = Γb(x = 0), In is the modified Bessel function of the first kind with order
n, η(x) = kν(x − x0)/241/4 is the turbulent diffusive scale, and x0 is the virtual origin
assumed to be zero in the current work for simplicity.

One can use γb = Γb/2R, t ≈ x/Uin(z) and η(x) ≈ kνx/241/4 to rewrite (3.3) as

t̂ = 241/4

2kνUin(z)ξ0R

∫ η

0
Γb(η

′) dη′. (3.7)

Numerical integration of Γb, expressed by (3.6), yields results that can be conveniently
approximated by the following (fitted) expression:

1
Γb0R

∫ η

0
Γb(η

′) dη′ ≈ 1.3
[

1 − exp
(

− η(x)
1.3R

)]
. (3.8)

We then use (2.32) to express Γb0 as a function of operating conditions, approximate ξ0(θ)

with ξ̃0 given by (2.45), and insert (3.8) into (3.7) to obtain

t̂(x, z) ≈ −1.44
Uh

u∗
R

ξ̃0
CT cos2 β sin β

[
1 − exp

(
−0.35

u∗
Uin(z)

x
R

)]
. (3.9)

Due to vorticity decay, t̂ for turbulent inflow cases increases at a slower rate than the one
for laminar inflow cases. For instance, according to (3.9), for a turbine with C′

T = 1.33
subject to an ABL with kν = 0.05, the streamwise position associated with |t̂| = 2 varies
between 17R and 61R for β = 30◦–10◦. As mentioned in § 2.5, for the same turbine with
β = 30◦–10◦ subject to a laminar flow, |t̂| = 2 at x = 12R − 29R. It is also worth noting
that the above definition of t̂, (3.9), is reduced to the one used for non-decaying vortex
sheets (i.e. t̂ = γb0t/ξ̃0) as u∗ tends to zero.

The effect of the ground on the wake deflection was not modelled in the uniform inflow
cases. To model the effect of the ground, we use an image technique to modify the wake
centre location yc, as shown in figure 7. Modelling the vortex sheet as a CVP, the image
CVP induces a lateral velocity in the opposite direction, termed as vg given by

vg = Γb

2π

[
1

z + zh − ξ0
− 1

z + zh + ξ0

]
= Γbξ0

π
[
(z + zh)2 − ξ2

0
] . (3.10)

Therefore, the lateral wake deflection caused by the ground is given by

yg(z) =
∫ t

0
vg(z, t′) dt′ =

ξ0

∫ t

0
Γb(t′) dt

π
[
(z + zh)2 − ξ2

0
] . (3.11)

Approximating Γb ≈ 2ξ0γb and using t̂ = ∫ t
0 γb(t′)/ξ0 dt′, we find that

ŷg = 2
π

t̂[
(z + zh)/ξ0

]2 − 1
, (3.12)
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Figure 7. Schematic of modelling the effect of ground using an image technique.

where ŷg = yg/ξ0. Substituting ξ0 with ξ̃0 in (3.12) for simplicity and subtracting this result
from (2.55) yields

ŷc = (π − 1)|t̂|3 + 2
√

3π2 t̂2 + 48(π − 1)2|t̂|
2π(π − 1)t̂2 + 4

√
3π2|t̂| + 96(π − 1)2

sgn(t̂) − 2
π

t̂

[(z + zh)/ξ̃0]2 − 1
. (3.13)

It is worth mentioning that for zh → ∞, the second term on the right-hand side of (3.13)
vanishes, and, thus, the equation is reduced to (2.55).

3.2. Analytical model for mean velocity distribution
The shape of the wake edge predicted earlier can now be used to model the spatial
distribution of the velocity deficit in the curled wake at each streamwise position. For
non-curled (i.e. non-yawed) wakes, a number of wake profiles have already been proposed
in the literature, including top hat (Katić, Højstrup & Jensen 1986; Frandsen et al.
2006), Gaussian (Bastankhah & Porté-Agel 2014; Bastankhah & Porté-Agel 2016), double
Gaussian (Schreiber, Balbaa & Bottasso 2020) and super-Gaussian (Shapiro et al. 2019;
Blondel & Cathelain 2020). Most of these conserve flux of momentum deficit only in
its linearised version valid far downstream; see discussion in Bastankhah & Porté-Agel
(2014). Here we demonstrate the use of the shape deformation for an analytical model in
the context of the Gaussian wake model (Bastankhah & Porté-Agel 2014; Bastankhah &
Porté-Agel 2016), but it could be implemented in other wake models as well.

The modelled streamwise mean velocity,

U(x) = Uin(z) − �U(x), (3.14)

is defined based on the incoming velocity field Uin(z) and the modelled velocity deficit in
the wake, �U(x). In the Gaussian model, the velocity deficit profile is modelled as

�U
Uh

= C(x) exp
[
−( y − yc)

2 + (z − zh)
2

2σ 2

]
, (3.15)
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Vortex sheet model of curled wakes from yawed wind turbines

where C(x) is the normalised maximum velocity deficit at each streamwise location and σ

is the characteristic wake width. In (3.15) the wake centre location is yc = ŷcξ0, where ŷc

is obtained from (3.13) and ξ0 is approximated with ξ̃0 given in (2.45). In prior versions of
the Gaussian wake model, it is assumed that the characteristic wake width depends only on
downstream distance. Moreover, it is assumed that it grows linearly downstream at a rate
k. The linear growth of the wake arises from the similarity solution when eddy viscosity is
assumed to scale with a constant velocity, friction velocity u∗ and the wake scale σ itself
(Shapiro et al. 2019), i.e.

σ(x) = kx + σ0, (3.16)

where k is the wake expansion rate and σ0 the initial wake size. We now propose to include
wake curling and deformation by making σ dependent also on the angle θ according to

σ(x, θ) = kx + 0.4ξ(θ, x), (3.17)

where ξ(x, θ) = ξ0(θ)ξ̂(θ, t̂), and ξ0(θ) is given by (2.44), and the dimensionless wake
shape ξ̂(θ, t̂) is given by either the analytical relation of (2.29) for |t̂| ≤ 2 or the empirical
relation (B1) for given values of polar angle θ and dimensionless time t̂. The polar angle
is determined at each position from tan θ = (z − zh)/( y − yc), and t̂ is given by (3.9). In
(3.17) the first term on the right-hand side of the equation expands the wake in all radial
directions due to turbulent mixing, while the second term deforms the wake cross-section
according to the vortex sheet solution derived earlier. According to (3.17), for an unyawed
turbine, the initial characteristic wake width is reduced to 0.4R

√
A∗, which is the same

as the one suggested by Bastankhah & Porté-Agel (2014). For the wake expansion rate,
we assume that k = αu∗/Uin(z) (Shapiro et al. 2019), where α is an empirical constant.
Alternatively, k can be estimated based on the turbulence intensity I of the incoming
boundary layer flow (i.e. k = α′I, where α′ is an empirical constant) as suggested in prior
studies (see Niayifar & Porté-Agel (2016), Carbajo Fuertes, Markfort & Porté-Agel (2018),
Zhan, Letizia & Iungo (2020), among others). At each height z, turbulence intensity I(z)

is defined as
√

u′2/Uin(z), where u′ is the turbulent fluctuation of streamwise velocity
and the overbar denotes time averaging. Note that by invoking the logarithmic law for the
fluctuating velocity variance in high-Reynolds-number turbulent boundary layers (Marusic
et al. 2013; Meneveau & Marusic 2013), one can show that u∗/Uin and I are related to each
other by I = (u∗/Uin)[B1 − A1 ln(z/δ)]1/2, where δ is the boundary layer thickness, and
A1 and B1 are constants.

The maximum velocity deficit C(x) in (3.15) is obtained by enforcing the conservation
of streamwise momentum deficit flux ρ

∫
�U(Uh − �U) dA ≈ T cos β. To simplify the

integration and avoid dependence on θ , we approximate σ 2(x, θ) with σ̃ 2(x) where the
latter is given by

σ̃ 2(x) = (kx + 0.4ξ̃0)(kx + 0.4ξ̃0 cos β). (3.18)

In this expression, ξ̃0 is given by (2.45) and k = αu∗/Uh is the wake expansion rate at
z = zh. This yields

C(x) = 1 −
√

1 − CT cos3 β

2σ̃ 2(x)/R2 . (3.19)

Note that in stating conservation of flux of streamwise momentum deficit, pressure and
turbulent and viscous shear stress effects are assumed to be negligible. This may be a
questionable assumption in the near wake region as well as far wake of turbines deep
inside a wind farm (Bastankhah et al. 2021).
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For the sake of completeness, a summary of the steps required to implement the
proposed model and predict wake velocity deficit distributions at a given downwind
location x = (x, y, z) is provided below.

(1) Compute the approximate form of the initial wake shape ξ̃0 (2.45).
(2) Determine the dimensionless time t̂ from (3.9).
(3) Find the wake centre location yc ≈ ŷcξ̃0, where ŷc is given by (3.13).
(4) Find the polar angle θ , which is measured from the positive y-axis toward the positive

z-axis such that tan θ = (z − zh)/( y − yc).
(5) Evaluate the initial wake shape ξ0(θ) (2.44).
(6) Calculate the wake shape function ξ(θ, x) = ξ0(θ)ξ̂(θ, t̂), where ξ̂(θ, t̂) can be

estimated either from the analytical solution (2.29) (if |t̂| < 2) or the empirical one
(B1), and χ is given by (2.42).

(7) Find the wake width σ(x, θ) based on (3.17).
(8) Evaluate the maximum velocity deficit C(x) from (3.19), where σ̃ 2(x) is given by

(3.18).
(9) Determine the wake velocity deficit �U according to (3.15), where σ obtained in

step (7) is used.

3.3. Comparison with LES
In the following, the streamwise mean velocity distribution based on the proposed model
is compared with the LES data for turbulent ABL inflow cases. Simulations of yawed wind
turbines represented as rotating actuator disks (ADM-R) are performed using C′

T = 1.33
and a local tip-speed ratio of λ′ = 10.67 at yaw angles of β = 15◦, 20◦, 25◦ and 30◦, where
the local tip-speed ratio is defined as λ′ = ΩR/Ud. In unyawed conditions the selection of
local thrust coefficient and tip-speed ratio corresponds to CT = 0.75 and λ = 8, which are
realistic of modern utility-scale turbines. The actuator disk with diameter D = 100 m and
a hub height of zh = 100 m is placed 500 m from the inlet of a domain with an effective
size of Lx = 3.75, Ly = 3 and Lz = 1 km. The domain is divided into Nx = 360, Ny = 288
and Nz = 432 grid points. The velocity field is averaged for a time T u∗/Lz ≈ 8, where
u∗ = 0.45 m s−1. A 0.49Lz shift is used to reduce streamwise streaks in the time-averaged
velocity field. The roughness height is z0 = 0.1 m.

Figures 8 show contour maps of streamwise velocity on representative planes across
the LES domain. It shows the streaks in the turbulent ABL at the turbine hub height and
the generated wake behind the yawed wind turbine, which is shown as a black circle. At
downstream locations, the effect of the curled yawed wind turbine wake on the cross-plane
velocity field is shown at downstream locations of x/R = 8, 24 and 40.

Figures 9 and 10 show the wake mean velocity distributions based on the LES results
and the analytical model for β = 15◦ and 25◦ at various downstream locations. Top panels
show the normalised velocity deficit �U/Uh and bottom panels show the normalised
streamwise velocity distribution.

As in past studies (Bastankhah & Porté-Agel 2016; Shapiro et al. 2018), the wake
recovery rate k in the analytical model is calculated by fitting a Gaussian profile to the
downstream wake profiles at z = zh. This gives the resulting wake expansion rate as
k = 0.6u∗/Uin. As seen in figures 9 and 10, the model captures the curling and deflection
of the wake as well as some variation in the wake deflection as a function of vertical
distance due to ground effects. The LES results display slightly less curling than the
model as well as more noticeable wake deflection towards the ground that is opposite
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ũ/
u ∗

Figure 8. Contour plots of instantaneous streamwise velocity including a wind turbine with turbulent
boundary layer inflow from LES. Turbine operating parameters are C′

T = 1.33 and yaw angle β = 25◦.
Contours are shown through the turbine centre at z = zh, at the back of the domain at y = Ly and x = Lx
and at cross-planes of x/R = 8, 24 and 40. The swept area of the rotor is denoted as a black circle. A zoomed
in flow field around the turbine (red box) is also shown and white arrows highlight the sense of rotation of the
induced CVP.

to the deflection of the bulk of the wake. Also, the analytical model does not predict small
vertical wake deflections observed in the LES data. According to the vortex sheet analysis
performed in the current study (see (2.49)), this vertical deflection is due to rotation effects
(i.e. non-zero values of rotation rate χ ). As mentioned in § 2.4, for simplicity, we did
not include the vertical wake deflection in the final version of the model. Despite these
small differences, figures 9 and 10 show that overall model predictions are in acceptable
agreement with the LES data.

Wake flow results are also used to compute the power of a downwind turbine based on
both the proposed analytical model and the LES data. In both cases, a virtual wind turbine
is placed in the flow field at different distances downstream of the yawed turbine. The idea
is that as yawing increases, the downstream turbine will overlap less and less with the wake
due both to the sideways displacement of the wake and to the curled crescent shaped wake
that creates lower velocity deficit at the centre of the hypothetical downstream turbine.

In order to evaluate the power generated by the downwind turbine, we require the
disk-averaged streamwise velocity defined according to

Ud = (1 − a)
1

πR2

∫∫
disk

U(xT , y, z) dz dy, (3.20)

where U(xT , y, z) is the mean velocity in the flow at the turbine location xT computed from
the model or from the LES and the integration covers the turbine disk area. For the latter
case, we evaluate the mean velocity by time averaging U(xT , y, z) = 〈ũ1(xT , y, z)〉. Since
the turbine is not included in the simulation, the turbine disk velocity that would occur
there includes the (1 − a) prefactor, where a is the turbine’s assumed induction factor.
The power is subsequently calculated as

P = 1
2ρπR2C′

TU3
d, (3.21)

and it is normalised by the power that an unyawed free-standing turbine would
generate under similar conditions, P0 = (1/2)ρπR2C′

T(1 − a)3U3
h (thus making the result

independent of assumed C′
T , etc.).

Figure 11 shows the normalised power of this hypothetical turbine as a function
of streamwise spacing for different yaw angles of the upwind turbine. The figure
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Figure 9. (a) Contour plots of normalised wake velocity deficit behind a wind turbine in turbulent inflow with
a thrust coefficient of C′

T = 1.33 and local tip-speed ratio λ′ = 10.67 at a yaw angle of β = 15◦. White circles
indicate the frontal area of wind turbines. (b) Contour plots of normalised streamwise velocity behind the same
turbine.

demonstrates good agreement between the analytical model and the LES results for a broad
range of streamwise spacings and yaw angles.

3.4. Comparison with experimental data
Model predictions are also compared with wind-tunnel experiments by Bastankhah &
Porté-Agel (2016). Flow measurements were performed to quantify the wake of a yawed
wind turbine with a diameter of 15 cm and hub height of 12.5 cm, and the turbine is
subject to a turbulent boundary layer, naturally developed over the smooth surface of
the wind-tunnel floor. Additional information on turbine properties (CT , λ, etc.) and
inflow conditions (Uh, I, etc.) may be found in Bastankhah & Porté-Agel (2016). The
wake recovery rate k for the analytical model is estimated based on k = 0.35I (Carbajo
Fuertes et al. 2018). Figure 12 shows contours of normalised velocity deficit in yz-planes
at different downwind locations and different yaw angles based on both experiments and
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Figure 10. Same as figure 9 but for a yaw angle of β = 25◦.
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Figure 11. (a) Sketch of a hypothetical turbine placed at various locations downstream of the yawed turbine in
the LES field. (b) Normalised power of the hypothetical turbine operating at C′

T = 1.33. Different yaw angles
in LES are β = 15◦ (◦, red), β = 20◦ (�, green), β = 25◦ (�, blue) and β = 30◦ ( , purple). The predictions
based on the analytical curled wake model are shown as solid lines.
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model predictions. Overall the figure shows that the proposed model is able to successfully
predict the complex curled shape of the wake and its lateral deflection. The opposite
wake deflection close to the ground is also well captured by the model. While the overall
trends and qualitative features of the velocity defect distribution of the curled wake are
reproduced by the analytical model, some differences between measurements and model
can still be discerned. The figure shows that the vertical extent of the lower half of the wake
is underestimated by the analytical model, which is mainly due to neglecting the wake of
the turbine tower in the analytical model. Tower wake effects are however expected to be
less significant for utility-scale wind turbines which tend to have less bulky towers (with
respect to the rotor diameter).

4. Summary and conclusions

A curled shape is a typical aerodynamic feature of wakes behind yawed turbines. In this
study we develop an analytical model to describe the wake shape and its downstream
evolution for both uniform ideal inflow and turbulent boundary layer background flow.
The predicted wake shape is then used in a wake model to describe analytically the mean
velocity deficit distribution behind a yawed wind turbine.

To model the curled shape of the wake, we represent the wake edge as a vortex sheet
shedding from the rotor disk circumference due to both yaw offset and rotation. A simple
relationship is developed to estimate the initial distribution of vorticity along this vortex
sheet as a function of turbine operating conditions such as thrust coefficient, yaw angle and
tip-speed ratio. The goal is to obtain the evolution of the locus of this vortex sheet with
time. The governing equations for the deformation of the vortex sheet are developed based
on the Biot–Savart law and the vorticity transport equation. After non-dimensionalising
the equations, they are solved using a power series expansion method. Subsequently,
assuming a given downstream convection velocity, we map the time evolution to a spatial
one in the streamwise direction. The developed solution is only valid for a limited range of
dimensionless times (|t̂| < 2) or equivalent distances. For larger values of |t̂|, an empirical
expression is also proposed, which complies with the derived analytical solution for
smaller times but is also realistic for larger times.

Apart from deforming to a curled shape, the vortex sheet is also deflected laterally
behind a yawed turbine. This deflection is modelled with an equation combining
analytically derived deflections using two approaches: considering an approximately
circular vortex sheet (valid for small times) and considering self-induced motion of a CVP
(valid for larger times). Moreover, close to the ground the wake is deflected in the opposite
direction. This ground effect is modelled using image flow that introduces an additional
deflection term to account for the velocity induced by the image CVP.

Wake shape predictions are first compared with numerical simulation data for a yawed
turbine placed in a uniform, non-turbulent inflow. Several cases with different values
of thrust coefficients, yaw angles and tip-speed ratios are considered. It is shown that
the analytical model predictions agree well with LES results at moderate times. Also in
agreement with the theory, we show that the numerical simulation results can be collapsed
into a common wake shape when the problem variables are normalised using the scaling
as suggested by the theoretical model.

The theory is then adapted to the case of turbulent ABL inflow for applications to real
wind turbine flows. It is known that, unlike the case of ideal flow, turbulent diffusion plays
a central role in weakening the streamwise vortices during their downstream evolution.
This phenomenon is modelled by non-dimensionalising the governing equations using a
time-varying reference vortex sheet strength. Finally, we modify the Gaussian wake model
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to incorporate the predicted shape ξ(θ, t̂) and lateral deflection yc of the curled wake.
The analytical curled wake model thus describes the full spatial distribution of mean
streamwise velocity downstream of a yawed turbine. To validate the model predictions
for the ABL case, wake velocity contours at different downstream positions are compared
with LES and wind-tunnel results at various yaw angles. Moreover, the power extracted
by a hypothetical wind turbine located at different downwind positions is computed and
compared with similar results from the LES-generated mean velocity distributions. A
good agreement of the model predictions with the numerical and experimental data is
observed, suggesting that the proposed model includes the most relevant fluid mechanical
effects governing the mean velocity distribution in wakes downstream of yawed wind
turbines. Also, the proposed analytical model should be useful for tasks such as wind farm
optimization and control, where numerical simulations tend to be too time consuming and
costly. While to our knowledge the developed analytical model is the first of its kind to
predict the curled shape of yawed turbine wakes, more research is still needed to shed light
on the impact of ABL characteristics such as wind veer on the wake of a yawed turbine.
Of special interest is to study the combined effect of yaw offset and wind veer on the wake
cross-section in future works. Moreover, the effect of ground and rotation on the wake
cross-section needs to be thoroughly studied in future works for turbines with different
geometries and operating conditions.
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Appendix A. Evaluation of p.v. of required integrals

This appendix evaluates the integrals (2.24) and (2.25). Here, we only provide the proof
for (2.24), as (2.25) can be solved similarly. First, we define I as

I :=
∫ 2π

0

sin(nx)
tan

[
(x − b) /2

]dx. (A1)

By defining the complex parameters i := √−1 and a := e−i(b/2) and the complex
variable z := eix, and considering that dx = dz/(iz), sin(nx) = (zn − z−n)/(2i) and
tan[(x − b)/2] = −i(a2z − 1)/(a2z + 1), the integral I can be written as

I = 1
2i

∫
C1

F(z) dz, (A2)
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where C1 is the integration path, which is the unit circle, |z| = 1, on the complex plane,
and F(z) is defined as

F(z) := (z2n − 1)(a2z + 1)

a2zn+1
(

z − 1
a2

) . (A3)

In order to evaluate the integral in (A2), we need to calculate the residues of F(z) at its
singularities. Here F(z) has two singularities: one at z = 0 (pole of order n + 1) and the
other at z = a−2 (pole of order one). To calculate the residue of F(z) at z = 0, we define a
function Φ(z) such that (see Ablowitz & Fokas (2003), chapter 4)

F(z) = Φ(z)
zn+1 . (A4)

Therefore, the residue at z = 0 is

Res(F(z); 0) =
[

1
n!

dn

dzn Φ(z)
]

z=0
, (A5)

or

Res(F(z); 0) = 1
n!

[ n∑
k=0

(
n
k

)
dn−k

dzn−k (a2z2n+1 + z2n − a2z − 1)
dk

dzk
1

a2z − 1

]
z=0

. (A6)

It can readily be shown that the first derivative term is non-zero only for k = n − 1 and
k = n. Also expanding the second derivative, and after some manipulation, we obtain

Res(F(z); 0) = 2a2n = 2 e−ibn. (A7)

Now we calculate the residue of F(z) at z = a−2. To do this, we define a function Φ ′(z)
such that

F(z) = Φ ′(z)(
z − 1

a2

) . (A8)

Therefore, the residue at z = a−2 is

Res(F(z); a−2) = Φ ′(z)(z = a−2) = 2(eibn − e−ibn). (A9)

Since the second singularity is located on the integration path, we cannot use the Cauchy
residue theorem directly. However, this integral can be regarded as a Cauchy type integral,
and we can use the Plemelj formulae to evaluate its Cauchy p.v.. To do this, we assume
I+ is the limiting value of the integral I when the second singularity of F(z) (i.e. z =
a−2 = eib) approaches the integration path (|z| = 1) from inside the unit circle, and I−
is the limiting value of the integral I when the second singularity of F(z) approaches the
integration path from outside the unit circle (see Ablowitz & Fokas (2003), chapter 7).
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Thus,

I+ = (2πi)
(

1
2i

)
[Res(F(z); 0) + Res(F(z); a−2)] = 2π eibn, (A10)

and

I− = (2πi)
(

1
2i

)
[Res(F(z), 0)] = 2π e−ibn. (A11)

According to the Plemelj formulae, we have the following for the p.v. of integral I,

p.v.(I) = 1
2 (I+ + I−) = 1

2(2π eibn + 2π e−ibn) = 2π cos (bn), (A12)

and (2.24) is proved.

Appendix B. Empirical vortex sheet shape model for large times

The analytical solution for the deformation of the vortex sheet derived earlier is valid only
for relatively short times. In fact, ξ(θ, t̂) can become negative (the vortex sheet crosses
itself and becomes non-simple and non-analytic) at dimensionless times with magnitude
larger than a critical time denoted by t̂c. Therefore, the analytical solution should be only
used for |t̂| < t̂c. By setting ξ̂ = 0 in (2.29), one can find that t̂c is in the range of 2–2.5.
Thus, a limit of |t̂| ≤ 2 is considered in this paper for the analytical solution to be used.
Note that the downwind location where |t̂| = 2 is reached depends on inflow and turbine
operating conditions as discussed in §§ 2.5 and 3.

In the following, we develop an empirical relationship for ξ̂(θ, t̂). Using the same
harmonic terms as those in the analytical solution (2.29), we assume the empirical model
is given by

ξ̂(θ, t̂) = 1 − α[c1(t̂) cos 2θ + (c2(t̂)χ sin 2θ + c3(t̂) cos 3θ)

+ (c4(t̂)χ2 cos 2θ + c5(t̂)χ sin 3θ + c6(t̂) cos 2θ + c7(t̂) cos 4θ)], (B1)

where α is a constant, and c1(t̂), . . . , c7(t̂) are time-dependant coefficients that need to
be determined. Equation (B1) must provide predictions similar to the analytical solution
(2.29) at small values of |t̂|, but it must provide desirable results for |t̂| beyond t̂c too. To
achieve this goal, we use a hyperbolic tangent function to express ci(t̂),

ci(t̂) = ai tanh
t̂ni

bi
, (B2)

where i = 1, . . . , 7 and ai, bi and ni are constants. As t̂ → ∞, (B1) is reduced to

lim
t̂→∞

ξ̂(θ, t̂) = 1 − α[a1 cos 2θ + (a2χ sin 2θ + a3 cos 3θ)

+ (a4χ
2 cos 2θ + a5χ sin 3θ + a6 cos 2θ + a7 cos 4θ)]. (B3)

In (B3) the overall curled shape of the wake is achieved by a suitable selection of
a1, . . . , a7, while the extent of curling is controlled by α. The constant α is introduced
to ensure that the maximum possible curling is obtained as t̂ → ∞. To estimate values of
a1, . . . , a7, one can use the analytical solution at an arbitrary dimensionless time which
is sufficiently large but still smaller than t̂c. By doing so, we construct the curled shape
of the wake for t̂ → ∞ from its analytical shape at a finite value of t̂. The values of ai
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Term 1 2 3 4 5 6 7

ai
1
2

−1
3

−1
4

−1
6

5
16

− 5
48

7
48

bi 4α 8α 8α 16α 16α 16α 16α

ni 2 3 3 4 4 4 4

Table 1. Coefficients of the empirical vortex sheet shape model (B1), where α = 1.263 cos(0.33χ) and
ci = ai tanh(t̂ni/bi).

(i = 1, . . . , 7) are obtained based on the analytical solution (2.29) at t̂ = 2 and are written
in table 1, although other values of t̂ could be used.

In order to obtain maximum curling as t̂ → ∞, ξ̂ must go to zero at θ = θ0, where 0 ≤
θ0 ≤ 2π, while ξ̂ should be still non-negative for all polar angles. Note that for χ = 0, θ0 is
a multiple of π, but it might have a different value if χ /= 0 due to the wake rotation. Based
on the values of ai written in table 1, one can show that ξ̂ given in (B3) is always equal
or greater than 1 − 0.792α sec(0.33χ). Therefore, α must be equal to 1.263 cos(0.33χ) to
guarantee that (i) ξ̂ never becomes negative, and (ii) maximum possible curling occurs as
t̂ → ∞.

The asymptotic behaviour of (B1) at t̂ → ∞ was used to find values of ai and α. Next,
we look into the asymptotic behaviour of (B1) at t̂ → 0 to find bi and ni. The function
ai tanh t̂ni/bi asymptotes to ait̂ni/bi as t̂ → 0. Therefore, we obtain

lim
t̂→0

ξ̂(θ, t̂) = 1 − α

[
a1 t̂n1

b1
cos 2θ +

(
a2 t̂n2

b2
χ sin 2θ + a3 t̂n3

b3
cos 3θ

)
+
(

a4 t̂n4

b4
χ2 cos 2θ + a5 t̂n5

b5
χ sin 3θ + a6 t̂n6

b6
cos 2θ + a7 t̂n7

b7
cos 4θ

)]
.

(B4)

Equation (B4) should match the analytical solution (2.29). Therefore, values of ni and bi
can be readily determined, and they are written in table 1. Figure 13 shows predictions of
the wake shape based on both the analytical and empirical solutions for different values
of dimensionless time t̂ and rotation rate χ . As expected, the empirical relation provides
similar results to those of the analytical solution at small values of t̂. Moreover, unlike the
analytical solution, it provides reasonable predictions for large values of t̂ (i.e. |t̂| > 2).

Appendix C. Large-eddy simulation code

The numerical code used in this study is the pseudo-spectral LES code LESGO. It solves
the filtered Navier–Stokes equations in rotational form

∂ ũi

∂xi
= 0, (C1)

∂ ũi

∂t
+ ũj

(
∂ ũi

∂xj
− ∂ ũj

∂xi

)
= −∂τij

∂xj
− ∂ p̃∗

∂xi
− 1

ρ

∂p∞
∂x

δi1 + fi, (C2)

where ũi is the filtered velocity field, τij is the trace-free part of the subgrid stress tensor,
p̃∗ is the modified pressure, ∂xp∞ is the driving streamwise pressure gradient and fi are the
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Figure 13. The curled shape of the wake for different values of dimensionless time t̂ and rotation rate χ . The
analytical solution (2.29) is shown by the red colour (solid curves for t̂ ≤ 2 and dotted curves for t̂ > 2), and
the proposed empirical relation (B1) is shown by black dashed lines.

turbine forces. The trace-free part of the subgrid stress tensor is modelled using an eddy
viscosity approach

τij = −2νT S̃ij, (C3)

where S̃ij = 1
2 (∂jũi + ∂iũj) is the filtered strain rate tensor. The LESGO code simulates

Cartesian domains using a pseudo-spectral numerical scheme that mixes spectral
derivatives in the streamwise direction x and spanwise direction y with second-order
finite-differencing in the vertical direction z. Time integration uses the second-order
Adams–Bashforth method.

We consider wind turbines under both uniform laminar inflow (Shapiro et al. 2018) and
turbulent boundary layer inflows (Shapiro et al. 2020). In the uniform inflow simulations,
the Smagorinsky model is used for the eddy viscosity

νT = C2
s Δ

2|S|, |S|2 = 2SijSij, (C4a,b)

where Cs = 0.16 is the Smagorinsky coefficient. This choice has a negligible effect on
the results as the eddy diffusivity is confined to regions of the flow with strong velocity
gradients. The inflow conditions are enforced via a fringe region at the end of the domain.
This fringe region smoothly transitions to a prescribed inflow velocity Ui(0, y, z) = Uinδi1
(Stevens et al. 2014). At the top and bottom of the domain, the stress-free boundary
conditions for streamwise u and spanwise v velocity components are applied and the
no-penetration condition is applied for the vertical component w.

For the turbulent boundary layer simulations, the Smagorinsky coefficient Cs is
modelled using the Lagrangian-averaged scale dependent model (Bou-Zeid, Meneveau
& Parlange 2005). Turbulent inflow conditions are applied using a fringe region forcing
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where the inflow condition is sampled from a concurrently running simulation (Stevens
et al. 2014) with shifted periodic boundary conditions (Munters, Meneveau & Meyers
2016). At the ground, the stress with a roughness height of z0 is modelled using the
equilibrium wall model. The total wall stress is given by

τw = −
[

κV
ln(�z/2z0)

]2

, (C5)

where �z is the vertical grid spacing, κ is the von-Kármán constant and V is the velocity
magnitude obtained from V2 = ũ(�z/2)2 + ṽ(�z/2)2. The wall stress is then apportioned
to each component as

τi3|wall = τw
ũi

V
. (C6)

The LESGO code implements the ADM-R using the local formulation for the thrust and
angular forces. The thrust force in this formulation is

T = 1
2ρπR2C′

TU2
d, (C7)

where C′
T is the local thrust coefficient and Ud is the disk-averaged velocity. The total

thrust force is distributed across the swept area of the disk using the filtered indicator
function R(x),

f (x) = TR(x)n (C8)

in the unit normal direction to the disk n = cos βi + sin βj. The filtered indicator function

R(x) =
∫

G(x − x′)I(x′) d3x′ (C9)

is found by convolving an indicator function I(x) for the geometric shape of the disk
with finite thickness s with a Gaussian filtering kernel G(x) with a characteristic width
σR = 1.5h/

√
12 that is proportional to the mean grid size h =

√
�x2 + �y2 + �z2.

To define the angular force of the rotation actuator disk in a local formulation, we
consider the ADM for unyawed wind turbines. The disk-averaged velocity Ud = Uin(1 −
a), streamwise velocity deficit ux = 2Uina and angular change in velocity uθ = 2a′Ωr
are defined based on the streamwise a and tangential a′ induction factors and rotation
rate of the disk Ω . Considering annular rings of the swept area of the rotor, the annular
thrust is the product of the annular flow rate and the change in momentum dT = Uina(1 −
a)πr dr ρ2Uin. The annular torque is similarly the product of the annular flow rate and the
change in angular momentum dQ = Uin(1 − a)πr dr ρ2a′Ωr2.

Since the annular power is equal to the products dP = dT Ud and dP = dQ Ω , the
equality

1
2
ρU3

in4a(1 − a)2πr dr = 1
2
ρU3

in4a′(1 − a)

(
Ωr
Uin

)2

πr dr (C10)

can be solved for the tangential induction factor, so we obtain

a′ = a(1 − a)

(
Uin

Ωr

)2

. (C11)

The torque can be written in local and standard forms

dQ = 1
2
ρU2

inR4a(1 − a)2 Uin

ΩR
πr dr = 1

2
ρU2

inRCQπr dr = 1
2
ρU2

dRC′
Qπr dr. (C12)
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Defining the tip-speed ratio λ = ΩR/Uin and local tip-speed ratio as λ′ = ΩR/Ud the
torque coefficient is

C′
Q = C′

P
λ′

. (C13)

For ideal actuator disks, C′
P = C′

T . The tangential force is then found from rdfθ = dQ,

dfθ = 1
2
ρU2

in
CP

λ

R
r
πr dr = 1

2
ρU2

d
C′

P
λ′

R
r
πr dr. (C14)

The tangential force applied by the rotating rotor in LESGO is written as

f θ (x) = 1
2
ρπR2 C′

T
λ′

U2
d

R
r
R(x)θ̂ , (C15)

where θ̂ is the tangential unit vector. In the case of no wake rotation, the tip-speed ratio is
infinite and the angular force vanishes.

REFERENCES

ABLOWITZ, M.J. & FOKAS, A.S. 2003 Complex Variables: Introduction and Applications. Cambridge
University Press.

ANDERSON, J.D. 2011 Fundamentals of Aerodynamics. McGraw-Hill.
BARTL, J., MÜHLE, F., SCHOTTLER, J., SÆTRAN, L., PEINKE, J., ADARAMOLA, M. & HÖLLING, M.

2018 Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear. Wind
Energy Sci. 3, 329–343.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2014 A new analytical model for wind-turbine wakes. Renew. Energy
70, 116–123.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2015 A wind-tunnel investigation of wind-turbine wakes in yawed
conditions. J. Phys.: Conf. Ser. 625, 012014.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2016 Experimental and theoretical study of wind turbine wakes in
yawed conditions. J. Fluid Mech. 806, 506–541.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2019 Wind farm power optimization via yaw angle control: a wind
tunnel study. J. Renew. Sustain. Energy 11 (2), 023301.

BASTANKHAH, M., WELCH, B.L., MARTÍNEZ-TOSSAS, L.A., KING, J. & FLEMING, P. 2021 Analytical
solution for the cumulative wake of wind turbines in wind farms. J. Fluid Mech. 911, A53.

BLONDEL, F. & CATHELAIN, M. 2020 An alternative form of the super-gaussian wind turbine wake model.
Wind Energy Sci. 5, 1225–1236.

BLONDEL, F., CATHELAIN, M., JOULIN, P.-A. & BOZONNET, P. 2020 An adaptation of the super-gaussian
wake model for yawed wind turbines. J. Phys.: Conf. Ser. 1618, 062031.

BOSSUYT, J., SCOTT, R., ALI, N. & CAL, R.B. 2021 Quantification of wake shape modulation and deflection
for tilt and yaw misaligned wind turbines. J. Fluid Mech. 917, A3.

BOU-ZEID, E., MENEVEAU, C. & PARLANGE, M. 2005 A scale-dependent Lagrangian dynamic model for
large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.

BRANLARD, E. & GAUNAA, M. 2016 Cylindrical vortex wake model: skewed cylinder, application to yawed
or tilted rotors. Wind Energy 19 (2), 345–358.

BURTON, T., SHARPE, D., JENKINS, N. & BOSSANYI, E. 1995 Wind Energy Handbook, 1st edn. Wiley.
CALAF, M., MENEVEAU, C. & MEYERS, J. 2010 Large eddy simulation study of fully developed wind-turbine

array boundary layers. Phys. Fluids 22 (1), 015110.
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