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Abstract
The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is estab-
lished for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest
descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through 𝜕-derivatives. To extend
the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE
techniques.
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1. Introduction

In this paper, we calculate the long-time asymptotics of solutions to the defocussing modified KdV
equation (MKdV):

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢2𝑢𝑥 = 0 (𝑥, 𝑡) ∈ (R,R+). (1.1)

There is a vast body of literature regarding the MKdV equation, in particular with the local and global
well-posedness of the Cauchy problem. For a summary of known results, we refer the reader to Linares-
Ponce [35]. Without trying to be exhaustive, we mention the works by Kato [28], Kenig-Ponce-Vega
[29], Colliander-Keel-Staffilani-Takaoka-Tao [6], Guo [20] and Kishimoto [32]. In particular, we know
that the MKdV for both the focussing and defocussing cases on the line is locally well-posed (compare
Kenig-Ponce-Vega [29]) and globally well-posed, (compare Colliander-Keel-Staffilani-Takaoka-Tao [6],
Guo [20] and Kishimoto [32]), in 𝐻𝑠 (R) for 𝑠 ≥ 1

4 . These results are complemented by several ill-
posedness results (compare Christ-Colliander-Tao [5] and references therein), which establish that
𝐻

1
4 (R) is optimal if one requires that solutions depend uniformly continuously on the initial data. Since

the completion of the first version of the current paper, there has been significant progress regarding the
global well-posedness of integrable PDEs on the real line, in particular for the KdV, mKdV and NLS
equations; see Killip-Visan [34], Harrop-Griffiths-Killip-Visan [22]. In [22], for the mKdV equation,
global well-posedness is obtained in 𝐻𝜏 (R) for 𝜏 > − 1

2 . It is also known that instantaneous norm
inflation happens in 𝐻𝜏 (R) for 𝜏 = − 1

2 . We again refer to [22] for details.
Besides well-posedness, another fundamental question for dispersive PDEs is long-time asymp-

totics. Using the complete integrability of the MKdV equation, Deift and Zhou, in their seminal work
[11], developed the celebrated nonlinear steepest descent method for oscillatory Riemann-Hilbert prob-
lems. In the same paper, the authors give explicit asymptotic formulae and error terms for Schwartz
class initial data. Since then, analysis of the long-time behaviour of integrable systems has been
extensively treated by many authors. The nonlinear steepest descent method provides a systematic
way to reduce the original RHP to a canonical model RHP whose solution is calculated in terms of
special functions. This reduction is done through a sequence of transformations whose effects do not
change the long-time behaviour of the recovered solution at leading order. In this way, one obtains
the asymptotic behaviour of the solution in terms of the spectral data (and thus in terms of the initial
conditions).

A natural question to ask is whether it is possible to study the asymptotic behaviour of the MKdV
equation without relying on the completely integrable structure. A proof of global existence and a
(partial) derivation of the asymptotic behaviour for small localised solutions were later given by Hayashi
and Naumkin in [23, 24] using the method of factorisation of operators. Recently, Germain-Pusateri-
Rousset [17] used the idea of space-time resonance to study the long-time asymptotics of small data
and the soliton stability problem. Also, a precise derivation of asymptotics and a proof of asymptotic
completeness were given by Harrop-Griffiths [21] using wave packets analysis. Overall, although PDE
techniques do not rely on complete integrability, to our best knowledge, certain smallness assumptions
on the initial data are required.

In the present paper, we use the inverse scattering transform/nonlinear steepest descent to study the
long-time asymptotics of the solution to the MKdV equation without a smallness assumption on the
initial data. We give a full description of the long-time behaviour of solutions in the weighted Sobolev
space 𝐻2,1, which is necessary to construct the solution via inverse scattering and extend these results
to other Sobolev spaces, including 𝐻1,1, 𝐻 1

4 ,1 and 𝐿2,1, via a global approximation argument.
In Deift-Zhou [11], a key step in the nonlinear steepest descent method consists of deforming the

contour associated to the RHP in such a way that the phase function with oscillatory dependence on
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parameters becomes exponential decay. In general, the entries of the jump matrix are not analytic, so
direct analytic extension off the real axis is not possible. Instead, they must be approximated by rational
functions, and this results in some error terms in the recovered solution. Therefore, in the context of
nonlinear steepest descent, most results are carried out under the assumption that the initial data belong
to the Schwartz space.

In [45], Xin Zhou developed a rigorous analysis of the direct and inverse scattering transform of the
AKNS system for a class of initial conditions 𝑢0 (𝑥) = 𝑢(𝑥, 𝑡 = 0) belonging to the space 𝐻𝑖, 𝑗 (R). Here,
𝐻𝑖, 𝑗 (R) denotes the completion of 𝐶∞

0 (R) in the norm

‖𝑢‖𝐻 𝑖, 𝑗 (R) =
(��(1 + |𝑥 | 𝑗 )𝑢

��2
2 +

��𝑢 (𝑖)��2
2

)1/2
. (1.2)

Recently, much effort has been devoted to relaxing the regularities of the initial data. In particular, among
the most celebrated results concerning nonlinear Schrödinger equations, we point out the work of Deift-
Zhou [14], where they provide the asymptotics for the NLS in the weighted space 𝐿2,1. This topology
is more or less optimal from the views of PDE and inverse scattering transformations. The global 𝐿2

existence of the cubic NLS can be carried out by the 𝐿4
𝑡 𝐿

∞
𝑥 Strichartz estimate and conservation of the

𝐿2 norm. But in order to obtain the precise asymptotics, one needs to “pay the price of weights”: that
is, work with the weighted space 𝐿2,1.

Dieng and McLaughlin, in [15] (see also an extended version, [16]), developed a variant of the
Deift-Zhou method. In their approach, rational approximation of the reflection coefficient is replaced
by some nonanalytic extension of the jump matrices off the real axis, which leads to a 𝜕-problem to
be solved in some regions of the complex plane. The new 𝜕-problem can be reduced to an integral
equation and is solvable through Neumann series. These ideas were originally implemented by Miller
and McLaughlin [37] to study the asymptotics of orthogonal polynomials. This method has shown its
robustness in its application to other integrable models. Notably, for focussing NLS and derivative NLS,
they were successfully applied to address the soliton resolution in [4] and [26], respectively. In this
paper, we incorporate this approach into the framework of [11] to calculate the long-time behaviour of
the defocussing MKdV equation in weighted Sobolev spaces. The soliton resolution of the focussing
MKdV equation is addressed in a subsequent article [7].

1.1. Direct and inverse scattering formalism

To describe our approach, we recall that equation (1.1) generates an iso-spectral flow for the problem

𝑑

𝑑𝑥
Ψ = −𝑖𝑧𝜎3Ψ +𝑈 (𝑥)Ψ, (1.3)

where

𝜎3 =

(
1 0
0 −1

)
, 𝑈 (𝑥) =

(
0 𝑖𝑢(𝑥)
𝑖𝑢(𝑥) 0

)
.

This is a standard AKNS system. If 𝑢 ∈ 𝐿1 (R), equation (1.3) admits bounded solutions for 𝑧 ∈ R.
There exist unique solutions Ψ± of equation (1.3) obeying the following space asymptotic conditions:

lim
𝑥→±∞

Ψ±(𝑥, 𝑧)𝑒−𝑖𝑥𝑧𝜎3 =

(
1 0
0 1

)
;

and there is a matrix 𝑇 (𝑧), the transition matrix, with Ψ+(𝑥, 𝑧) = Ψ−(𝑥, 𝑧)𝑇 (𝑧). The matrix 𝑇 (𝑧) takes
the form

𝑇 (𝑧) =
(
𝑎(𝑧) �̆�(𝑧)
𝑏(𝑧) �̆�(𝑧)

)
, (1.4)
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and the determinant relation gives

𝑎(𝑧)�̆�(𝑧) − 𝑏(𝑧) �̆�(𝑧) = 1.

Combining this with the symmetry relations

�̆�(𝑧) = 𝑎(𝑧), �̆�(𝑧) = 𝑏(𝑧). (1.5)

we arrive at

|𝑎(𝑧) |2 − |𝑏(𝑧) |2 = 1

and conclude that 𝑎(𝑧) is zero-free.
By the standard inverse scattering theory, we formulate the reflection coefficient:

𝑟 (𝑧) = �̆�(𝑧)/𝑎(𝑧), 𝑧 ∈ R. (1.6)

The functions 𝑟 (𝑧) is called the scattering data for the initial data 𝑢0 satisfying the following symmetry
relation:

𝑟 (𝑧) = −𝑟 (−𝑧). (1.7)

We also have the following identity

𝑎(𝑧)�̆�(𝑧) = (1 − |𝑟 (𝑧) |2)−1 𝑧 ∈ R.

We have the following proposition from [14]:

Proposition 1.1. For 𝑘, 𝑗 integers with 𝑘 ≥ 0, 𝑗 ≥ 1, the direct scattering map

R : 𝑢0(𝑥) ↦→ 𝑟 (𝑧)

maps 𝐻𝑘, 𝑗 (R) onto 𝐻 𝑗 ,𝑘1 = 𝐻 𝑗 ,𝑘 (R) ∩ {𝑟 : ‖𝑟 ‖𝐿∞ < 1}, where 𝐻 𝑗 ,𝑘 norm is defined in equation (1.2)
and map R is Lipschitz continuous.

Since we are dealing with the defocussing mKdV, only the reflection coefficient r is needed for the
reconstruction of the solution. The long-time behaviour of the solution to the mKdV equation is obtained
through a sequence of transformations of the following RHP:

Problem 1.2. Given 𝑟 ∈ 𝐻1,2 (R) for 𝑧 ∈ R, find a 2× 2 matrix-valued function 𝑚(𝑧; 𝑥, 𝑡) on C \R with
the following properties:

(1) 𝑚(𝑧; 𝑥, 𝑡) → 𝐼 as |𝑧 | → ∞,
(2) 𝑚(𝑧; , 𝑥, 𝑡) is analytic for 𝑧 ∈ C \ R with continuous boundary values

𝑚±(𝑧; 𝑥, 𝑡) = lim
𝜀↓0
𝑚(𝑧 ± 𝑖𝜀; 𝑥, 𝑡),

(3) The jump relation 𝑚+(𝑧; 𝑥, 𝑡) = 𝑚−(𝑧; 𝑥, 𝑡)𝑒−𝑖 𝜃 ad 𝜎3𝑣(𝑧) holds, where

𝑒−𝑖 𝜃 ad 𝜎3𝑣(𝑧) = ��	
1 − |𝑟 (𝑧) |2 −𝑟 (𝑧)𝑒−2𝑖 𝜃

𝑟 (𝑧)𝑒2𝑖 𝜃 1


��, (1.8)

and the real phase function 𝜃 is given by

𝜃 (𝑧; 𝑥, 𝑡) = 4𝑡𝑧3 + 𝑥𝑧, (1.9)
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where

±𝑧0 = ±
√

|𝑥 |
12𝑡

(1.10)

are the stationary points whenever 𝑥 < 0.
Note that the jump matrix v admits the following factorisation on R:

𝑒−𝑖 𝜃 ad 𝜎3𝑣(𝑧) =
(

1 −𝑟𝑒−2𝑖 𝜃

0 1

) (
1 0
𝑟𝑒2𝑖 𝜃 1

)
= (1 − 𝑤−

𝜃 )
−1(1 + 𝑤+

𝜃 ).

We define

𝜇 = 𝑚+(𝐼 + 𝑤+
𝜃 )

−1 = 𝑚−(𝐼 − 𝑤−
𝜃 )

−1.

Then it is well known that the solvability of the RHP above is equivalent to the solvability of the
following Beals-Coifman integral equation:

𝜇(𝑧; 𝑥, 𝑡) = 𝐼 + 𝐶𝑤𝜃 𝜇(𝑧; 𝑥, 𝑡) (1.11)

= 𝐼 + 𝐶+𝜇𝑤−
𝜃 + 𝐶

−𝜇𝑤+
𝜃 (1.12)

Here 𝐶± is the Cauchy projection

(𝐶± 𝑓 ) (𝑧) = lim
𝑧→Σ±

1
2𝜋𝑖

∫
Σ

𝑓 (𝑠)
𝑠 − 𝑧 𝑑𝑠, (1.13)

and +(−) denotes taking the limit from the positive (negative) side of the oriented contour. From the
solution of Problem 1.2, we recover

𝑢(𝑥, 𝑡) = lim
𝑧→∞

−2𝑧𝑚12 (𝑥, 𝑡, 𝑧) (1.14)

=

[
−𝑖
𝜋

∫
R

𝜇(𝑤−
𝜃 + 𝑤

+
𝜃 )

]
12
, (1.15)

where the limit is taken in C \ R along any direction not tangent to R.

1.2. Main results

The central results of this paper are the following theorems that give the long-time behaviour of the
solution 𝑢(𝑥, 𝑡) of equation (1.1) in different regions in the (𝑥, 𝑡) plane, respectively.

For 𝑀 > 1 and 𝑧0 given by equation (1.10) and 𝜏 a parameter given by equation (1.17), we define
the regions as follows:

◦ Region I: 𝑥 < 0, 𝑀−1 < 𝑧0 =
√

|𝑥 |
12𝑡 < 𝑀, 𝜏 =

(
|𝑥 |

12𝑡1/3

)3/2

 1;

◦ Region II: 𝑥 < 0, 𝑀−1 ≤ 𝜏 =
(

|𝑥 |
12𝑡1/3

)3/2
;

◦ Region III: 𝜏 =
(

|𝑥 |
12𝑡1/3

)3/2
≤ 𝑀;

◦ Region IV: 𝑥 > 0, 𝑧0 =
√

|𝑥 |
12𝑡 ≤ 𝑀, 𝜏 =

(
|𝑥 |

12𝑡1/3

)3/2
≥ 𝑀−1;

◦ Region V: 𝑥 > 0, 𝑧0 =
√

|𝑥 |
12𝑡 > 𝑀

−1, 𝜏 =
(

|𝑥 |
12𝑡1/3

)3/2

 1.
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Theorem 1.3. Given initial data 𝑢0 ∈ 𝐻2,1 (R), let u be the solution to the MKdV equation

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢2𝑢𝑥 = 0 (𝑥, 𝑡) ∈ (R,R+) (1.16)

given by the reconstruction formula in equation (1.14). Let 𝑧0 be given by equation (1.10), and define

𝜏 = 𝑧30𝑡 =

(
|𝑥 |

12𝑡1/3

)3/2
(1.17)

and

𝜅 = − 1
2𝜋

log(1 − |𝑟 (𝑧0) |2), (1.18)

where r is defined in equation (1.6). Then we have the following asymptotics:

(i) In Region I,

𝑢(𝑥, 𝑡) =
(
𝜅

3𝑡𝑧0

)1/2
cos

(
16𝑡𝑧30 − 𝜅 log(192𝑡𝑧30) + 𝜙(𝑧0)

)
+O

(
(𝑧0𝑡)−

3
4

)
(1.19)

=

(
𝜅

3𝑡𝑧0

)1/2
cos

(
16𝑡𝑧30 − 𝜅 log(192𝑡𝑧30) + 𝜙(𝑧0)

)
+O

(
𝑡−

1
2

(
|𝑥 |
𝑡

1
3

)− 3
8
)
,

where

𝜙(𝑧0) = arg Γ(𝑖𝜅) − 𝜋
4
− arg 𝑟 (𝑧0) +

1
𝜋

∫ 𝑧0

−𝑧0

log
(

1 − |𝑟 (𝜁) |2

1 − |𝑟 (𝑧0) |2

)
𝑑𝜁

𝜁 − 𝑧0
.

(ii) In Region II,

𝑢(𝑥, 𝑡) = 1
(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
𝑡−

1
2

(
|𝑥 |
𝑡

1
3

)− 3
8
)
. (1.20)

(iii) In Region III,

𝑢(𝑥, 𝑡) = 1
(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
𝑡−

1
2

)
. (1.21)

(iv) In Region IV,

𝑢(𝑥, 𝑡) = 1
(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
(𝑡𝜏)−

1
2

)
(1.22)

=
1

(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
𝑡−

1
2

(
|𝑥 |
𝑡

1
3

)− 3
4
)
.

(v) In Region V,

𝑢(𝑥, 𝑡) = O
(
𝑡−1

)
. (1.23)

In the above asymptotics for Regions II, III, IV, P is a solution of the Painlevé II equation

𝑃′′(𝑠) − 𝑠𝑃(𝑠) − 2𝑃3 (𝑠) = 0
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I

II

III

0 IV
𝑥-axis

V

−𝑥/𝑡 = O (1)

|𝑥/𝑡1/3 | � 1

𝑥/𝑡 = O (1)

Figure 1.1. Five regions.

determined by 𝑟 (0). Note that given 𝑟 (𝑧) ∈ 𝐻1(R), r is defined pointwise and 𝑟 (0) makes sense. Also note
that in all the asymptotics above, the implicit constants in the remainder terms depend only on ‖𝑟 ‖𝐻 1 (R) .
It is possible to combine Region II, Region III and Region IV1 to conclude that in these regions,�����𝑢(𝑥, 𝑡) − 1

(3𝑡) 1
3
𝑃

(
𝑥

(3𝑡) 1
3

)����� � 𝑡− 1
2

(
1 +

(
|𝑥 |
𝑡

1
3

)− 3
8
)
.

We give several remarks on the statements above.
Remark 1.4. First, we have the following comments on the various regions above:
(1) The three main regions of interest are Regions I, III and V. In the case of focussing mKdV, they

are called the oscillatory region, self-similar region and soliton region, respectively. The remaining
two regions, Region II and Region IV, can be regarded as transitions. They are treated separately
because the asymptotics are calculated differently.

(2) Throughout the paper, 𝑧0 is positive. The calculations for Region I involve the large parameter 𝜏
and 𝑧0 is bounded below. In Regions II and III, 𝑧0 can decay to 0 as 𝑡 → ∞ while 𝜏 is bounded
above. The calculations instead depend on scaling out 𝑧0 and 𝑡−1/3, respectively. Region V is the
fast-decaying region.

(3) To match the asymptotic formulas in the overlaps of the regions, we have the following statements:
◦ The matching of asymptotic formulas in Region I and Region II is discussed in [11, Section 6].
◦ The matching of asymptotic formulas in Region II and Region III is given in remark 7.1.

Moreover, the matching of asymptotic formulas in Region III and Region IV is explicit,
depending on whether 𝜏 is bounded.

◦ The matching between Region IV and Region V can be read off from the fact that 𝜏 = O(𝑡) in
Region V and the Painlevé asymptotics given in [12, (1.18),(4.19)].

(4) Indeed, in [21] and [17], the asymptotics are stated in three regions. But we prefer to keep our five-
region statements since the calculations in these regions differ. As discussed above, Region II and
Region IV play the role of transition regions. We believe that these will give a refined picture of the
full asymptotics.

Remark 1.5. In this paper, to derive asymptotics, our main focus is to establish estimates for the error
terms that only depend on ‖𝑟 ‖𝐻 1 (R) ,which is equivalent to ‖𝑢0‖𝐿2,1 (R) by proposition 1.1. We claim that
this dependence is uniform in each of the five regions defined in Figure 1.1. All leading-order terms from
the asymptotic formulae in all regions are obtained from special functions, namely parabolic cylinder
functions and Painlevé II. For brevity, we do not repeat lengthy identical steps. We refer to Deift-Zhou
[11] for full details.
Remark 1.6. From the view of the scattering theory, it is natural to ask if one can determine the initial
data uniquely from the asymptotics of a solution. Here we point out that in our asymptotics formulae,

1Even Region V can be combined, provided that we know the Painlevé function P decays exponentially in that region.
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the solution P to the Painlevé II equation only depends on 𝑟 (0), the reflection coefficient evaluated at
the origin. For an explicit relation between 𝑟 (0) and P the solution to Painlevé II; see [11, p.358-p.359].
Therefore, if one only looks at the asymptotics in regions II, III, IV and V, these pieces of information
are not sufficient to determine the initial data that produce this solution. To obtain the full information
of the initial data, we have to go to Region I, from which one can determine the phase and modulus of
the reflection coefficient from the formulae given by the parabolic cylinder. For more details, see Deift-
Zhou [11]. In this defocussing case, Region I is the most physically interesting. But in the focussing
problem, breathers can appear in other regions. For more details, see our subsequent article, [7].

Remark 1.7. In [17] and [21], the long-time asymptotics of small solutions to the mKdV are established.
Moreover, the decay of the spacial derivatives of the solutions is also obtained. In [21], the 𝐿2 estimates
of error terms are estimated. In the theorem above, we only compute the asymptotics in the pointwise
sense. In principle, with the analysis of the 𝐿2 mapping properties of the 𝜕 problem, we can also obtain
the 𝐿2 estimates for error terms, but we do not pursue it here since this will require a different argument.
Taking 𝑧0 =

√
|𝑥 |
12𝑡 in the leading-order terms in expressions from the theorem above, the resulting

formulas are the same as the leading-order terms in [17] and [21]. Plugging 𝑧0 into the error terms
above, we observe that actually, in the pointwise sense, the error terms are sharper than those in [17]
and [21].

The paper ends with a section to extend the asymptotics from Theorem 1.3 to rougher solutions.
With the uniform estimates on error terms, we apply approximation arguments to study solutions in
various low-regularity spaces: 𝐻1, 𝐻1/4 and 𝐿2 with some weights. Using the local well-posedness in
𝐻𝑘 (R) with 𝑘 ≥ 1

4 obtained by Kenig-Ponce-Vega (see [29]); the growth estimates for the 𝐻𝑘 norm due
to Colliander-Keel-Staffilani-Takaoka-Tao [6], Guo [20] and Kishimoto [32]; and the recent advance on
globally well-posedness by Harrop-Griffiths-Killip-Visan [22] in 𝐻𝜏 (R), 𝜏 > −1/2, we employ a global
approximation argument to extend our long-time asymptotics to 𝐻𝑘,1 with 𝑘 ≥ 0. Then we can extend
the results in the previous theorem and obtain the following:

Theorem 1.8. For any initial data 𝑢0 ∈ 𝐻𝑘,1(R) with 𝑘 ≥ 0, the solution2 to the MKdV equation

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢2𝑢𝑥 = 0 (𝑥, 𝑡) ∈ (R,R+) (1.24)

has the same asymptotics as in our main Theorem 1.3.

We notice that one can trace all the details in our implementation of the nonlinear steepest descent
and that it suffices to require the weights in x to be 〈𝑥〉𝑠 with 𝑠 > 1

2 since for the general case, 𝑠 > 1
2

is sufficient for us to apply the Sobolev embedding and the estimate of modulus of continuity of
the reflection coefficients in the Riemann-Hilbert problem. Therefore, we can conclude the following
corollary:

Corollary 1.9. For any initial data 𝑢0 ∈ 𝐻𝑘,𝑠 (R) with 𝑠 > 1
2 and 𝑘 ≥ 0, the solution to the MKdV

equation (1.24) has the same leading-order terms as equations (1.19)–(1.22) (first term on the right-
hand side of the equation) in main Theorem 1.3. And the error terms (big-O notation) can be found in
Remark 7.2.

After establishing the computations for 𝑠 = 1, to get the general results for 𝑠 > 1
2 , one just needs to

use the standard analysis of Jost functions and mollifiers. Computations from 𝑠 = 1 to general 𝑠 > 1
2

are quite routine; see Cuccagna-Pelinovsky [8] for computations for the cubic NLS. In particular, the
direct scattering problem for the mKdV equation is the same as the NLS. Hereinafter, for the sake of
simplicity, we just focus on the case where 𝑠 = 1.

2For the precise meaning of solutions, we refer to Theorem 8.2 and Theorem 8.11 for details.
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1.3. Notations

Let 𝜎3 be the third Pauli matrix

𝜎3 =

(
1 0
0 −1

)
and define the matrix operation

𝑒ad 𝜎3𝐴 =

(
𝑎 𝑒2𝑏
𝑒−2𝑐 𝑑

)
.

We define Fourier transforms as

ℎ̂(𝜉) = F [ℎ] (𝜉) = 1
2𝜋

∫
R

𝑒−𝑖𝑥 𝜉 ℎ(𝑥) 𝑑𝑥. (1.25)

Using the Fourier transform, one can define the fractional weighted Sobolev spaces:

𝐻𝑘,𝑠 (R) :=
{
ℎ :

〈
1 + |𝜉 |2

〉 𝑘
2 ℎ̂(𝜉) ∈ 𝐿2 (R),

〈
1 + 𝑥2〉 𝑠

2 ℎ ∈ 𝐿2 (R)
}
. (1.26)

As usual, ‘𝐴 := 𝐵’ or ‘𝐵 =: 𝐴’ is the definition of A by means of the expression B. We use the
notation 〈𝑥〉 =

(
1 + |𝑥 |2

) 1
2 . For positive quantities a and b, we write 𝑎 � 𝑏 for 𝑎 ≤ 𝐶𝑏, where C is some

prescribed constant. Also, 𝑎 � 𝑏 for 𝑎 � 𝑏 and 𝑏 � 𝑎. Throughout, we use 𝑢𝑡 := 𝜕
𝜕𝑡
𝑢, 𝑢𝑥 := 𝜕

𝜕𝑥 𝑢.

1.4. Some discussion

To finish the introduction, we highlight certain features of this paper.
Firstly, compared with the analysis of the nonlinear Schrödinger equation in weighted Sobolev spaces

[14], the defocussing MKdV exhibits more complicated behaviour in terms of long-time asymptotics.
This follows from the fact that the phase function for the nonlinear Schrödinger equation has a single
stationary point, while the phase function for the MKdV equation has two stationary points. The MKdV
equation has the oscillatory region (Region I), the self-similar region (Region II-IV) and the decaying
region (Region V), each of which has different leading-order terms and error terms. These two stationary
points, due to symmetry, will lead to a real-valued solution to the equation plus a higher-order correction
term. More importantly, unlike the NLS equation, where we can build parametrices directly out of the
parabolic cylinder functions, for the MKdV equation, extra terms have to be eliminated before arriving
at the model problem. Thus, due to the complicated structure of the MKdV equation, we will explore
some new applications of the 𝜕-steepest descent method. We instead conjugate the jump matrices by
a diagonal matrix P (compare equation (4.2)). Meanwhile, in certain self-similar regions, the two
stationary points will approach each other as 𝑡 → ∞. In this case, the decay in time results from a
scaling factor instead of oscillation. We believe these are new applications of the 𝜕 nonlinear steepest
descent method and can be used to treat other integrable models.

Secondly, we extend the asymptotics of the MKdV equation to solutions with initial data in lower
regularity spaces using a global approximation via PDE techniques. In Deift-Zhou [14], due to the
𝐿4
𝑡 𝐿

∞
𝑥 Strichartz estimates for the linear Schrödinger equation and the conservation of the 𝐿2 norm,

the authors can globally approximate the solution to the nonlinear Schrödinger equation with data in
𝐿2,1 using the Beals-Coifman representation of solutions directly. Unlike the Schrödinger equation,
the smoothing estimates and Strichartz estimates for the Airy equation and the MKdV equation are
much more involved. For example, one needs the 𝐿4

𝑥𝐿
∞
𝑡 estimate that acts like a maximal operator.

To directly work on the solution to the MKdV equation via inverse scattering to establish the smooth-
ing estimates and Strichartz estimates, one needs estimates for pseudo-differential operators with very
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rough symbols. To avoid these technicalities, we first identify the solution by inverse scattering with
the solution given by the Duhamel formula, which we call a strong solution. The equivalence of these
two types of solutions in 𝐻2,1 (R) is not transparent since there is not enough smoothness for taking
derivatives. Relying on smoothing estimates and the bijectivity of the scattering and inverse scatter-
ing transforms by Zhou [45], which plays the role of the Plancherel theorem in Fourier analysis, we
show that these two types of solutions are the same at the level of 𝐻2,1 (R), which is necessary to con-
struct the solutions by inverse scattering. Since the strong solutions by construction enjoy Strichartz
estimates and smoothing estimates, by our identification, the solutions by inverse scattering also sat-
isfy these estimates. Then we can use Strichartz estimates and smoothing estimates to pass limits
of solutions by inverse scattering to obtain the asymptotics for rougher initial data in 𝐻1,1 (R) and
𝐻

1
4 ,1(R). To illustrate the importance of 𝐻1(R) and 𝐻 1

4 (R), we note that in 𝐻1(R), the MKdV equa-
tion has energy conservation. On the other hand, 𝐻 1

4 (R) is the optimal space to use iterations to
construct the solution to the MKdV equation. With the recent advances in global well-posedness of
mKdV equations [22], with appropriate notation of solutions, our results can be naturally extended to
solutions with initial data in the weighted 𝐿2 (R) space. For details of the proof, we refer the reader
to Section 8.

Finally, we give a general description of the derivation of the long-time asymptotics and performing
nonlinear steepest descent. The major part of this paper is devoted to the study of Region I, whose
leading behaviour is given by parabolic cylinder functions.

The first step (Section 2), is to conjugate the matrix m with a scalar function 𝛿(𝑧), which solves the
scalar model RHP Problem 2.1. This conjugation leads to a new RHP, Problem 2.3. This is to prepare
for the lower/upper factorisation of the jump matrix on the part of the real axis between two stationary
points. This is needed in the contour deformation described in Section 3.

The second step ( Section 3) is a deformation of the contour fromR to a new contourΣ (2) (Figure 4.1).
It is to guarantee that the phase factors in the jump matrix in equation (2.4) have the desired expo-
nential decay in time along the deformed contours. Inevitably, this transformation results in certain
nonanalyticity in sectors Ω1 ∪ Ω3 ∪ Ω4 ∪ Ω6 ∪ Ω±

7 ∪ Ω±
8 , which leads to a mixed 𝜕–RHP-problem,

Problem 3.3.
The third step is a ‘factorisation’ of 𝑚 (2) in the form 𝑚 (2) = 𝑚 (3)𝑚LC, where 𝑚LC is the solution of a

localised RHP, Problem 4.1 and 𝑚 (3) a solution of 𝜕 problem, Problem 5.1. The term ‘localised’ means
the reflection coefficient 𝑟 (𝑧) is fixed at ±𝑧0 along the deformed contours. We then solve this localised
RHP, whose solution is given by parabolic cylinder functions. Since we have to separate the contribution
from two stationary points ±𝑧0, some error terms appear alongside, and their decay rates are estimated.

The fourth step (Section 5) is the solution of the 𝜕-problem by solving an integral equation. The
integral operator has a small 𝐿∞-norm at a large t, allowing the use of the Neumann series. The
contribution of this 𝜕 problem is another higher-order error term.

The fifth step (Section 6) is to group together all the previous transformations to derive the long-time
asymptotics of the solution of the MKdV equation in Region I, using the large-z behaviour of the RHP
solutions. These five steps above are more or less standard, and during the proof we mainly follow the
outline of [36].

The sixth step is the study of Regions II–V. The leading-order term in these regions is given by a
solution to the Painlevé II equation, and error estimates are obtained from scaling.

2. Conjugation

We introduce a new matrix-valued function

𝑚 (1) (𝑧; 𝑥, 𝑡) = 𝑚(𝑧; 𝑥, 𝑡)𝛿(𝑧)−𝜎3 , (2.1)

where 𝛿(𝑧) solves the scalar RHP Problem 2.1 below:
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Problem 2.1. Given ±𝑧0 ∈ R and 𝑟 ∈ 𝐻1(R), find a scalar function 𝛿(𝑧) = 𝛿(𝑧; 𝑧0), analytic for
𝑧 ∈ C \ [−𝑧0, 𝑧0], with the following properties:

(1) 𝛿(𝑧) → 1 as 𝑧 → ∞,
(2) 𝛿(𝑧) has continuous boundary values 𝛿±(𝑧) = lim𝜀↓0 𝛿(𝑧 ± 𝑖𝜀) for 𝑧 ∈ (−𝑧0, 𝑧0),
(3) 𝛿± obey the jump relation

𝛿+(𝑧) =
{
𝛿−(𝑧)

(
1 − |𝑟 (𝑧) |2

)
, 𝑧 ∈ (−𝑧0, 𝑧0)

𝛿−(𝑧), 𝑧 ∈ R \ (−𝑧0, 𝑧0)
.

Lemma 2.2. Suppose 𝑟 ∈ 𝐻1 (R) and 𝜅(𝑠) is given by equation (1.18). Then

(i) Problem 2.1 has the unique solution

𝛿(𝑧) =
(
𝑧 − 𝑧0
𝑧 + 𝑧0

) 𝑖𝜅
𝑒𝜒 (𝑧) , (2.2)

where 𝜅 is given by equation (1.18) and

𝜒(𝑧) = 1
2𝜋𝑖

∫ 𝑧0

−𝑧0

log
(

1 − |𝑟 (𝜁) |2

1 − |𝑟 (𝑧0) |2

)
𝑑𝜁

𝜁 − 𝑧 (2.3)(
𝑧 − 𝑧0
𝑧 + 𝑧0

) 𝑖𝜅
= exp

(
𝑖𝜅

(
log

���� 𝑧 − 𝑧0𝑧 + 𝑧0

���� + 𝑖 arg(𝑧 − 𝑧0) − 𝑖 arg(𝑧 + 𝑧0)
))
.

Here we choose the branch of the logarithm with −𝜋 < arg(𝑧) < 𝜋.
(ii)

𝛿(𝑧) = (𝛿(𝑧))−1 = 𝛿(−𝑧)

(iii) For 𝑧 ∈ R, |𝛿±(𝑧) | < ∞; for 𝑧 ∈ C \ R, |𝛿±1 (𝑧) | < ∞.
(iv) Along any ray of the form ±𝑧0 + 𝑒𝑖𝜙R+ with 0 < 𝜙 < 𝜋 or 𝜋 < 𝜙 < 2𝜋,�����𝛿(𝑧) − (

𝑧 − 𝑧0
𝑧 + 𝑧0

) 𝑖𝜅
𝑒𝜒 (±𝑧0)

����� ≤ 𝐶𝑟 |𝑧 ∓ 𝑧0 |1/2.

The implied constant depends on r through its 𝐻1 (R)-norm and is independent of ±𝑧0 ∈ R.

Proof. The proofs of (i)–(iii) can be found in [11]. To establish (iv), we first note that�����( 𝑧 − 𝑧0𝑧 + 𝑧0

) 𝑖𝜅 ����� ≤ 𝑒𝜋𝜅 .
To bound the difference 𝑒𝜒 (𝑧) − 𝑒𝜒 (±𝑧0) , notice that���𝑒𝜒 (𝑧) − 𝑒𝜒 (±𝑧0)

��� ≤ ���𝑒𝜒 (±𝑧0)
������𝑒𝜒 (𝑧)−𝜒 (±𝑧0) − 1

���
�

����∫ 1

0

𝑑

𝑑𝑠
𝑒𝑠 (𝜒 (𝑧)−𝜒 (±𝑧0))𝑑𝑠

����
� |𝑧 ∓ 𝑧0 |1/2 sup

0≤𝑠≤1

���𝑒𝑠 (𝜒 (𝑧)−𝜒 (±𝑧0))
���

� |𝑧 ∓ 𝑧0 |1/2,

where the third inequality follows from [3, Lemma 23]. �
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It is straightforward to check that if𝑚(𝑧; 𝑥, 𝑡) solves Problem 1.2, then the new matrix-valued function
𝑚 (1) (𝑧; 𝑥, 𝑡) = 𝑚(𝑧; 𝑥, 𝑡)𝛿(𝑧)𝜎3 is the solution to the following RHP.

Problem 2.3. Given 𝑟 ∈ 𝐻1,0 (R), find a matrix-valued function𝑚 (1) (𝑧; 𝑥, 𝑡) onC\Rwith the following
properties:

(1) 𝑚 (1) (𝑧; 𝑥, 𝑡) → 𝐼 as |𝑧 | → ∞.
(2) 𝑚 (1) (𝑧; 𝑥, 𝑡) is analytic for 𝑧 ∈ C \ R with continuous boundary values

𝑚 (1)
± (𝑧; 𝑥, 𝑡) = lim

𝜀↓0
𝑚 (1) (𝑧 + 𝑖𝜀; 𝑥, 𝑡).

(3) The jump relation

𝑚 (1)
+ (𝑧; 𝑥, 𝑡) = 𝑚 (1)

− (𝑧; 𝑥, 𝑡)𝑒−𝑖 𝜃 ad 𝜎3𝑣 (1) (𝑧)

holds, where

𝑣 (1) (𝑧) = 𝛿−(𝑧)𝜎3𝑣(𝑧)𝛿+(𝑧)−𝜎3 .

The jump matrix 𝑒−𝑖 𝜃 ad 𝜎3𝑣 (1) is factorised as

𝑒−𝑖 𝜃 ad 𝜎3𝑣 (1) (𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

����	
1 0

𝛿−2
− 𝑟

1 − |𝑟 |2
𝑒2𝑖 𝜃 1


����
���	

1 −
𝛿2
+𝑟

1 − |𝑟 |2
𝑒−2𝑖 𝜃

0 1


���, 𝑧 ∈ (−𝑧0, 𝑧0),

���	
1 −𝑟𝛿2𝑒−2𝑖 𝜃

0 1


���
���	

1 0

𝑟𝛿−2𝑒2𝑖 𝜃 1


���, 𝑧 ∈ (−∞,−𝑧0) ∪ (𝑧0,∞).

(2.4)

3. Contour deformation

We now perform contour deformation on Problem 2.3, following the standard procedure outlined in
[36, Section 4]. Since the phase function in equation (1.9) has two critical points at ±𝑧0, our new contour
is chosen to be

Σ (2) = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4 ∪ Σ5 ∪ Σ6 ∪ Σ7 ∪ Σ8 (3.1)

(shown in Figure 3.1) and consists of rays of the form ±𝑧0 + 𝑒𝑖𝜙R+, where 𝜙 = 𝜋/4, 3𝜋/4, 5𝜋/4, 7𝜋/4.
We now introduce another matrix-valued function 𝑚 (2) :

𝑚 (2) (𝑧) = 𝑚 (1) (𝑧)R(2) (𝑧).

Here R(2) is chosen to remove the jump on the real axis and brings about new analytic jump matrices
with the desired exponential decay along the contour Σ (2) . Straightforward computation gives

𝑚 (2)
+ = 𝑚 (1)

+ R(2)
+

= 𝑚 (1)
−

(
𝑒−𝑖 𝜃 ad 𝜎3𝑣 (1)

)
R(2)

+

= 𝑚 (2)
−

(
R(2)

−

)−1 (
𝑒−𝑖 𝜃 ad 𝜎3𝑣 (1)

)
R(2)

+ .
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Figure 3.1. Deformation from R to Σ (2) .

We want to make sure the following condition is satisfied

(R(2)
− )−1

(
𝑒−𝑖 𝜃 ad 𝜎3𝑣 (1)

)
R(2)

+ = 𝐼,

where R(2)
± are the boundary values of R(2) (𝑧) as ± Im(𝑧) ↓ 0. In this case, the jump matrix associated

to 𝑚 (2)
± will be the identity matrix on R.

From the signature table [11, Figure 0.1], we find that the function 𝑒2𝑖 𝜃 is exponentially decreasing
on Σ3, Σ4, Σ5, Σ6 and increasing on Σ1, Σ2, Σ7, Σ8 away from the stationary point, while the reverse is
true of 𝑒−2𝑖 𝜃 . Letting

𝜂(𝑧; 𝑧0) =
(
𝑧 − 𝑧0
𝑧 + 𝑧0

) 𝑖𝜅
, (3.2)

we define R(2) as follows (Figures 3.2–3.3): the functions 𝑅1, 𝑅3, 𝑅4, 𝑅6, 𝑅+7 , 𝑅+8 , 𝑅−7 , 𝑅−8 satisfy

𝑅1(𝑧) =
⎧⎪⎪⎨⎪⎪⎩
−𝑟 (𝑧)𝛿(𝑧)−2 𝑧 ∈ (𝑧0,∞)

−𝑟 (𝑧0)𝑒−2𝜒 (𝑧0)𝜂(𝑧; 𝑧0)−2 𝑧 ∈ Σ1,

(3.3)

𝑅3(𝑧) =
⎧⎪⎪⎨⎪⎪⎩
−𝑟 (𝑧)𝛿(𝑧)−2 𝑧 ∈ (−∞,−𝑧0)

−𝑟 (−𝑧0)𝑒−2𝜒 (−𝑧0)𝜂(𝑧; 𝑧0)−2 𝑧 ∈ Σ2,

(3.4)

𝑅4 (𝑧) =
⎧⎪⎪⎨⎪⎪⎩
−𝑟 (𝑧)𝛿(𝑧)2 𝑧 ∈ (−∞,−𝑧0)

−𝑟 (−𝑧0)𝑒2𝜒 (−𝑧0)𝜂(𝑧; 𝑧0)2 𝑧 ∈ Σ3,

(3.5)

𝑅6(𝑧) =
⎧⎪⎪⎨⎪⎪⎩
−𝑟 (𝑧)𝛿(𝑧)2 𝑧 ∈ (−∞,−𝑧0)

−𝑟 (𝑧0)𝑒2𝜒 (𝑧0)𝜂(𝑧; 𝑧0)2 𝑧 ∈ Σ4,

(3.6)

𝑅+7 (𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿−2
− (𝑧)𝑟 (𝑧)

1 − |𝑟 (𝑧) |2
𝑧 ∈ (−𝑧0, 𝑧0)

𝑒−2𝜒 (𝑧0)𝜂(𝑧; 𝑧0)−2𝑟 (𝑧0)
1 − |𝑟 (𝑧0) |2

𝑧 ∈ Σ6,

(3.7)
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𝑧0

Ω1

Ω6

Ω2

Ω5

Ω+
7

Ω+
8

(
1 0
0 1

)

(
1 0
0 1

)

(
1 0

𝑅1𝑒
2𝑖 𝜃 1

)(
1 𝑅+7𝑒

−2𝑖 𝜃

0 1

)
(

1 0
𝑅+8𝑒

2𝑖 𝜃 1

) (
1 𝑅6𝑒

−2𝑖 𝜃

0 1

)

Figure 3.2. The matrix R(2) for Region I, near 𝑧0.

−𝑧0

Ω−
7

Ω−
8

Ω2

Ω5

Ω3

Ω4

(
1 0
0 1

)

(
1 0
0 1

)

(
1 𝑅−7 𝑒

−2𝑖 𝜃

0 1

)(
1 0

𝑅3𝑒
2𝑖 𝜃 1

)
(

1 𝑅4𝑒
−2𝑖 𝜃

0 1

) (
1 0

𝑅−8 𝑒
2𝑖 𝜃 1

)

Figure 3.3. The matrix R(2) for Region I, near −𝑧0.

𝑅+8 (𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿2
+(𝑧)𝑟 (𝑧)

1 − |𝑟 (𝑧) |2
𝑧 ∈ (−𝑧0, 𝑧0)

𝑒2𝜒 (𝑧0)𝜂(𝑧; 𝑧0)2𝑟 (𝑧0)
1 − |𝑟 (𝑧0) |2

𝑧 ∈ Σ8,

(3.8)

𝑅−7 (𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿−2
− (𝑧)𝑟 (𝑧)

1 − |𝑟 (𝑧) |2
𝑧 ∈ (−𝑧0, 𝑧0)

𝑒−2𝜒 (−𝑧0)𝜂(𝑧; 𝑧0)−2𝑟 (−𝑧0)
1 − |𝑟 (−𝑧0) |2

𝑧 ∈ Σ5,

(3.9)

𝑅−8 (𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿2
+(𝑧)𝑟 (𝑧)

1 − |𝑟 (𝑧) |2
𝑧 ∈ (−𝑧0, 𝑧0)

𝑒2𝜒 (−𝑧0)𝜂(𝑧; 𝑧0)2𝑟 (−𝑧0)
1 − |𝑟 (−𝑧0) |2

𝑧 ∈ Σ7.

(3.10)
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Each 𝑅𝑖 (𝑧) in Ω𝑖 is constructed in such a way that the jump matrices on the contour and 𝜕𝑅𝑖 (𝑧)
along with their relevant exponentials enjoys the property of exponential decay as 𝑡 → ∞. We formulate
Problem 2.3 into a mixed RHP-𝜕 problem. In the following sections, we will separate this mixed problem
into a localised RHP and a pure 𝜕 problem whose long-time contribution to the asymptotics of 𝑢(𝑥, 𝑡)
is of a higher order than the leading term.

The following lemma [15, Proposition 2.1] will be used in the error estimates of 𝜕-problem
in Section 5.

We first denote the entries that appear in equations (3.3)–(3.10) by

𝑝1 (𝑧) = 𝑝3 (𝑧) = −𝑟 (𝑧). 𝑝4 (𝑧) = 𝑝6 (𝑧) = −𝑟 (𝑧),

𝑝7− (𝑧) = 𝑝7+ (𝑧) =
𝑟 (𝑧)

1 − |𝑟 (𝑧) |2
, 𝑝8− (𝑧) = 𝑝8+ (𝑧) =

𝑟 (𝑧)
1 − |𝑟 (𝑧) |2

.

Lemma 3.1. Suppose 𝑟 ∈ 𝐻1 (R). There exist functions 𝑅𝑖 on Ω𝑖 , 𝑖 = 1, 3, 4, 6, 7±, 8± satisfying
equations (3.3)–(3.10), so that

|𝜕𝑅𝑖 (𝑧) | � |𝑝′𝑖 (Re(𝑧)) | + |𝑧 − 𝜉 |−1/2, 𝑧 ∈ Ω𝑖

where 𝜉 = ±𝑧0 and the implied constants are uniform for 𝑟 in a bounded subset of 𝐻1(R).

Proof. We only prove the lemma for 𝑅1. Define 𝑓1(𝑧) on Ω1 by

𝑓1 (𝑧) = 𝑝1 (𝑧0)𝑒−2𝜒 (𝑧0)𝜂(𝑧; 𝑧0)−2𝛿(𝑧)2,

and let

𝑅1 (𝑧) = ( 𝑓1(𝑧) + [𝑝1 (Re(𝑧)) − 𝑓1 (𝑧)]K(𝜙))𝛿(𝑧)−2, (3.11)

where 𝜙 = arg(𝑧 − 𝜉) and K is a smooth function on (0, 𝜋/4) with

K(𝜙) =
{

1 𝑧 ∈ [0, 𝜋/12],
0 𝑧 ∈ [𝜋/6, 𝜋/4]

. (3.12)

It is easy to see that 𝑅1 as constructed has the boundary values in equation (3.3). Writing 𝑧−𝑧0 = 𝜌𝑒𝑖𝜙,
we have

𝜕 =
1
2

(
𝜕

𝜕𝑥
+ 𝑖 𝜕
𝜕𝑦

)
=

1
2
𝑒𝑖𝜙

(
𝜕

𝜕𝜌
+ 𝑖
𝜌

𝜕

𝜕𝜙

)
.

We calculate

𝜕𝑅1(𝑧) =
1
2
𝑝′1 (Re 𝑧)K(𝜙) 𝛿(𝑧)−2 − [𝑝1 (Re 𝑧) − 𝑓1(𝑧)]𝛿(𝑧)−2 𝑖𝑒

𝑖𝜙

|𝑧 − 𝜉 |K
′(𝜙).

It follows from Lemma 2.2 (iv) that���(𝜕𝑅1

)
(𝑧)

��� � |𝑝′1 (Re 𝑧) | + |𝑧 − 𝜉 |−1/2,

where the implied constants depend on ‖𝑟 ‖𝐻 1 and the cutoff function K. The estimates in the remaining
sectors are identical. �
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−𝑧0 𝑧0

Σ′(2)
1Σ′(2)

2

Σ′(2)
3 Σ′(2)

4

Σ′(2)
5

Σ′(2)
7

Σ′(2)
6

Σ′(2)
8

Σ′(2)
9

Figure 3.4. Σ′(2) .

The unknown 𝑚 (2) satisfies a mixed 𝜕-RHP. We first identify the jumps of 𝑚 (2) along the contour
Σ (2) . Recall that 𝑚 (1) is analytic along the contour, and the jumps are determined entirely by R(2) ; see
equations (3.3)–(3.10). Away from Σ (2) , using the triangularity of R(2) , we have that

𝜕𝑚 (2) = 𝑚 (2)
(
R(2)

)−1
𝜕R(2) = 𝑚 (2)𝜕R(2) . (3.13)

Remark 3.2. Note that the interpolation defined through equation (3.11) introduces a new jump on Σ
′ (2)
9

of Figure 3.4 with a jump matrix given by

𝑣9 (𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐼, 𝑧 ∈ (−𝑖𝑧0 tan(𝜋/12), 𝑖𝑧0 tan(𝜋/12))(
1 (𝑅−7 − 𝑅+7 )𝑒

−2𝑖 𝜃

0 1

)
, 𝑧 ∈ (𝑖𝑧0 tan(𝜋/12), 𝑖𝑧0)

(
1 0

(𝑅−8 − 𝑅+8 )𝑒
2𝑖 𝜃 1

)
, 𝑧 ∈ (−𝑖𝑧0,−𝑖𝑧0 tan(𝜋/12), ).

(3.14)

But 𝑣9 is exponentially small due to the construction of K(𝜙) in equation (3.12).

Now we arrive at the following Riemann-Hilbert-𝜕 problem.

Problem 3.3. Given 𝑟 ∈ 𝐻1(R), find a matrix-valued function 𝑚 (2) (𝑧; 𝑥, 𝑡) on C \ Σ
′ (2) with the

following properties:

(1) 𝑚 (2) (𝑧; 𝑥, 𝑡) → 𝐼 as |𝑧 | → ∞ in C \ Σ′ (2) .
(2) 𝑚 (2) (𝑧; 𝑥, 𝑡) is continuous for 𝑧 ∈ C \ Σ′ (2) with continuous boundary values 𝑚 (2)

± (𝑧; 𝑥, 𝑡) (where ±
is defined by the orientation in Figure 3.4).

(3) The jump relation 𝑚 (2)
+ (𝑧; 𝑥, 𝑡) = 𝑚 (2)

− (𝑧; 𝑥, 𝑡)𝑒−𝑖 𝜃 ad 𝜎𝑣 (2) (𝑧) holds, where 𝑒−𝑖 𝜃 ad 𝜎𝑣 (2) (𝑧) is given
in Figures 3.5–3.6 and equation (3.14).

(4) The equation

𝜕𝑚 (2) = 𝑚 (2) 𝜕R(2)
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𝑧0

(
1 0

𝑅1𝑒
2𝑖 𝜃 1

)(
1 𝑅+7𝑒

−2𝑖 𝜃

0 1

)

(
1 0

𝑅+8𝑒
2𝑖 𝜃 1

) (
1 𝑅6𝑒

−2𝑖 𝜃

0 1

)

−
+

−
+

+
−

+
−

Σ1Σ6

Σ8 Σ4

Figure 3.5. Jump matrices 𝑣 (2) for 𝑚 (2) near 𝑧0.

−𝑧0

(
1 𝑅−7 𝑒

−2𝑖 𝜃

0 1

)(
1 0

𝑅3𝑒
2𝑖 𝜃 1

)

(
1 𝑅4𝑒

−2𝑖 𝜃

0 1

) (
1 0

𝑅−8 𝑒
2𝑖 𝜃 1

)

−
+

−
+

+
−

+
−

Σ5Σ2

Σ3 Σ7

Figure 3.6. Jump matrices 𝑣 (2) for 𝑚 (2) near −𝑧0.

holds in C \ Σ′ (2) , where

𝜕R(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

(𝜕𝑅1)𝑒2𝑖 𝜃 0

)
, 𝑧 ∈ Ω1

(
0 (𝜕𝑅+7 )𝑒

−2𝑖 𝜃

0 0

)
, 𝑧 ∈ Ω+

7

(
0 0

(𝜕𝑅+8 )𝑒
2𝑖 𝜃 0

)
, 𝑧 ∈ Ω+

8

(
0 (𝜕𝑅6)𝑒−2𝑖 𝜃

0 0

)
, 𝑧 ∈ Ω6

(
0 0

(𝜕𝑅3)𝑒2𝑖 𝜃 0

)
, 𝑧 ∈ Ω3

(
0 (𝜕𝑅4)𝑒−2𝑖 𝜃

0 0

)
, 𝑧 ∈ Ω4

(
0 0

(𝜕𝑅−8 )𝑒
2𝑖 𝜃 0

)
, 𝑧 ∈ Ω−

8

(
0 (𝜕𝑅−7 )𝑒

−2𝑖 𝜃

0 0

)
, 𝑧 ∈ Ω−

7

0 𝑧 ∈ Ω2 ∪Ω5.

Figures 3.5 illustrates the jump matrices of RHP Problem 3.3.
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4. The localised Riemann-Hilbert problem

We perform the following factorisation of 𝑚 (2) :

𝑚 (2) = 𝑚 (3)𝑚LC. (4.1)

Here we require that 𝑚 (3) to be the solution of the pure 𝜕-problem; hence no jump and 𝑚LC solution of
the localised RHP Problem 4.1 below with the jump matrix 𝑣LC = 𝑣 (2) . The current section focuses on
𝑚LC.

Problem 4.1. Find a 2 × 2 matrix-valued function 𝑚LC (𝑧; 𝑥, 𝑡), analytic on C \ Σ′(2) (See Figure 3.4),
with the following properties:

(1) 𝑚LC(𝑧; 𝑥, 𝑡) → 𝐼 as |𝑧 | → ∞ in C \ Σ′(2) , where I is the 2 × 2 identity matrix.
(2) 𝑚LC(𝑧; 𝑥, 𝑡) is analytic for 𝑧 ∈ C \ Σ′(2) with continuous boundary values 𝑚LC

± on Σ′(2) .
(3) The jump relation 𝑚LC

+ (𝑧; 𝑥, 𝑡) = 𝑚LC
− (𝑧; 𝑥, 𝑡)𝑣LC(𝑧) holds on Σ′(2) , where

𝑣LC(𝑧) = 𝑣 (2) (𝑧).

4.1. Construction of the parametrix

For some fixed 𝜌 > 0, we define

𝐿𝜌 = {𝑧 : 𝑧 = 𝑧0 + 𝑢𝑒3𝑖 𝜋/4, 𝜌 ≤ 𝑢 ≤
√

2𝑧0}
∪ {𝑧 : 𝑧 = 𝑧0 + 𝑢𝑒𝑖 𝜋/4, 𝑢 ≥ 𝜌}

∪ {𝑧 : 𝑧 = −𝑧0 + 𝑢𝑒𝑖 𝜋/4, 𝜌 ≤ 𝑢 ≤
√

2𝑧0}
∪ {𝑧 : 𝑧 = −𝑧0 + 𝑢𝑒3𝑖 𝜋/4, 𝑢 ≥ 𝜌}

Σ′ = Σ′(2) \ (𝐿𝜌 ∪ 𝐿𝜌 ∪ Σ′(2)
9 ).

Problem 4.2. Find a matrix-valued function 𝑚𝐴′ (𝑧; 𝑥, 𝑡) on C \ Σ′
𝐴 with the following properties:

(1) 𝑚𝐴′ (𝑧; 𝑥, 𝑡) → 𝐼 as 𝑧→ ∞.
(2) 𝑚𝐴′ (𝑧; 𝑥, 𝑡) is analytic for 𝑧 ∈ C \ Σ′

𝐴 with continuous boundary values 𝑚𝐴′± (𝑧; 𝑥, 𝑡).

−𝑧0 𝑧0

Σ𝐴′ Σ𝐵′

𝐶𝐵𝐶𝐴

Figure 4.1. Σ′ = Σ′
𝐴 ∪ Σ′

𝐵.
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(3) On Σ′
𝐴, we have the jump conditions

𝑚𝐴
′

+ (𝑧; 𝑥, 𝑡) = 𝑚𝐴′− (𝑧; 𝑥, 𝑡)𝑒−𝑖 𝜃 ad 𝜎3𝑣𝐴
′ (𝑧),

where 𝑣𝐴′ = 𝑣 (2) �Σ′
𝐴
.

Problem 4.3. Find a matrix-valued function 𝑚𝐵′ (𝑧; 𝑥, 𝑡) on C \ Σ′
𝐵 with the following properties:

(1) 𝑚𝐵′ (𝑧; 𝑥, 𝑡) → 𝐼 as 𝑧→ ∞.
(2) 𝑚𝐵′ (𝑧; 𝑥, 𝑡) is analytic for 𝑧 ∈ C \ Σ′

𝐵 with continuous boundary values 𝑚𝐵′
± (𝑧; 𝑥, 𝑡).

(3) On Σ′
𝐵, we have the jump conditions

𝑚𝐵
′

+ (𝑧; 𝑥, 𝑡) = 𝑚𝐵− (𝑧; 𝑥, 𝑡)𝑒−𝑖 𝜃 ad 𝜎3𝑣𝐵
′ (𝑧),

where 𝑣𝐵′
= 𝑣 (2) �Σ′

𝐵
.

To construct solutions to Problems 4.2–4.3, we need the following matrix-valued function:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
P− 0
0 P−1

−

)
, |𝑧 + 𝑧0 | < 𝜌(

P+ 0
0 P−1

+

)
, |𝑧 − 𝑧0 | < 𝜌(

1 0
0 1

)
, |𝑧 ± 𝑧0 | ≥ 𝜌

(4.2)

where

P− = (192𝜏)𝑖𝜅/2𝑒−8𝑖𝜏𝑒𝜒 (−𝑧0)𝜂(𝑧;−𝑧0)−1(−𝜁−)𝑖𝜅𝑒𝑖𝜁
2
− /4𝑒𝑖 𝜃

P+ = (192𝜏)−𝑖𝜅/2𝑒8𝑖𝜏𝑒𝜒 (𝑧0)𝜂(𝑧; 𝑧0)−1𝜁 𝑖𝜅+ 𝑒
−𝑖𝜁 2

+ /4𝑒𝑖 𝜃

with 𝜁∓ =
√

48𝑧0𝑡 (𝑧 ± 𝑧0). Then we further set

𝑚LC := 𝑚𝑝P−1, (4.3)

where

𝑚𝑝 � {𝑧 : |𝑧 + 𝑧0 | < 𝜌} = 𝑚𝐴
′
(
P− 0
0 P−1

−

)
:= 𝑚𝐴, (4.4)

𝑚𝑝 � {𝑧 : |𝑧 − 𝑧0 | < 𝜌} = 𝑚𝐵
′
(
P+ 0
0 P−1

+

)
:= 𝑚𝐵 . (4.5)

Set

𝛿0
𝐴(𝑧) = (192𝜏)𝑖𝜅/2𝑒−8𝑖𝜏𝑒𝜒 (−𝑧0)

𝛿0
𝐵 (𝑧) = (192𝜏)−𝑖𝜅/2𝑒8𝑖𝜏𝑒𝜒 (𝑧0) .

Let Σ𝐴 and Σ𝐵 denote the contours

{𝑧 = 𝑢𝑒±𝑖 𝜋/4 : −∞ < 𝑢 < ∞}

with the same orientation as those of Σ𝐴′ and Σ𝐵′ , respectively.
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𝑚𝐴 solves the following Riemann-Hilbert problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝐴+ (𝜁) = 𝑚𝐴− (𝜁)𝑣𝐵 (𝜁), 𝜁 ∈ Σ𝐴

𝑚𝐴(𝜁) = 𝐼 − 𝑚𝐵
1
𝜁 +𝑂

(
𝜁−2) , 𝜁 → ∞.

(4.6)

We have from the list of entries stated in equations (3.3), (3.5), (3.7) and (3.8) the rescaled jump matrices
on Σ𝐴:

𝑣𝐴 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

���	
1 0

(𝛿0
𝐴(𝑧))

−2𝑟 (𝑧0) (−𝜁−)2𝑖𝜅𝑒−𝑖𝜁
2
− /2 1


���, 𝜁− ∈ Σ2
𝐴

����	
1 0

(𝛿0
𝐴(𝑧))

−2𝑟 (𝑧0)
1 − |𝑟 (𝑧0) |2

(−𝜁−)2𝑖𝜅𝑒−𝑖𝜁
2
− /2 1


����, 𝜁− ∈ Σ4
𝐴

���	
1 −(𝛿0

𝐴(𝑧))
2𝑟 (𝑧0)(−𝜁−)−2𝑖𝜅𝑒𝑖𝜁

2
− /2

0 0


���, 𝜁− ∈ Σ3
𝐴

����	
1

(𝛿0
𝐴(𝑧))

2𝑟 (𝑧0)
1 − |𝑟 (𝑧0) |2

(−𝜁−)−2𝑖𝜅𝑒𝑖𝜁
2
− /2

0 1


����, 𝜁− ∈ Σ1
𝐴.

(4.7)

Similarly, we have from the rescaled jump matrices on Σ𝐵:

𝑣𝐵 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

���	
1 0

(𝛿0
𝐵 (𝑧))

−2𝑟 (𝑧0)𝜁−2𝑖𝜅
+ 𝑒𝑖𝜁

2
+ /2 1


���, 𝜁+ ∈ Σ1
𝐵

����	
1 0

(𝛿0
𝐵 (𝑧))

−2𝑟 (𝑧0)
1 − |𝑟 (𝑧0) |2

𝜁−2𝑖𝜅
+ 𝑒𝑖𝜁

2
+ /2 1


����, 𝜁+ ∈ Σ3
𝐵

���	
1 −(𝛿0

𝐵 (𝑧))
2𝑟 (𝑧0)𝜁2𝑖𝜅

+ 𝑒−𝑖𝜁
2
+ /2

0 1


���, 𝜁+ ∈ Σ4
𝐵

����	
1

(𝛿0
𝐵 (𝑧))

2𝑟 (𝑧0)
1 − |𝑟 (𝑧0) |2

𝜁2𝑖𝜅
+ 𝑒−𝑖𝜁

2
+ /2

0 1


����, 𝜁+ ∈ Σ2
𝐵 .

(4.8)

𝑚𝐵 solves the following Riemann-Hilbert problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝐵+ (𝜁) = 𝑚𝐵

0
− (𝜁)𝑣𝐵 (𝜁), 𝜁 ∈ Σ𝐵

𝑚𝐵 (𝜁) = 𝐼 − 𝑚𝐵
1
𝜁 +𝑂

(
𝜁−2) , 𝜁 → ∞.

(4.9)
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𝐴
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𝐵

Figure 4.2. Σ𝐴, Σ𝐵.

The explicit form of 𝑚𝐵0

1 is given as follows (see [11, Section 4])

𝑚𝐵1 =

(
0 −(𝛿0

𝐵)
2𝑖𝛽12

(𝛿0
𝐵)

−2𝑖𝛽21 0

)
, (4.10)

where

𝛽12 =

√
2𝜋𝑒𝑖 𝜋/4𝑒−𝜋𝜅

𝑟 (𝑧0)Γ(−𝑖𝜅)
, 𝛽21 =

−
√

2𝜋𝑒−𝑖 𝜋/4𝑒−𝜋𝜅

𝑟 (𝑧0)Γ(𝑖𝜅)

and Γ(𝑧) is the Gamma function. Using the explicit form of 𝑣𝐵 given by equation (4.8), symmetry
reduction given by equation (1.7) and their analogue for 𝑣𝐴, we verify that

𝑣𝐴(𝑧) = 𝜎3𝑣𝐵 (−𝑧)𝜎3, (4.11)

which in turn implies by uniqueness that

𝑚𝐴(𝑧) = 𝜎3𝑚𝐵 (−𝑧)𝜎3, (4.12)

and from this, we deduce that

𝑚𝐴1 = −𝜎3𝑚
𝐵
1 𝜎3 (4.13)

=

(
0 (𝛿0

𝐴)
−2𝑖𝛽12

−(𝛿0
𝐴)

−2𝑖𝛽21 0

)
.

Collecting all the computations above, we write down the asymptotic expansions of solutions to Problem
4.2 and Problem 4.3, respectively.

Proposition 4.4. Recall that 𝜁− =
√

48𝑧0𝑡 (𝑧 + 𝑧0), the solution to RHP Problem 4.2 𝑚𝐴′ , admits the
following expansion:

𝑚𝐴
′ (𝑧(𝜁); 𝑥, 𝑡) = 𝐼 + 1

𝜁−

(
0 𝑖(𝛿0

𝐴)
2𝛽12

−𝑖(𝛿0
𝐴)

−2𝛽21 0

)
+O(𝑡−1). (4.14)

Similarly, for 𝜁+ =
√

48𝑧0𝑡 (𝑧−𝑧0), the solution to RHP Problem 4.3𝑚𝐵′ admits the following expansion:

𝑚𝐵
′ (𝑧(𝜁); 𝑥, 𝑡) = 𝐼 + 1

𝜁+

(
0 −𝑖(𝛿0

𝐵)
2𝛽12

𝑖(𝛿0
𝐵)

−2𝛽21 0

)
+O(𝑡−1). (4.15)
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−𝑧0 𝑧0

Σ′(2)
1Σ′(2)

2

Σ′(2)
3 Σ′(2)

4

Σ′(2)
5

Σ′(2)
7

Σ′(2)
6

Σ′(2)
8

Σ′(2)
9

Figure 4.3. Σ𝐸 .

Now we construct 𝑚LC needed in the factorisation of 𝑚 (2) in equation (4.1). In Figure 4.3, we let 𝜌
be the radius of the circle 𝐶𝐴 (𝐶𝐵) centred at 𝑧0 (−𝑧0). We seek a solution of the form

𝑚LC(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐸 (𝑧) |𝑧 ± 𝑧0 | > 𝜌
𝐸 (𝑧)𝑚𝐴′ (𝑧) |𝑧 + 𝑧0 | ≤ 𝜌
𝐸 (𝑧)𝑚𝐵′ (𝑧) |𝑧 − 𝑧0 | ≤ 𝜌

(4.16)

Since 𝑚𝐴′ and 𝑚𝐵′ solve Problem 4.2 and Problem 4.3, respectively, we can construct the solution
𝑚LC (𝑧) if we find 𝐸 (𝑧). Indeed, E solves the following Riemann-Hilbert problem:

Problem 4.5. Find a matrix-valued function 𝐸 (𝑧) on C \ Σ𝐸 with the following properties:

(1) 𝐸 (𝑧) → 𝐼 as 𝑧 → ∞.
(2) 𝐸 (𝑧) is analytic for 𝑧 ∈ C \ (𝐶𝐴 ∪ 𝐶𝐵) with continuous boundary values 𝐸±(𝑧).
(3) On 𝐶𝐴 ∪ 𝐶𝐵, we have the following jump conditions

𝐸+(𝑧) = 𝐸−(𝑧)𝑣 (𝐸) (𝑧),

where

𝑣 (𝐸) (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝐴

′ (𝑧(𝜁)), 𝑧 ∈ 𝐶𝐴
𝑚𝐵

′ (𝑧(𝜁)), 𝑧 ∈ 𝐶𝐵
𝑣 (2) , 𝑧 ∈ Σ𝐸 \ (𝐶𝐴 ∪ 𝐶𝐵).

(4.17)

Proposition 4.6. 𝐸 (𝑧) admits a classical solution: that is, the jump condition in equation (4.17) holds
pointwise on the contour Σ𝐸 .

Proof. Here we invoke to the well-established existence and uniqueness theory from [44] (see also
chapter 2 [42]). First, it is easy to check that

𝑣 (𝐸) (𝑧) = 𝑣 (𝐸)† (𝑧),

where the † denotes the Hermitian conjugate of the given matrix. We then take care of the zero-sum
condition at the self-intersecting points of Σ𝐸 . Since the remaining cases follows from symmetry, we
will only look Σ′(2)

5 ∩ Σ′(2)
6 ∩ Σ′(2)

9 and Σ′(2)
6 ∩ 𝐶𝐴. The zero-sum condition holds at the first point by
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comparing equations (3.8) and (3.14). For Σ′(2)
6 ∩ 𝐶𝐴, (after adding contour with identity jumps and

reorientation; compare page 1058 [14]), we explicitly compute

𝐼 = 𝑚𝐴
′ (𝑧(𝜁))

[
𝑣 (2)

]−1 [
𝑚𝐴

′ (𝑧(𝜁))
]−1

= 𝑚𝐴
′

+ (𝑧(𝜁))
(
𝑣 (2)

)−1 (
𝑚𝐴

′
− (𝑧(𝜁))

)−1
.

Since 𝑣 (2) is smooth away from the intersections and zero-sum conditions have been verified, this
completes the proof. �

Setting

𝜂(𝑧) = 𝐸−(𝑧) − 𝐼,

then by standard theory, we have the following singular integral equation

𝜂 = 𝐼 + 𝐶𝑣 (𝐸 ) 𝜂,

where the singular integral operator is defined by

𝐶𝑣 (𝐸 ) 𝜂 = 𝐶−
(
𝜂
(
𝑣 (𝐸) − 𝐼

))
.

We first deduce from equations (4.14)–(4.15) that���𝑣 (𝐸) − 𝐼���𝐿∞ � 𝑡−1/2, (4.18)

hence the operator norm of 𝐶𝑣 (𝐸 )��𝐶𝑣 (𝐸 ) 𝑓
��
𝐿2 ≤ ‖ 𝑓 ‖𝐿2

���𝑣 (𝐸) − 𝐼���𝐿∞ � 𝑡−1/2. (4.19)

Then the resolvent operator (1 − 𝐶𝑣 (𝐸 ) )−1 can be obtained through Neumann series, and we obtain the
unique solution to Problem 4.5

𝐸 (𝑧) = 𝐼 + 1
2𝜋𝑖

∫
𝐶𝐴∪𝐶𝐵

(1 + 𝜂(𝑠)) (𝑣 (𝐸) (𝑠) − 𝐼)
𝑠 − 𝑧 𝑑𝑠, (4.20)

which admits the following asymptotic expansion in z:

𝐸2(𝑧) = 𝐼 +
𝐸1
𝑧

+O
(

1
𝑧2

)
. (4.21)

Using the bound on the operator norm in equation (4.19), we obtain

𝐸1(𝑧) = − 1
2𝜋𝑖

∫
𝐶𝐴∪𝐶𝐵

(1 + 𝜂(𝑠)) (𝑣 (𝐸) (𝑠) − 𝐼)𝑑𝑠 (4.22)

= − 1
2𝜋𝑖

∫
𝐶𝐴∪𝐶𝐵

(𝑣 (𝐸) (𝑠) − 𝐼)𝑑𝑠 +O(𝑡−1). (4.23)

https://doi.org/10.1017/fms.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.63


24 Gong Chen and Jiaqi Liu

Given the form of 𝑣 (𝐸) in equation (4.17) and the asymptotic expansions in equations (4.14)–(4.15),
an application of Cauchy’s integral formula leads to

𝐸1 =
1

√
48𝑧0𝑡

(
0 −𝑖(𝛿0

𝐵)
2𝛽12

𝑖(𝛿0
𝐵)

−2𝛽21 0

)
+ 1
√

48𝑧0𝑡

(
0 𝑖(𝛿0

𝐴)
2𝛽12

−𝑖(𝛿0
𝐴)

−2𝛽21 0

)
+O(𝑡−1). (4.24)

After possible reorientation of the contours, using the reconstruction formula given by equation
(1.14), we expect that

𝑢(𝑥, 𝑡) =
(
𝜅

3𝑧0𝑡

)1/2
cos

(
16𝑡𝑧30 − 𝜅 log(192𝑡𝑧30) + 𝜙(𝑧0)

)
+𝑂

(
𝑐(𝑧0)√
𝑧0𝑡𝜏1/2

)
+ E1, (4.25)

where

𝜙(𝑧0) = arg Γ(𝑖𝜅) − 𝜋
4
− arg 𝑟 (𝑧0) +

1
𝜋

∫ 𝑧0

−𝑧0

log
(

1 − |𝑟 (𝜁) |2

1 − |𝑟 (𝑧0) |2

)
𝑑𝜁

𝜁 − 𝑧0

and E1 is the error induced by a pure-𝜕 problem to be studied in the following section.

5. The 𝜕-Problem

From equation (4.1), we have matrix-valued function

𝑚 (3) (𝑧; 𝑥, 𝑡) = 𝑚 (2) (𝑧; 𝑥, 𝑡)𝑚LC(𝑧; 𝑥, 𝑡)−1. (5.1)

The goal of this section is to show that 𝑚 (3) only results in an error term 𝐸1 with higher-order decay
rate than the leading-order term of the asymptotic formula in equation (4.25).

Since 𝑚LC (𝑧; 𝑥, 𝑡) is analytic in C \ Σ′ (2) , we may compute

𝜕𝑚 (3) (𝑧; 𝑥, 𝑡) = 𝜕𝑚 (2) (𝑧; 𝑥, 𝑡)𝑚LC(𝑧; 𝑥, 𝑡)−1

= 𝑚 (2) (𝑧; 𝑥, 𝑡) 𝜕R(2) (𝑧)𝑚LC(𝑧; 𝑥, 𝑡)−1 (by equation (3.13))

= 𝑚 (3) (𝑧; 𝑥, 𝑡)𝑚LC(𝑧; 𝑥, 𝑡) 𝜕R(2) (𝑧)𝑚LC(𝑧; 𝑥, 𝑡)−1 (by equation (5.1))

= 𝑚 (3) (𝑧; 𝑥, 𝑡)𝑊 (𝑧; 𝑥, 𝑡),

where

𝑊 (𝑧; 𝑥, 𝑡) = 𝑚LC(𝑧; 𝑥, 𝑡) 𝜕R(2) (𝑧)𝑚LC(𝑧; 𝑥, 𝑡)−1. (5.2)

We thus arrive at the following pure 𝜕-problem:

Problem 5.1. Give 𝑟 ∈ 𝐻1 (R), find a continuous matrix-valued function 𝑚 (3) (𝑧; 𝑥, 𝑡) on C with the
following properties:

(1) 𝑚 (3) (𝑧; 𝑥, 𝑡) → 𝐼 as |𝑧 | → ∞,
(2) 𝜕𝑚 (3) (𝑧; 𝑥, 𝑡) = 𝑚 (3) (𝑧; 𝑥, 𝑡)𝑊 (𝑧; 𝑥, 𝑡).

It is well understood (see for example [1, Chapter 7]) that the solution to this 𝜕 problem is equivalent
to the solution of a Fredholm-type integral equation involving the solid Cauchy transform

(𝑃 𝑓 ) (𝑧) = 1
𝜋

∫
C

1
𝜁 − 𝑧 𝑓 (𝜁) 𝑑𝜁,

where d denotes Lebesgue measure on C.
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Lemma 5.2. A bounded and continuous matrix-valued function𝑚 (3) (𝑧; 𝑥, 𝑡) solves Problem (5.1) if and
only if

𝑚 (3) (𝑧; 𝑥, 𝑡) = 𝐼 + 1
𝜋

∫
C

1
𝜁 − 𝑧𝑚

(3) (𝜁 ; 𝑥, 𝑡)𝑊 (𝜁 ; 𝑥, 𝑡) 𝑑𝜁 . (5.3)

Using the integral equation formulation in equation (5.3), we will prove:

Proposition 5.3. Suppose that 𝑟 ∈ 𝐻1(R). Then for 𝑡 
 1, there exists a unique solution 𝑚 (3) (𝑧; 𝑥, 𝑡)
for Problem 5.1 with the property that

𝑚 (3) (𝑧; 𝑥, 𝑡) = 𝐼 + 1
𝑧
𝑚 (3)

1 (𝑥, 𝑡) + 𝑜
(

1
𝑧

)
(5.4)

for 𝑧 = 𝑖𝜎 with 𝜎 → +∞. Here, ���𝑚 (3)
1 (𝑥, 𝑡)

��� � (𝑧0𝑡)−3/4, (5.5)

where the implicit constant in equation (5.5) is uniform for r in a bounded subset of 𝐻1(R).

Proof. Given Lemmas 5.4–5.8, as in [36], we first show that, for large t, the integral operator 𝐾𝑊
defined by

(𝐾𝑊 𝑓 )(𝑧) =
1
𝜋

∫
C

1
𝜁 − 𝑧 𝑓 (𝜁)𝑊 (𝜁) 𝑑𝜁

is bounded by

‖𝐾𝑊 ‖𝐿∞→𝐿∞ � (𝑧0𝑡)−1/4, (5.6)

where the implied constants depend only on ‖𝑟 ‖𝐻 1 . This is the goal of Lemma 5.6. It implies that

𝑚 (3) = (𝐼 − 𝐾𝑊 )−1𝐼 (5.7)

exists as an 𝐿∞ solution of equation (5.3).
We then show in Lemma 5.7 that the solution 𝑚 (3) (𝑧; 𝑥, 𝑡) has a large-z asymptotic expansion of the

form in equation (5.4) where 𝑧 → ∞ along the positive imaginary axis. Note that, for such z, we can
bound |𝑧−𝜁 | below by a constant times |𝑧 | + |𝜁 |. Finally, in Lemma 5.8, we prove the estimate in equation
(5.5), where the constants are uniform in r belonging to a bounded subset of 𝐻1(R). The estimates given
by equations (5.4), (5.5) and (5.6) result from the bounds obtained in the next four lemmas. �

Lemma 5.4. Set 𝜉 = ±𝑧0 and 𝑧 = (𝑢 + 𝜉) + 𝑖𝑣. We have���𝜕R(2)𝑒±2𝑖 𝜃
��� � (

|𝑝′𝑖 (Re(𝑧)) | + |𝑧 − 𝜉 |−1/2
)
𝑒−𝑧0𝑡 |𝑢 | |𝑣 | . (5.8)

Proof. We only show the inequalities above in Ω1 and Ω+
7 . Recall that near 𝑧0

𝑖𝜃 (𝑧; 𝑥, 𝑡) = 4𝑖𝑡
(
(𝑧 − 𝑧0)3 + 3𝑧0(𝑧 − 𝑧0)2 − 2𝑧30

)
.
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In Ω1, we use the facts that 𝑢 ≥ 0, 𝑣 ≥ 0 and |𝑢 | ≥ |𝑣 | to deduce

Re(2𝑖𝜃) = 8𝑖𝑡 (3𝑖𝑢2𝑣 − 𝑖𝑣3 + 6𝑖𝑢𝑣𝑧0)
= 8𝑡 (−3𝑢2𝑣 + 𝑣3 − 6𝑢𝑣𝑧0)
≤ 8𝑡 (−3𝑢2𝑣 + 𝑢2𝑣 − 6𝑢𝑣𝑧0)
≤ 8𝑡 (−2𝑢2𝑣 − 6𝑢𝑣𝑧0)
≤ −8|𝑢 | |𝑣 |𝑧0𝑡.

Similarly, in Ω+
7 , we have 𝑢 ≤ 0, 𝑣 ≥ 0 and |𝑢 | ≥ |𝑣 |, hence

Re(−2𝑖𝜃) = −8𝑖𝑡 (3𝑖𝑢2𝑣 − 𝑖𝑣3 + 6𝑖𝑢𝑣𝑧0)
= 8𝑡 (3𝑢2𝑣 + 6𝑢𝑣𝑧0)
≤ 8𝑡 (−3𝑢𝑧0𝑣 + 6𝑢𝑣𝑧0)
≤ −8|𝑢 | |𝑣 |𝑧0𝑡.

The estimate given by equation (5.8) then follows from Lemma 3.1. The quantities 𝑝′𝑖 (Re 𝑧) are all
bounded uniformly for r in a bounded subset of 𝐻1(R). �

Lemma 5.5. For the localised Riemann-Hilbert problem from Problem 4.1, we have��𝑚LC( · ; 𝑥, 𝑡)
��∞ � 1, (5.9)��𝑚LC( · ; 𝑥, 𝑡)−1��∞ � 1. (5.10)

All implied constants are uniform for r in a bounded subset of 𝐻1(R).
The proof of this lemma is a consequence of the previous section.

Lemma 5.6. Suppose that 𝑟 ∈ 𝐻1(R). Then the estimate given by equation (5.6) holds, where the
implied constants depend on ‖𝑟 ‖𝐻 1 .
Proof. To prove equation (5.6), first note that

‖𝐾𝑊 𝑓 ‖∞ ≤ ‖ 𝑓 ‖∞
∫
C

1
|𝑧 − 𝜁 | |𝑊 (𝜁) | 𝑑𝑚(𝜁) (5.11)

so that we need only estimate the right-hand integral. We will prove the estimate in the region 𝑧 ∈ Ω1
since estimates for the remaining regions are identical. From equation (5.2),

|𝑊 (𝜁) | ≤
��𝑚LC��∞��(𝑚LC)−1��∞���𝜕𝑅1

���|𝑒2𝑖 𝜃 |.

Setting 𝑧 = 𝛼 + 𝑖𝛽 and 𝜁 = (𝑢 + 𝑧0) + 𝑖𝑣, the region Ω1 corresponds to 𝑢 ≥ 𝑣 ≥ 0. We then have from
equations (5.8), (5.9) and (5.10) that∫

Ω1

1
|𝑧 − 𝜁 | |𝑊 (𝜁) | 𝑑𝜁 � 𝐼1 + 𝐼2,

where

𝐼1 =
∫ ∞

0

∫ ∞

𝑣

1
|𝑧 − 𝜁 | |𝑝

′
1 (𝑢) |𝑒

−𝑡 𝑧0𝑢𝑣 𝑑𝑢 𝑑𝑣

𝐼2 =
∫ ∞

0

∫ ∞

𝑣

1
|𝑧 − 𝜁 | |𝑢 + 𝑖𝑣 |

−1/2𝑒−𝑡 𝑧0𝑢𝑣 𝑑𝑢 𝑑𝑣.
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It now follows from [4, proof of Proposition D.1] that

|𝐼1 |, |𝐼2 | � (𝑧0𝑡)−1/4.

It then follows that ∫
Ω1

1
|𝑧 − 𝑧0 |

|𝑊 (𝜁) | 𝑑𝜁 � (𝑧0𝑡)−1/4,

which, together with similar estimates for the integrals over the remainingΩ𝑖s, proves equation (5.6). �

Lemma 5.7. For 𝑧 = 𝑖𝜎 with 𝜎 → +∞, the expansion in equation (5.4) holds with

𝑚 (3)
1 (𝑥, 𝑡) = 1

𝜋

∫
C

𝑚 (3) (𝜁 ; 𝑥, 𝑡)𝑊 (𝜁 ; 𝑥, 𝑡) 𝑑𝜁 . (5.12)

Proof. We write equation (5.3) as

𝑚 (3) (𝑧; 𝑥, 𝑡) = (1, 0) + 1
𝑧
𝑚 (3)

1 (𝑥, 𝑡) + 1
𝜋𝑧

∫
C

𝜁

𝑧 − 𝜁 𝑚
(3) (𝜁 ; 𝑥, 𝑡)𝑊 (𝜁 ; 𝑥, 𝑡) 𝑑𝑚(𝜁),

where 𝑚 (3)
1 is given by equation (5.12). If 𝑧 = 𝑖𝜎, it is easy to see that |𝜁 |/|𝑧 − 𝜁 | is bounded above by a

fixed constant independent of z, while |𝑚 (3) (𝜁 ; 𝑥, 𝑡) | � 1 by the remarks following equation (5.7). If we
can show that

∫
C
|𝑊 (𝜁 ; 𝑥, 𝑡) | 𝑑𝜁 is finite, it will follow from the Dominated Convergence Theorem that

lim
𝜎→∞

∫
C

𝜁

𝑖𝜎 − 𝜁 𝑚
(3) (𝜁 ; 𝑥, 𝑡)𝑊 (𝜁 ; 𝑥, 𝑡) 𝑑𝜁 = 0,

which implies the required asymptotic estimate. We will estimate
∫

Ω1

|𝑊 (𝜁) | 𝑑𝑚(𝜁) since the other

estimates are identical. One can write

Ω1 = {(𝑢 + 𝑧0, 𝑣) : 𝑣 ≥ 0, 𝑣 ≤ 𝑢 < ∞}.

Using equations (5.8), (5.9) and (5.10), we may then estimate∫
Ω1

|𝑊 (𝜁 ; 𝑥, 𝑡) | 𝑑𝜁 � 𝐼1 + 𝐼2,

where

𝐼1 =
∫ ∞

0

∫ ∞

𝑣

��𝑝′1 (𝑢 + 𝑧0)��𝑒−𝑡 𝑧0𝑢𝑣 𝑑𝑢 𝑑𝑣

𝐼2 =
∫ ∞

0

∫ ∞

𝑣

��𝑢2 + 𝑣2��−1/2𝑒−𝑡 𝑧0𝑢𝑣 𝑑𝑢 𝑑𝑣.

It now follows from [4, Proposition D.2] that

𝐼1, 𝐼2 � (𝑧0𝑡)−3/4.

These estimates together show that∫
Ω1

|𝑊 (𝜁 ; 𝑥, 𝑡) | 𝑑𝑚(𝜁) � (𝑧0𝑡)−3/4 (5.13)
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and that the implied constant depends only on ‖𝑟 ‖𝐻 1 . In particular, the integral in equation (5.13) is
bounded uniformly as 𝑡 → ∞. �

Lemma 5.8. The estimate in equation (5.5) holds with constants uniform in r in a bounded subset of
𝐻1 (R) .

Proof. From the representation formula given by equation (5.12), Lemma 5.6 and the remarks following,
we have ���𝑚 (3)

1 (𝑥, 𝑡)
��� � ∫

C

|𝑊 (𝜁 ; 𝑥, 𝑡) | 𝑑𝜁 .

In the proof of Lemma 5.7, we bounded this integral by (𝑧0𝑡)−3/4 modulo constants with the required
uniformity. �

6. Long-time asymptotics

We now put together our previous results and formulate the long-time asymptotics of 𝑢(𝑥, 𝑡) in Region
I. Undoing all transformations we carried out previously, we get back m:

𝑚(𝑧; 𝑥, 𝑡) = 𝑚 (3) (𝑧; 𝑥, 𝑡)𝑚LC(𝑧; 𝑧0)R(2) (𝑧)−1𝛿(𝑧)𝜎3 . (6.1)

By stand inverse scattering theory, the coefficient of 𝑧−1 in the large-z expansion for 𝑚(𝑧; 𝑥, 𝑡) will be
the solution to the MKdV equation:

Lemma 6.1. For 𝑧 = 𝑖𝜎 and 𝜎 → +∞, the asymptotic relations

𝑚(𝑧; 𝑥, 𝑡) = 𝐼 + 1
𝑧
𝑚1(𝑥, 𝑡) + 𝑜

(
1
𝑧

)
(6.2)

𝑚LC (𝑧; 𝑥, 𝑡) = 𝐼 + 1
𝑧
𝑚LC

1 (𝑥, 𝑡) + 𝑜
(

1
𝑧

)
(6.3)

hold. Moreover,

(𝑚1 (𝑥, 𝑡))12 =
(
𝑚LC

1 (𝑥, 𝑡)
)

12
+O

(
(𝑧0𝑡)−3/4

)
. (6.4)

Proof. By Lemma 2.2(iii), the expansion

𝛿(𝑧)𝜎3 =

(
1 0
0 1

)
+ 1
𝑧

(
𝛿1 0
0 𝛿−1

1

)
+O

(
𝑧−2

)
(6.5)

holds, with the remainders in equation (6.5) uniform in r in a bounded subset of 𝐻1. Equation (6.2)
follows from equations (6.1) and (6.3), the fact that R(2) ≡ 𝐼 in Ω2 and equation (6.5). Notice the fact
that the diagonal matrix in equation (6.5) does not affect the 12-component of m. Hence, for 𝑧 = 𝑖𝜎,

(𝑚(𝑧; 𝑥, 𝑡))12 =
1
𝑧

(
𝑚 (3)

1 (𝑥, 𝑡)
)

12
+ 1
𝑧

(
𝑚LC

1 (𝑥, 𝑡)
)

12
+ 𝑜

(
1
𝑧

)
,

and the result now follows from equation (5.5). �
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We arrive at the asymptotic formula in Region I:

Proposition 6.2. The function

𝑢(𝑥, 𝑡) = −2 lim
𝑧→∞

𝑧 𝑚12 (𝑧; 𝑥, 𝑡) (6.6)

takes the form

𝑢(𝑥, 𝑡) = 𝑢𝑎𝑠 (𝑥, 𝑡) +O
(
𝑡−1 + (𝑧0𝑡)−3/4

)
,

where

𝑢𝑎𝑠 (𝑥, 𝑡) =
(
𝜅

3𝑡𝑧0

)1/2
cos

(
16𝑡𝑧30 − 𝜅 log(192𝑡𝑧30) + 𝜙(𝑧0)

)
,

with

𝜙(𝑧0) = arg Γ(𝑖𝜅) − 𝜋
4
− arg 𝑟 (𝑧0) +

1
𝜋

∫ 𝑧0

−𝑧0

log
(

1 − |𝑟 (𝜁) |2

1 − |𝑟 (𝑧0) |2

)
𝑑𝜁

𝜁 − 𝑧0

obtained from equation (4.25).

See Section 4 in Deift-Zhou [11] for full details on the derivation for the explicit formula of 𝑢𝑎𝑠 .

7. Regions II–V

We now turn to the study of Regions II–V. We first study Region III, then Region II and finally Region
IV and Region V. Our starting point is RHP Problem 1.2, and the strategy of the proof is as follows:

1. We scale the RHP Problem 1.2 by a factor determined by the region.
2. We use 𝜕-steepest descent to study the scaled RHP and obtain both the leading term and the error

term.
3. We multiply by the scaling factor to get the asymptotic formula for the original RHP Problem 1.2.

7.1. Region III

In this region, 𝜏 ≤ 𝑀 .

7.1.1. 𝑥 < 0
We first notice that

𝑧0 = (𝜏/𝑡)1/3 ≤ (𝑀)1/3𝑡−1/3 → 0 as 𝑡 → ∞

so we do not need the lower/upper factorisation given by equation (2.4) for |𝑧 | < 𝑧0 and are left with the
following upper/lower factorisation:

𝑒−𝑖 𝜃 ad 𝜎3𝑣(𝑧) = ��	
1 −𝑟 (𝑧)𝑒−2𝑖 𝜃

0 1


����	
1 0

𝑟 (𝑧)𝑒2𝑖 𝜃 1

��, 𝑧 ∈ R. (7.1)

Now we carry out the following scaling:

𝑧 → 𝜁𝑡−1/3, (7.2)
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−𝑧0𝑡1/3 𝑧0𝑡
1/3

Σ (III)
1Σ (III)

2

Σ (III)
3 Σ (III)

4

Ω1Ω2

Ω3 Ω4

Figure 7.1. Σ − Region-III.

and equation (7.1) becomes

��	
1 −𝑟 (𝜁𝑡−1/3)𝑒−2𝑖 𝜃 (𝜁 𝑡−1/3)

0 1


����	
1 0

𝑟 (𝜁𝑡−1/3)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 1


��, 𝑧 ∈ R, (7.3)

where

𝜃 (𝜁𝑡−1/3) = 4𝜁3 + 𝑥𝜁𝑡−1/3 = 4(𝜁3 − 3𝜏2/3𝜁).

Note that the stationary points become ±𝑧0𝑡1/3.
We now study the scaled Riemann-Hilbert problem with the jump matrix given by equation (7.3).

We will again perform contour deformation and write the solution as a product of the solution to a
𝜕-problem and a ‘localised’ Riemann-Hilbert problem.

For brevity, we only discuss the 𝜕-problem in Ω1. In Ω1, we write

𝜁 = 𝑢 + 𝑧0𝑡1/3 + 𝑖𝑣.

Then

Re(2𝑖𝜃 (𝜁𝑡−1/3)) = 8
(
−3(𝑢 + 𝑧0𝑡1/3)2𝑣 + 𝑣3 + 3𝜏2/3𝑣

)
≤ 8

(
−3𝑢2𝑣 − 6𝑢𝑣𝑧0𝑡1/3 + 𝑣3

)
≤ −16𝑢2𝑣

𝑅1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

𝑟 (𝜁𝑡−1/3)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 0

)
𝑧 ∈ (𝑧0𝑡1/3,∞)

(
0 0

𝑟 (𝑧0)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 0

)
𝑧 ∈ Σ1

and the interpolation is given by

𝑟 (𝑧0) +
(
𝑟
(
Re𝜁𝑡−1/3

)
− 𝑟 (𝑧0)

)
cos 2𝜙.

So we arrive at the 𝜕-derivative in Ω1 in the 𝜁 variable:
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𝜕𝑅1 =

(
𝑡−1/3𝑟 ′

(
𝑢𝑡−1/3

)
cos 2𝜙 − 2

𝑟 (𝑢𝑡−1/3) − 𝑟 (𝑧0)��𝜁 − 𝑧0𝑡1/3
�� 𝑒𝑖𝜙 sin 2𝜙

)
𝑒2𝑖 𝜃 , (7.4)

���𝜕𝑅1𝑒
±2𝑖 𝜃

��� � (
|𝑡−1/3𝑟 ′

(
𝑢𝑡−1/3

)
| + ‖𝑟 ′‖𝐿2

𝑡1/3 |𝜁𝑡−1/3 − 𝑧0 |1/2

)
𝑒−16𝑢2𝑣 . (7.5)

We will derive an exactly solvable model problem before dealing with the 𝜕− error estimates. We apply
the fundamental theorem of calculus to get

𝑟 (𝜁𝑡−1/3)𝑒2𝑖 𝜃 − 𝑟 (0)𝑒2𝑖 𝜃 ≤
���� 𝜁𝑡1/6 𝑒

8𝑖 (𝜁 3−3𝜏2/3𝜁 )
����.

Given the fact that 𝑧0𝑡1/3 = 𝜏1/3 ≤ (𝑀)1/3, we have that

���� 𝜁𝑡1/6 𝑒
8𝑖 (𝜁 3−3𝜏2/3𝜁 )

����𝐿1∩𝐿2∩𝐿∞ � 𝑡−1/6.

So we can reduce the problem to a problem on the contour given by Figure 7.1 with the following jump
matrices:

𝑒−𝑖 𝜃 ad 𝜎3𝑣 (2) (𝜁) = 𝑒−4𝑖(𝜁 3+(𝑥/(4𝑡1/3))𝜁 ) ad 𝜎3

(
1 0
𝑟 (0) 1

)
, 𝜁 ∈ Σ (III)

1 ∪ Σ (III)
2 (7.6)

= 𝑒−4𝑖(𝜁 3+(𝑥/(4𝑡1/3))𝜁 ) ad 𝜎3

(
1 −𝑟 (0)
0 1

)
, 𝜁 ∈ Σ (III)

3 ∪ Σ (III)
4

= 𝑒−4𝑖(𝜁 3+(𝑥/(4𝑡1/3))𝜁 ) ad 𝜎3𝑣(0), 𝜁 ∈ [−𝑧0𝑡1/3, 𝑧0𝑡
1/3] .

Following the same argument on page 357 of [11], the RH problem is further reduced to one defined on
the following contour as shown in Figure 7.2, which will be related to solve a Painlevé II equation:

0

Σ (P)
1Σ (P)

2

Σ (P)
3 Σ (P)

4

Figure 7.2. Σ-Painlevé.
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𝑒−𝑖 𝜃 ad 𝜎3𝑣 (2) (𝜁) = 𝑒−4𝑖(𝜁 3+(𝑥/(4𝑡1/3))𝜁 ) ad 𝜎3

(
1 0
𝑟 (0) 1

)
, 𝜁 ∈ Σ (P)

1 ∪ Σ (P)
2 (7.7)

= 𝑒−4𝑖(𝜁 3+(𝑥/(4𝑡1/3))𝜁 ) ad 𝜎3

(
1 −𝑟 (0)
0 1

)
, 𝜁 ∈ Σ (P)

3 ∪ Σ (P)
4 ,

which is exactly solvable.
Let P be a solution of the Painlevé II equation

𝑃′′(𝑠) − 𝑠𝑃(𝑠) − 2𝑃3 (𝑠) = 0

determined by 𝑟 (0). Then the reduced factorisation problem above is related to the Painlevé II equation
by an isomonodromy problem associated to the linear problem

𝑑𝜓

𝑑𝑧
=

(
−4𝑖𝑧2 − 𝑖𝑠 − 2𝑖𝑃2 4𝑃𝑖𝑧 − 2𝑃′

−4𝑃𝑖𝑧 − 2𝑃′ 4𝑖𝑧2 + 𝑖𝑠 + 2𝑖𝑃2

)
𝜓,

with 𝑠 = 𝑥/𝑡1/3 and, as 𝜁 → ∞,

Ψ𝑖 (𝑠, 𝜁) ∼ 𝑒−( [4𝑖/3]𝜁 3+𝑖𝑠𝜁 )𝜎3 .

Here, over six sections (compare [11, Figure 5.7]), one has the jump relations

𝜓𝑖+1(𝑠, 𝑧) = 𝜓𝑖 (𝑠, 𝑧)𝑆𝑖 , 1 ≤ 𝑖 ≤ 6, 𝜓7 = 𝜓1,

where 𝑆𝑖s are determined by three parameters (p, q, r) satisfying

r = p + q + pqr.

In our setting, we have that

p = 𝑟 (0), q = −𝑟 (0), r =
p + q

1 − pq
= 0.

Then one can reconstruct P from 𝜓 ([11, (5.44)]):

𝑃 = 𝑃(𝑥/𝑡1/3) = lim
𝜁→∞

2𝑖𝜁
(
Ψ𝑒( (4𝑖/3)𝜁 3+𝑖𝑠𝜁 )𝜎 − 𝐼

)
12
.

Since this isomonodromy problem is standard, we refer to Deift-Zhou [11, Sec.5] for full details.
We then proceed as in the previous section and study the integral equation related to the 𝜕 problem.

Setting 𝑧 = 𝛼 + 𝑖𝛽 and 𝜁 = (𝑢 + 𝑧0𝑡1/3) + 𝑖𝑣, the region Ω1 corresponds to 𝑢 ≥ 𝑣 ≥ 0. We decompose
the integral operator into three parts:∫

Ω1

1
|𝑧 − 𝜁 | |𝑊 (𝜁) | 𝑑𝜁 � 𝐼1 + 𝐼2,

where

𝐼1 =
∫ ∞

0

∫ ∞

𝑣

1
|𝑧 − 𝜁 |

���𝑡−1/3𝑟 ′
(
𝑢𝑡−1/3

)���𝑒−16𝑢2𝑣 𝑑𝑢 𝑑𝑣

𝐼2 =
∫ ∞

0

∫ ∞

𝑣

1
|𝑧 − 𝜁 |

1
𝑡1/3

��𝑢𝑡−1/3 + 𝑖𝑣𝑡−1/3
��1/2
𝑒−16𝑢2𝑣 𝑑𝑢 𝑑𝑣.
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We first note that (∫
R

���𝑡−1/3𝑟 ′
(
𝑢𝑡−1/3

)���2𝑑𝑢)1/2
= 𝑡−1/6‖𝑟 ′‖𝐿2 .

Using this and the following estimate from [4, proof of Proposition D.1]���� 1
|𝑧 − 𝜁 |

����𝐿2 (𝑣,∞) ≤
𝜋1/2

|𝑣 − 𝛽 |1/2 . (7.8)

and Cauchy-Schwarz’s inequality on the u-integration, we may bound 𝐼1 by constants times

𝑡−1/6‖𝑟 ′‖2

∫ ∞

0

1
|𝑣 − 𝛽 |1/2 𝑒

−𝑣3
𝑑𝑣 � 𝑡−1/6.

For 𝐼2, we estimate����� 1
𝑡1/3

��𝑢𝑡−1/3 + 𝑖𝑣𝑡−1/3
��1/2

�����𝐿𝑝 (𝑣,∞) ≤
(∫ ∞

𝑣
𝑡−𝑝/3

(
1

(𝑢𝑡−1/3)2 + (𝑣𝑡−1/3)2

) 𝑝/4
𝑑𝑢

)1/𝑝

= 𝑡−1/6

(∫ ∞

𝑣

(
1

𝑢2 + 𝑣2

) 𝑝/4
𝑑𝑢

)1/𝑝

≤ 𝑐𝑡−1/6𝑣1/𝑝−1/2.

Now, by equation (7.8) and an application of the Hölder’s inequality with 𝑃 > 2, we get

|𝐼2 | ≤
∫ ∞

0

����� 1
𝑡1/3

��𝑢𝑡−1/3 + 𝑖𝑣𝑡−1/3
��1/2

�����𝐿𝑝 (𝑣,∞)

���� 1
|𝑧 − 𝜁 |

����𝐿𝑞 (𝑣,∞)𝑒
−16𝑣3

𝑑𝑣

≤ 𝑐
∫ ∞

0
𝑡−1/6𝑣1/𝑝−1/2 |𝑣 − 𝛽 |1/𝑞−1𝑒−16𝑣3

𝑑𝑣

≤ 𝑐𝑡−1/6.

This proves that ∫
Ω1

1
|𝑧 − 𝜁 | |𝑊 (𝜁) | 𝑑𝜁 � 𝑡−1/6.

We now show that ∫
Ω1

|𝑊 (𝜁) | 𝑑𝜁 � 𝑡−1/6. (7.9)

Again, we decompose the integral above into two parts:

𝐼1 =
∫ ∞

0

∫ ∞

𝑣

���𝑡−1/3𝑟 ′
(
𝑢𝑡−1/3

)���𝑒−16𝑢2𝑣 𝑑𝑢 𝑑𝑣

𝐼2 =
∫ ∞

0

∫ ∞

𝑣

1
𝑡1/3

��𝑢𝑡−1/3 + 𝑖𝑣𝑡−1/3
��1/2
𝑒−16𝑢2𝑣 𝑑𝑢 𝑑𝑣.
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By Cauchy-Schwarz’s inequality:

𝐼1 ≤
∫ ∞

0
𝑡−1/6‖𝑟 ′‖2

(∫ ∞

𝑣
𝑒−16𝑢2𝑣𝑑𝑢

)1/2
𝑑𝑣

≤ 𝑐𝑡−1/6
∫ ∞

0

𝑒−16𝑣3

4√𝑣
𝑑𝑣

≤ 𝑐𝑡−1/6.

By Hölder’s inequality:

𝐼2 ≤ 𝑐𝑡−1/6
∫ ∞

0
𝑣1/𝑝−1/2

(∫ ∞

𝑣
𝑒−16𝑞𝑢2𝑣𝑑𝑢

)1/𝑞
𝑑𝑣

≤ 𝑐𝑡−1/6
∫ ∞

0
𝑣3/2𝑝−1𝑒−16𝑣3

𝑑𝑣

≤ 𝑐𝑡−1/6.

We now follow the argument of Section 6 and [11, Section 5] to obtain the long-time asymptotic
formula in Region III (𝑥 < 0):

𝑢(𝑥, 𝑡) = lim
𝑧→∞

−2𝑧𝑚12(𝑥, 𝑡; 𝑧) (7.10)

= lim
𝜁→∞

−2𝑡−1/3𝜁𝑚12 (𝑥, 𝑡; 𝜁)

=
1

(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
𝑡−1/2

)
,

where P is a solution of the Painlevé II equation

𝑃′′(𝑠) − 𝑠𝑃(𝑠) − 2𝑃3 (𝑠) = 0

determined by 𝑟 (0).

7.1.2. 𝑥 > 0
In this case, we have the stationary points

±𝑖𝑧0 = ±𝑖
√

|𝑥 |
12𝑡

stay on the imaginary axis. Given the signature table of 𝜃 function (see [11, Figure 5.9]), we again
perform the scaling

𝑧→ 𝜁𝑡−1/3

and contour deformation
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0

𝑖𝑧0𝑡
1/3

−𝑖𝑧0𝑡1/3

Σ (III+)
1Σ (III+)

2

Σ (III+)
3 Σ (III+)

4

Ω1Ω2

Ω3 Ω4

We again only discuss the 𝜕-problem in Ω1. In Ω1, we write

𝜁 = 𝑢 + 𝑖𝑣

and then

Re(𝑖𝜃 (𝜁𝑡−1/3)) = 8
(
−3𝑢2𝑣 + 𝑣3 − 𝑥𝑣𝑡−1/3

)
≤ 8

(
−3𝑢2𝑣 + 𝑢2𝑣

)
≤ −16𝑢2𝑣.

To apply the 𝜕 method, we define

𝑅1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

𝑟 (𝜁𝑡−1/3)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 0

)
𝑧 ∈ (0,∞)

(
0 0

𝑟 (0)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 0

)
𝑧 ∈ Σ (III+)

1

and the interpolation is given by

𝑟 (0) +
(
𝑟
(
Re𝜁𝑡−1/3

)
− 𝑟 (0)

)
cos 2𝜙.

We can now repeat the analysis in the case above for 𝑥 < 0 and obtain the same long-time asymptotics
as equation (7.10).

7.2. Region II

We follow the strategy of the previous subsection. We now scale

𝑧 → 𝜁 𝑧0

and the jump matrix becomes

��	
1 −𝑟 (𝜁 𝑧0)𝑒−2𝑖 𝜃 (𝜁 𝑧0)

0 1


����	
1 0

𝑟 (𝜁 𝑧0)𝑒2𝑖 𝜃 (𝜁 𝑧0) 1


��, 𝑧 ∈ R, (7.11)
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−1 1

Σ (II)
1Σ (II)

2

Σ (II)
3 Σ (II)

4

Ω1Ω2

Ω3 Ω4

Figure 7.3. Σ − Region-II.

where

𝜃 (𝜁 𝑧0) = 4𝜏𝜁3 + 𝑥𝜁𝑧0 = 4𝜏(𝜁3 − 3𝜁).

For brevity, we again only discuss the 𝜕-problem in Ω1 of Figure 7.3. In Ω1, we write

𝜁 = 𝑢 + 1 + 𝑖𝑣

then

Re(2𝑖𝜃 (𝜁 𝑧0)) = 8𝜏
(
−3(𝑢 + 1)2𝑣 + 𝑣3 + 3𝑣

)
(7.12)

≤ 8𝜏
(
−3𝑢2𝑣 − 6𝑢𝑣 + 𝑣3

)
≤ −16𝜏𝑢𝑣

𝑅1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

𝑟 (𝜁 𝑧0)𝑒2𝑖 𝜃 (𝜁 𝑧0) 0

)
𝑧 ∈ (1,∞)

(
0 0

𝑟 (𝑧0)𝑒2𝑖 𝜃 (𝜁 𝑧0) 0

)
𝑧 ∈ Σ (II)

1

and the interpolation is given by

𝑟 (𝑧0) + (𝑟 (Re𝜁 𝑧0) − 𝑟 (𝑧0)) cos 2𝜙.

So we arrive at the 𝜕-derivative in Ω1 in the 𝜁 variable:

𝜕𝑅1 =

(
𝑧0𝑟

′(𝑢𝑧0) cos 2𝜙 − 2
𝑟 (𝑢𝑧0) − 𝑟 (𝑧0)

|𝜁 − 1| 𝑒𝑖𝜙 sin 2𝜙
)
𝑒2𝑖 𝜃 (7.13)���𝜕𝑅1𝑒

±2𝑖 𝜃
��� � (

|𝑧0𝑟 ′(𝑢𝑧0) | +
𝑧0‖𝑟 ′‖𝐿2

|𝜁 𝑧0 − 𝑧0 |1/2

)
𝑒−16𝜏𝑢𝑣 . (7.14)

We now replace 𝑡−1/3 and 𝑒−16𝑢2𝑣 in the previous subsection with 𝑧0 and 𝑒−16𝜏𝑢𝑣 , respectively, and
conclude that ∫

Ω1

|𝑊 (𝜁) | 𝑑𝜁 � 𝑧1/2
0 𝜏−3/4 (7.15)
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Σ (IV)
1

Σ (IV)
2

Ω1

Ω2

Ω3

Ω4

𝑖𝜂

−𝑖𝜂

(1)

(2)(3)

Figure 7.4. Σ − Region-IV.

and arrive at the following long-time asymptotics:

𝑢(𝑥, 𝑡) = 1
(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
𝜏−3/4𝑧3/2

0

)
(7.16)

=
1

(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
(𝑧0𝑡)−3/4

)
. (7.17)

Remark 7.1. In the overlap between Regions II and III, we take Re(2𝑖𝜃 (𝜁 𝑧0)) < −16𝜏𝑢2𝑣 in equation
(7.12). The corresponding estimate in equation (7.15) becomes∫

Ω1

|𝑊 (𝜁) | 𝑑𝜁 � 𝑧1/2
0 𝜏−1/2, (7.18)

and the resulting asymptotics in Region II is:

𝑢(𝑥, 𝑡) = 1
(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
𝑡−1/2

)
, (7.19)

which matches up with equation (7.10).

7.3. Region IV

In this region, we have

𝜏 =

(
𝑥

12𝑡1/3

)3/2
> (𝑀)−1 > 0

and choose a constant 𝜂 such that 0 < 𝜂 < (𝑀)−1/3. The contour deformation is given in Figure 7.4,
and we carry out the same scaling

𝑧 → 𝜁𝑡−1/3.

https://doi.org/10.1017/fms.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.63


38 Gong Chen and Jiaqi Liu

We extend r to Part (1) of Ω2 by setting 𝑟 = 𝑟 (Re𝜁𝑡−1/3). Also in this region,

Re(2𝑖𝜃 (𝜁𝑡−1/3)) = 8
(
−3𝑢2𝑣 + 𝑣3

)
− 2(𝑥𝑡−1/3)𝑣

= 8
(
−3𝑢2𝑣 + 𝑣3

)
− 24𝜏2/3𝑣

= −24𝑢2𝑣 − 16𝜏2/3𝑣.

We now integrate and find that∫
(1)

���𝑡−1/3𝑟 ′(𝑢𝑡−1/3)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3)
���𝑑𝜁 = ∫ 𝜂

0

∫ ∞

−∞

���𝑡−1/3𝑟 ′(𝑢𝑡−1/3)𝑒−24𝑢2𝑣−16𝜏2/3𝑣
���𝑑𝑢𝑑𝑣 (7.20)

� 𝑡−1/6𝜏−1/2.

In Part (2), we write

𝜁 = 𝑢 + 𝑖(𝑣 + 𝜂)

and then

Re(2𝑖𝜃 (𝜁𝑡−1/3)) = 8
(
−3𝑢2(𝑣 + 𝜂) + (𝑣 + 𝜂)3

)
− 2(𝑥𝑡−1/3) (𝑣 + 𝜂) (7.21)

≤ 8
(
−3𝑢2𝑣 − 3𝑢2𝜂 + 𝑣3 + 3𝑣3𝜂 + 3𝑣𝜂2 + 𝜂3

)
− 24𝜏2/3 (𝑣 + 𝜂)

≤ −16(𝑢2𝑣 + 𝜏2/3𝜂).

For the 𝜕 problem, we set

𝑅1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

𝑟 (𝜁𝑡−1/3)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 0

)
𝑧 ∈ R(

0 0
𝑟 (0)𝑒2𝑖 𝜃 (𝜁 𝑡−1/3) 0

)
𝑧 ∈ Σ (IV)

1

and the interpolation is given by

𝑟 (0) +
(
𝑟
(
Re𝜁𝑡−1/3

)
− 𝑟 (0)

)
cos 2𝜙.

So we arrive at the 𝜕-derivative in Ω1 in the 𝜁 variable:

𝜕𝑅1 =

(
𝑡−1/3𝑟 ′

(
𝑢𝑡−1/3

)
cos 2𝜙 − 2

𝑟 (𝑢𝑡−1/3) − 𝑟 (0)
|𝜁 − 𝑖𝜂 | 𝑒𝑖𝜙 sin 2𝜙

)
𝑒2𝑖 𝜃 , (7.22)

���𝜕𝑅1𝑒
±2𝑖 𝜃

��� � (
|𝑡−1/3𝑟 ′

(
𝑢𝑡−1/3

)
| + ‖𝑟 ′‖𝐿2

𝑡1/3 |𝑢𝑡−1/3 + 𝑖𝑣𝑡−1/3 |1/2

)
𝑒−16(𝑢2𝑣+𝜏2/3𝜂) .

Following the same procedure, we show that∫
(2)

|𝑊 (𝜁) | 𝑑𝜁 � 𝑡−1/6𝑒−16𝜏2/3𝜂 , (7.23)
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Σ (𝑉 )
1

R

Σ (𝑉 )
2

𝑖𝑧0

Ω1

Ω2

−𝑖𝑧0

𝑖ℎ

−𝑖ℎ

Figure 7.5. Σ − Region-V.

which is the error term resulting from the 𝜕 estimate. We can now combine equations (7.20) and (7.23)
and follow the argument in Section 6 and [11, Section 5] to obtain the long-time asymptotic formula in
Region IV:

𝑢(𝑥, 𝑡) = 1
(3𝑡)1/3 𝑃

(
𝑥

(3𝑡)1/3

)
+O

(
(𝑡𝜏)−1/2 + 𝑒

−16𝜏2/3𝜂

𝑡1/2

)
, (7.24)

where P is a solution of the Painlevé II equation

𝑃′′(𝑠) − 𝑠𝑃(𝑠) − 2𝑃3 (𝑠) = 0

determined by 𝑟 (0).

7.4. Region V

Given |𝑧0 | > 𝑀−1, let ℎ = 1/(2𝑀), then we can directly read off that for 𝑧 = 𝑢 + 𝑖𝑣 ∈ Ω1 of Figure 7.5,

Re(2𝑖𝜃 (𝑧)) = 2𝑡
(
4
(
−3𝑢2𝑣 + 𝑣3

)
− 𝑥
𝑡
𝑣
)

(7.25)

≤ −24𝑢2𝑣𝑡 + 2
(
4ℎ2 − 𝑥

𝑡

)
𝑣𝑡 (7.26)

≤ −24𝑢2𝑣𝑡 − 2𝑐𝑣𝑡. (7.27)

So we simply factorise

𝑒−𝑖 𝜃 ad 𝜎3𝑣(𝑧) =
(

1 −𝑟𝑒−2𝑖 𝜃

0 1

) (
1 0
𝑟𝑒2𝑖 𝜃 1

)
and deform R to Σ (𝑉 )

1 and Σ (𝑉 )
2 . We only study the case of Ω1. It is obvious that 𝑟 (𝑢)𝑒2𝑖 𝜃 decays

exponentially on Σ (𝑉 )
1 , so we are only left with the error term∫

Ω2

���𝑟 ′(𝑢)𝑒2𝑖 𝜃 (𝑧)
���𝑑𝑧 = ∫ 𝜂

0

∫ ∞

−∞

���𝑟 ′(𝑢)𝑒−(24𝑢2𝑣+2𝑐𝑣)𝑡
���𝑑𝑢𝑑𝑣

�
∫ ∞

0

𝑒−2𝑐𝑣𝑡

4√𝑣𝑡
𝑑𝑣

� 𝑡−1
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and the analysis in Ω2 is identical. So we obtain in Region V

𝑢(𝑥, 𝑡) = O
(
𝑡−1

)
. (7.28)

Remark 7.2. If we instead let the initial condition 𝑢0 ∈ 𝐻2,𝑠 (R), where 𝑠 > 1/2, then following a similar
and simpler argument as in [9, section 3], we can deduce that the reflection coefficient 𝑟 ∈ 𝐻𝑠′ (R) for
any fixed 1/2 < 𝑠′ < 𝑠 for 1

2 < 𝑠 < 1 and 𝑠′ = 1 for 𝑠 = 1. Then replacing 𝑟 (𝑧) by the convolution form
as given in [9, (5.15)], we can deduce that the resulting error terms in equations (5.13), (7.10), (7.16),
(7.24) and (7.28) become

O
(
(𝑧0𝑡)−(1+2𝑠′)/4

)
, O

(
𝑡−(2+𝑠

′)/6
)
, O

(
(𝑧0𝑡)−(1+2𝑠′)/4

)
,O

(
(𝑡𝜏)−(2+𝑠′)/6

)
, O

(
𝑡−𝑠

′
)
.

8. Global approximation of solutions

The goal of this section is to extend our long-time asymptotics given by Theorem 1.3 to the MKdV
equation with rougher initial data. Three important spaces are𝐻1,𝐻 1

4 and 𝐿2. In𝐻1, the MKdV equation
has certain conserved quantities (compare Subsection 8.2). For 𝐻 1

4 , this space is the lowest regularity at
which the solution can be constructed by iterations (compare Theorem 8.2 and Subsection 8.3). Finally,
in 𝐿2, the mKdV enjoys the conservation of mass. We will show that the long-time asymptotics remain
valid in these spaces after we introduce decay at ±∞.

We first sketch the local existence and uniqueness of the strong solution in 𝐻𝑠 for 𝑠 ≥ 1
4 . We mainly

follow Kenig-Ponce-Vega [29] and Linares-Ponce [35].
First, we define the solution operator to the linear Airy equation by

𝑊 (𝑡)𝑢0 = 𝑒−𝑡𝜕𝑥𝑥𝑥𝑢0.

In other words, using the Fourier transform, one has

F𝑥 [𝑊 (𝑡)𝑢0] (𝜉) = 𝑒𝑖𝑡 𝜉
3
�̂�0 (𝜉).

Definition 8.1. The strong solution is defined in the following integral sense: we say the function 𝑢(𝑥, 𝑡)
is a strong solution in 𝐻𝑠 (R) to

𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑥𝑢 − 6𝑢2𝜕𝑥𝑢 = 0, 𝑢(0) = 𝑢0 ∈ 𝐻𝑠 (R) (8.1)

if and only if 𝑢 ∈ 𝐶 (𝐼, 𝐻𝑠 (R)) satisfies

𝑢 = 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑢2𝜕𝑥𝑢(𝑠)

)
𝑑𝑠. (8.2)

We also define

D𝑠𝑥ℎ(𝑥) = F−1 [
|𝜉 |𝑠 ℎ̂(𝜉)

]
(𝑥).

Then with the notations introduced above, we have the classical local well-posedness results due to
Kenig-Ponce-Vega [29].
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Theorem 8.2 (Kenig-Ponce-Vega). Let 𝑠 ≥ 1
4 . Then for any 𝑢0 ∈ 𝐻𝑠 (R), there is 𝑇 = 𝑇

(����D 1
4
𝑥 𝑢0

����
𝐿2

)
∼����D 1

4
𝑥 𝑢0

����−4

𝐿2
such that there exists a unique strong solution 𝑢(𝑡) to the initial value problem

𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑥𝑢 − 6𝑢2𝜕𝑥𝑢 = 0, 𝑢(0) = 𝑢0

satisfying

𝑢 ∈ 𝐶 ( [−𝑇, 𝑇] : 𝐻𝑠 (R)) (8.3)��D𝑠𝑥𝜕𝑥𝑢��𝐿∞
𝑥 (R:𝐿2

𝑡 [−𝑇 ,𝑇 ]) < ∞, (8.4)����D𝑠− 1
4

𝑥 𝜕𝑥𝑢

����
𝐿20
𝑥

(
R:𝐿

5
2
𝑡 [−𝑇 ,𝑇 ]

) < ∞, (8.5)

��D𝑠𝑥𝑢��𝐿5
𝑥 (R:𝐿10

𝑡 [−𝑇 ,𝑇 ]) < ∞ (8.6)

and

‖𝑢‖𝐿4
𝑥 (R:𝐿∞

𝑡 [−𝑇 ,𝑇 ]) < ∞. (8.7)

Moreover, there exists a neighbourhood N of 𝑢0 in 𝐻𝑠 (R) such that the solution map �̃�0 ∈ N ↦−→ �̃� is
smooth with respect to the norms given by equations (8.3)–(8.7).

Proof. Given T and C, define the spaces

X 𝑠
𝑇 =

{
𝑣 ∈ 𝐶 ( [−𝑇,𝑇] : 𝐻𝑠 (R)) : |||𝑣 |||X 𝑠

𝑇
< ∞

}
(8.8)

and

X 𝑠
𝑇 ,C =

{
𝑣 ∈ 𝐶 ([−𝑇, 𝑇] : 𝐻𝑠 (R)) : |||𝑣 |||X 𝑠

𝑇
≤ C

}
, (8.9)

where

|||𝑣 |||X 𝑠
𝑇
=

��D𝑠𝑥𝑣��𝐿∞
𝑡 ( [−𝑇 ,𝑇 ]:𝐻 𝑠 (R)) + ‖𝑣‖𝐿4

𝑥 (R:𝐿∞
𝑡 [−𝑇 ,𝑇 ])

+
��D𝑠𝑥𝑣��𝐿5

𝑥 (R:𝐿10
𝑡 [−𝑇 ,𝑇 ]) +

����D𝑠− 1
4

𝑥 𝜕𝑥𝑣

����
𝐿20
𝑥

(
R:𝐿

5
2
𝑡 [−𝑇 ,𝑇 ]

) + ��D𝑠𝑥𝜕𝑥𝑣��𝐿∞
𝑥 (R:𝐿2

𝑡 [−𝑇 ,𝑇 ]) .

To obtain a strong solution to the initial-value problem, we need to find appropriate T and C such that
the operator

S (𝑣, 𝑢0) = S (𝑣) = 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑣2𝜕𝑥𝑣(𝑠)

)
𝑑𝑠

is a contraction map on X 𝑠
𝑇 ,C .

Using linear estimates for𝑊 (𝑡) and the Leibniz rule for fractional derivatives, one can show that

|||S (𝑣) |||X 𝑠
𝑇
≤ 𝑐‖𝑢0‖𝐻 𝑠 + 𝑐𝑇

1
2 |||𝑣 |||3X 𝑠

𝑇
,

where c is from linear estimates independent of the initial data. We refer the reader to Kenig-Ponce-Vega
[29] and Linares-Ponce [35] for details. Then choosing C = 2𝑐‖𝑢0‖𝐻 𝑠 and T such that 𝑐C2𝑇

1
2 < 1

4 , we
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obtain that

S (·, 𝑢0) : X 𝑠
𝑇 ,C → X 𝑠

𝑇 ,C .

Similarly, one can also show

|||S (𝑣1) − S (𝑣2) |||X 𝑠
𝑇
≤ 𝑐𝑇

1
2

(
|||𝑣1 |||2X𝑇

+ |||𝑣2 |||2X𝑇

)
|||𝑣1 − 𝑣2 |||X 𝑠

𝑇

≤ 2𝑐𝑇
1
2 C2 |||𝑣1 − 𝑣2 |||X 𝑠

𝑇
.

Therefore, with our choice of T and C, S (·, 𝑢0) is a contraction on X 𝑠
𝑇 ,C . So there is a unique fixed point

of this S (·, 𝑢0) in X 𝑠
𝑇 ,C . Hence we obtain the unique, strong solution:

𝑢 = S (𝑢) = 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑢2𝜕𝑥𝑢(𝑠)

)
𝑑𝑠.

To check the dependence on the initial data, using arguments similar to those above, one can show that

|||S (𝑢1, 𝑢1(0)) − S (𝑢2, 𝑢2(0)) |||X 𝑠
𝑇1

≤ 𝑐‖𝑢1(0) − 𝑢2 (0)‖𝐻 𝑠

+ 𝑐𝑇
1
2

1

(
|||𝑢1 |||2X 𝑠

𝑇1
+ |||𝑢2 |||2X 𝑠

𝑇1

)
|||𝑢1 − 𝑢2 |||X 𝑠

𝑇1
.

This can be used to show that for𝑇1 ∈ (0, 𝑇), the solution map from a neighbourhood N of 𝑢0 depending
on 𝑇1 to X 𝑠

𝑇1 ,C is Lipschitz. Further work can be used to show the solution map is actually smooth. For
more details, see Kenig-Ponce-Vega [29] and Linares-Ponce [35]. �

Finally, we notice that if 𝑢0 is Schwartz, then the solution u to the initial-value problem is also
smooth and hence a classical solution. The uniqueness of the classical solution is well-known. We refer
the reader to Bona-Smith [2], Temam [41] and Saut-Temam [40] for the KdV problem and Saut [39] for
more general KdV type equations including the MKdV equation.

8.1. Solutions of mKdV by inverse scattering and strong solutions

As before, given 𝑢0 ∈ 𝐻2,1 (R), one can solve the MKdV equation using the inverse scattering transform.
Recall from equation (1.15) that we have the solution to the MKdV equation in terms of the solution

by inverse scattering:

𝑢 =

[
−𝑖
𝜋

∫
𝜇
(
𝑤+
𝜃 + 𝑤

−
𝜃

) ]
12

(8.10)

=

[
−𝑖
𝜋

∫
(𝜇 − 𝐼)

(
𝑤+
𝜃 + 𝑤

−
𝜃

) ]
12

+
[
−𝑖
𝜋

∫ (
𝑤+
𝜃 + 𝑤

−
𝜃

) ]
12
,

where 𝜇 is constructed using the reflection coefficients r. But as we discussed above, using PDE
techniques, one can construct solutions with rougher data, at least locally. Motivated by Deift-Zhou
[14], we try to understand the relations between Beals-Coifman solutions and strong solutions. First,
if 𝑢0 is Schwartz, one can also show that u is Schwartz (compareDeift-Zhou [11]). So in this case, the
strong solution is the same as the solution via inverse scattering. Our goal is to identify the solution by
inverse scattering with the strong solution whenever the former makes sense. Starting from the local
construction, we will try to extend these results globally later on.

Firstly, we show that one can always take the limit of a sequence of smooth solutions to the MKdV
equation in weighted 𝐿2 spaces without regularity assumptions.
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Lemma 8.3. Suppose there is a sequence
{
𝑢0,𝑘

}
of Schwartz functions, which is a Cauchy sequence in

𝐻 𝑗 ,1 (R) and 𝑢0,𝑘 → 𝑢0 in 𝐻 𝑗 ,1 (R) with 𝑗 ≥ 0. Then for fixed 𝑡 > 0, one can always conclude that the
sequence of solution {𝑢𝑘 } to the MKdV equation with initial data 𝑢0,𝑘 obtained via inverse scattering
in the sense of equation (8.10) has a 𝐿∞ limit.

Proof. Since 𝑢0,𝑘 is Schwartz, from the inverse scattering transform, we can write down the Beals-
Coifman solutions

𝑢𝑘 =

[
−𝑖
𝜋

∫
𝜇𝑘

(
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12

(8.11)

with initial data 𝑢0,𝑘 . Using the mapping properties of the direct scattering due to Zhou [45, Theorem
1.8] and Deift-Zhou [14, Theorem 3.2], in terms of reflection coefficients, we have that

𝑟𝑘 = R
(
𝑢0,𝑘

)
∈ 𝐻1,

and by the Lipschitz continuity of the map, we have

‖𝑟𝑘 − 𝑟ℓ ‖𝐻 1 (R) �
��𝑢0,𝑘 − 𝑢0,ℓ

��
𝐻 𝑗,1 (R) .

By the integral representation of 𝑢𝑘 given in equation (8.11), resolvent estimates in [45] (see also [14,
(2.19) (2.21)]) and Lipschitz continuity of the direct and inverse scattering map, one also has

‖𝑢ℓ − 𝑢𝑘 ‖𝐿∞ (R) � ‖𝑟𝑘 − 𝑟ℓ ‖𝐻 1 (R) .

Since 𝑟𝑘 converges to a function 𝑟∞ in 𝐻1 (R), we claim that the corresponding solution by inverse
scattering converges to a limit

𝑢∞ = lim
𝑘→∞

𝑢𝑘

in the sense of the 𝐿∞ norm. Indeed, we can write

𝑢𝑘 =

[
−𝑖
𝜋

∫
𝜇𝑘

(
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12

=

[
−𝑖
𝜋

∫
(𝜇𝑘 − 𝐼)

(
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12

+
[
−𝑖
𝜋

∫ (
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12

= I𝑘 + II𝑘 .

Then due to the resolvent estimate, (𝜇𝑘 − 𝐼) is bounded in the 𝐿2, and the 𝐿2 estimate for 𝑤+
𝑘, 𝜃 +𝑤

−
𝑘, 𝜃 is

straightforward, so I𝑘 makes sense pointwise. For II𝑘 , one simply notices that
∫ (
𝑤±
𝑘, 𝜃

)
is proportional

to 𝑊 (𝑡)𝑟𝑘 = 𝑒−𝑡𝜕𝑥𝑥𝑥𝑟𝑘 , so by the standard stationary phase analysis, for 𝑟𝑘 ∈ 𝐻1, II𝑘 is a function
in 𝐿∞(R) for 𝑡 ≥ 0 with the standard pointwise decay estimates for the Airy equation (compare[17,
Lemma 2.1]).

Hence for fixed 𝑡 ≠ 0,

‖𝑢𝑘 (𝑡) − 𝑢∞(𝑡)‖𝐿∞ → 0 as ‖𝑟𝑘 − 𝑟∞‖𝐻 1 → 0

as desired. �

Remark 8.4. Note that a priori, when we pass the solutions by inverse scattering to the pointwise limit
above, it is not clear what the limit means since the limit is rougher than the required regularity from
the inverse scattering transform when 𝑗 < 2.
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In the following subsections, we use PDE techniques to conclude that indeed, the limit constructed by
the lemma above is a solution to the MKdV equation as long as we have enough regularity to perform the
Picard iteration. First, we illustrate that the solutions we analysed in earlier sections are strong solutions.

Corollary 8.5. Suppose 𝑢0 ∈ 𝐻2,1 (R). Then the solution by inverse scattering and the strong solution
are the same (up to a measure zero set):

𝑢 =

[
−𝑖
𝜋

∫
𝜇
(
𝑤+
𝜃 + 𝑤

−
𝜃

) ]
12

= 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑢2𝜕𝑥𝑢(𝑠)

)
𝑑𝑠

in [−𝑇,𝑇], where T is given as in Theorem 8.2.

Remark 8.6. At such a high level of regularity, by the uniqueness of weak solutions – see, for example,
Ginibre-Tsutsumi [18] and Ginibre-Tsutsumi-Velo [19] – one might expect this identification. But here,
we provide a direct approach in this specific situation.

Proof. Suppose 𝑢0 ∈ 𝐻2,1(R). We can find a sequence
{
𝑢0,𝑘

}
of Schwartz functions such that it is a

Cauchy sequence in 𝐻2,1 (R) and 𝑢0,𝑘 → 𝑢0 in 𝐻2,1 (R).
We may assume that for all k, there is a uniform bound��𝑢0,𝑘

�� �𝐻 2 (R) �
��𝑢0,𝑘

��
𝐻 2 (R) �

��𝑢0,𝑘
��
𝐻 2,1 (R) ≤ 𝐶.

Then applying Theorem 8.2, we can find a strong solution 𝑢𝑘 with initial data 𝑢0,𝑘 in X 2
𝑇 ,C , where T

and C are chosen as in Theorem 8.2.
By Theorem 8.2, we also have

|||𝑢𝑘 − 𝑢ℓ |||X 2
𝑇 ,C
�

��𝑢0,𝑘 − 𝑢0,ℓ
��
𝐻 2 (R) .

So in X 2
𝑇 ,𝐶 , 𝑢𝑘 converges to a limit 𝑢∞, which is a strong solution. Using the notation from above, we

have

𝑢∞ = S (𝑢∞, 𝑢0) ∈ X 2
𝑇 ,𝐶 .

From the inverse scattering transform, we also have solutions via inverse scattering

�̃�𝑘 =

[
−𝑖
𝜋

∫
𝜇𝑘

(
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12

with initial data 𝑢0,𝑘 .
Since 𝑢0,𝑘 is Schwartz, 𝑢𝑘 and �̃�𝑘 are also Schwartz. Therefore, we have 𝑢𝑘 = �̃�𝑘 . By Lemma 8.3,

one can conclude that there exists �̃�∞ such that for 𝑡 ≠ 0,

‖�̃�𝑘 (𝑡) − �̃�∞(𝑡)‖𝐿∞ → 0.

By the convergence of the strong solutions, it follows that as 𝑘 → ∞, we have

|||𝑢𝑘 − 𝑢∞|||X 2
𝑇 ,𝐶

= |||�̃�𝑘 − 𝑢∞|||X 2
𝑇 ,𝐶

→ 0.

In particular, as 𝑘 → ∞, one has

sup
𝑡 ∈[−𝑇 ,𝑇 ]

‖𝑢𝑘 − 𝑢∞‖𝐻 2 (R) = sup
𝑡 ∈[−𝑇 ,𝑇 ]

‖�̃�𝑘 − 𝑢∞‖𝐻 2 (R) → 0.
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By construction, as 𝑘 → ∞,

sup
𝑡 ∈[−𝑇 ,𝑇 ]

‖�̃�𝑘 − �̃�∞‖𝐿∞ (R) → 0.

Hence

𝑢∞ = �̃�∞

up to a measure zero set.
Therefore, we can conclude that

𝑢 =

[
−𝑖
𝜋

∫
𝜇
(
𝑤+
𝜃 + 𝑤

−
𝜃

) ]
12

= 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑢2𝜕𝑥𝑢(𝑠)

)
𝑑𝑠

in [−𝑇,𝑇]. �

Next, we will try to use this local identification to understand the limits of solutions via inverse
scattering in various low-regularity spaces.

8.2. Approximation of solutions in 𝐻1 (R)

First we consider

𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑥𝑢 − 6𝑢2𝜕𝑥𝑢 = 0, 𝑢(0) = 𝑢0

with initial data in 𝐻1(R).
The following three quantities are preserved by the solution flow:

𝐼1(𝑢) =
∫ ∞

−∞
𝑢 𝑑𝑥,

𝐼2(𝑢) =
∫ ∞

−∞
𝑢2 𝑑𝑥,

𝐸 (𝑢) = 𝐼3(𝑢) =
∫ ∞

−∞

[
(𝜕𝑥𝑢)2 + 𝑢4] 𝑑𝑥.

Using the local existence results and the conservation laws above, we can extend a local solution to a
global solution in 𝐻1(R).

More precisely, using the Sobolev embedding, one has

𝐸 (𝑢) =
∫ ∞

−∞

[
(𝜕𝑥𝑢)2 + 𝑢4] 𝑑𝑥

≥ ‖𝜕𝑥𝑢‖2
𝐿2 (R) + ‖𝑢‖4

𝐿4 (R)

≥ ‖𝜕𝑥𝑢‖2
𝐿2 (R) + 𝑐4‖𝜕𝑥𝑢‖𝐿2 (R) ‖𝑢‖3

𝐿2 (R) .

From 𝐼2, we know the 𝐿2 (R) norm is conserved.
If we denote

𝑓 (𝑡) = ‖𝜕𝑥𝑢(𝑡)‖𝐿2 (R) ,

https://doi.org/10.1017/fms.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.63


46 Gong Chen and Jiaqi Liu

then one has

𝑓 2(𝑡) + 𝑐4‖𝑢‖3
𝐿2 (R) 𝑓 (𝑡) ≤ 𝐸 (𝑢0)

so 𝑓 (𝑡) is bounded globally. In other words,

‖𝜕𝑥𝑢(𝑡)‖𝐿2 (R) � 𝐸 (𝑢0).

Hence, with the conserved 𝐿2 (R) norm, we conclude that

‖𝑢‖𝐻 1 (R) � ‖𝑢0‖𝐻 1 (R) . (8.12)

Theorem 8.7. For 𝑢0 ∈ 𝐻1,1(R), the strong solution given by the Duhamel formulation in equation
(8.2) has the same asymptotics as in our main Theorem 1.3.

Proof. We perform a construction similar to the construction in the proof of Corollary 8.5. Let
{
𝑢0,𝑘

}
∈

𝐻2,1 (R) be a Cauchy sequence in 𝐻1,1(R) such that

lim
𝑘→∞

𝑢0,𝑘 → 𝑢0

in 𝐻1,1 (R) and sup𝑘
��𝑢0,𝑘

��
𝐻 1,1 (R) ≤ 𝐶.

Then we can use the inverse scattering transform to solve the initial-value problem in equation (8.1)
and obtain solutions 𝑢𝑘 by inverse scattering

𝑢𝑘 =

[
−𝑖
𝜋

∫
𝜇𝑘

(
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12

(8.13)

with initial data 𝑢0,𝑘 . By Lemma 8.3, one can conclude that there exists 𝑢∞ such that for 𝑡 ≠ 0,

‖𝑢𝑘 (𝑡) − 𝑢∞(𝑡)‖𝐿∞ → 0.

For 𝑡 = 0, this convergence can be implied by Sobolev’s embedding.
However, by Corollary 8.5, we know 𝑢𝑘 is also a strong solution: that is,

𝑢𝑘 (𝑡) = 𝑊 (𝑡)𝑢0,𝑘 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6(𝑢𝑘 )2𝜕𝑥 (𝑢𝑘 )

)
𝑑𝑠.

Then we can use T and C as in Theorem 8.2 to conclude that

|||𝑢𝑘 − 𝑢ℓ |||X 1
𝑇 ,C
�

��𝑢0,𝑘 − 𝑢0,ℓ
��
𝐻 1 (R) ,

where X 1
𝑇 ,C is given as equation (8.9).

Hence {𝑢𝑘 } is also a Cauchy sequence in X 1
𝑇 ,C , which converges to u satisfying

𝑢(𝑡) = 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑢2𝜕𝑥𝑢(𝑠)

)
𝑑𝑠

by construction. So u is a strong solution.
By the definition of space X 1

𝑇 ,C equation (8.9), we have

lim
𝑘→∞

sup
𝑡 ∈[−𝑇 ,𝑇 ]

‖𝑢𝑘 − 𝑢‖𝐻 1 (R) = 0.
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Combining

lim
𝑘→∞

‖𝑢𝑘 (𝑡) − 𝑢∞(𝑡)‖𝐿∞ (R) = 0

we can conclude that 𝑢(𝑡) = 𝑢∞(𝑡) pointwise (up to a measure zero set) for 𝑡 ∈ [−𝑇, 𝑇]. Since the 𝐻1

norms of u are uniformly bounded as equation (8.12), we can repeat the above construct infinity many
times to extend the interval [−𝑇,𝑇] to R and conclude that for 𝑡 ∈ R+,

𝑢(𝑡) = �̃�∞(𝑡).

Since 𝑢∞ is the pointwise limit of solutions by inverse scattering, which have asymptotic behaviour in
our main theorem obtained from the nonlinear steepest descent with uniform error terms estimates, 𝑢∞
also has the desired asymptotics. More precisely, we can write

𝑢𝑘 (𝑥, 𝑡) = 𝐿𝑘 (𝑥, 𝑡) + 𝐸𝑘 (𝑥, 𝑡),

where 𝐿𝑘 (𝑥, 𝑡) gives the leading-order behaviour and 𝐸𝑘 (𝑥, 𝑡) collects the error term. By the convergence
of scattering data, we know

𝐿𝑘 (𝑥, 𝑡) → 𝐿∞(𝑥, 𝑡)

pointwise. Hence for an arbitrary fixed t, as the pointwise limit of 𝑢𝑘 (𝑡), one can write

𝑢(𝑡) = 𝑢∞(𝑡) = 𝐿∞(𝑥, 𝑡) + 𝐸∞(𝑥, 𝑡)

where the decay estimates for 𝐸∞(𝑥, 𝑡) is the same as 𝐸𝑘 (𝑥, 𝑡) due to the uniform error estimates.
Therefore u also has the asymptotic behaviour as claimed. �

Remark 8.8. Similar to the situation of the NLS in Deift-Zhou [14], the solution u as the limit of the
sequences of solutions by inverse scattering also enjoys the conservation law

𝐸 (𝑢) = 𝐼3(𝑢) =
∫ ∞

−∞

[
(𝜕𝑥𝑢)2 + 𝑢4] 𝑑𝑥

since it is also a strong solution. It is not clear how to obtain this conservation law using the inverse
scattering transform due to the low regularity.

8.3. Approximation of solutions in 𝐻 1
4 (R)

For the MKdV equation, as in Theorem 8.2, Kenig, Ponce and Vega obtained the lowest regularity for
the local well-posedness in 𝐻𝑠 (R), 𝑠 ≥ 1

4 , in [29]. They also showed in [30] that when 𝑠 < 1
4 , the

data-to-solution map fails to be uniformly continuous as a map from 𝐻𝑠 to 𝐶 ([−𝑇, 𝑇]𝐻𝑠 (R)) (see also
Christ-Colliander-Tao [5]). These imply that the space 𝐻 1

4 (R) has the lowest regularity at which the
solution can be obtained by iteration. These local results form the basis for global well-posedness. For
example, one can use energy conservation and 𝐿2 conservation to obtain global well-posedness. But in
the space 𝐻 1

4 , there are no conservation laws that allow us to do similar extensions. Then one needs to
use the “I-method”, introduced by Colliander-Keel-Staffilani-Takaoka-Tao [6], which plays a great role
in constructing global solutions. They obtained global well-posedness for KdV for 𝑠 > − 3

4 and then
used the Miura transform to obtain global well-posedness for the MKdV equation in 𝐻𝑠 (R) for 𝑠 > 1

4 . In
Guo [20] and Kishimoto [32], the authors use more delicate spaces to handle ‘logarithmic divergence’
and combine with the I-method to conclude the global well-posedness for KdV in 𝐻− 3

4 . Then, with the
Miura transform given by [6], they also obtain global well-posedness for the MKdV equation in 𝐻 1

4 .
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The most important ingredient shown in these papers for the MKdV equation is that for some 𝜅 > 0,
one has the following growth estimate:

‖𝑢(𝑡)‖
𝐻

1
4 (R)
� (1 + 𝑡)𝜅 ‖𝑢0‖

𝐻
1
4 (R)
.

Theorem 8.9. For 𝑢0 ∈ 𝐻 1
4 ,1 (R), the strong solution given by the integral representation in equation

(8.2) has the same asymptotics as in our main Theorem 1.3.

Proof. As in Theorem 8.7, we first show that locally the limit of solutions by inverse scattering is the
strong solution in 𝐻 1

4 (R). The difference here is that we use the growth rate estimate to extend the
identification globally.

Let
{
𝑢0,𝑘

}
∈ 𝐻2,1 (R) be a Cauchy sequence in 𝐻 1

4 ,1(R) such that

lim
𝑘→∞

𝑢0,𝑘 → 𝑢0

in 𝐻 1
4 ,1 (R) and sup𝑘

��𝑢0,𝑘
��
𝐻

1
4 ,1 (R)

≤ 𝐶.
Using the inverse scattering transform to solve the initial-value problem in equation (8.1), we obtain

a sequence of solutions

𝑢𝑘 =

[
−𝑖
𝜋

∫
𝜇
(
𝑤+
𝑘, 𝜃 + 𝑤

−
𝑘, 𝜃

)]
12
. (8.14)

By Lemma 8.3, one can conclude that there exists 𝑢∞ such that for 𝑡 ≠ 0,

‖𝑢𝑘 (𝑡) − 𝑢∞(𝑡)‖𝐿∞ → 0.

For 𝑡 = 0, the pointwise convergence can be achieved by the standard 𝐿𝑝 spaces argument up to a
subsequence.

Moreover, by Corollary 8.5, we also know 𝑢𝑘 is also a strong solution: that is,

𝑢𝑘 = 𝑊 (𝑡)𝑢0,𝑘 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6(𝑢𝑘 )2𝜕𝑥 (𝑢𝑘 )

)
𝑑𝑠.

Then we can use T and C as in Theorem 8.2 to conclude that

|||𝑢𝑘 − 𝑢ℓ |||
X

1
4
𝑇 ,C

�
��𝑢0,𝑘 − 𝑢0,ℓ

��
𝐻 1 (R) ,

where X
1
4
𝑇 ,C is given as equation (8.9).

Hence {𝑢𝑘 } is also a Cauchy sequence in X
1
4
𝑇 ,C , which converges to u satisfying

𝑢 = 𝑊 (𝑡)𝑢0 +
∫ 𝑡

0
𝑊 (𝑡 − 𝑠)

(
6𝑢2𝜕𝑥𝑢(𝑠)

)
𝑑𝑠

by construction.
By the definition of space X

1
4
𝑇 ,C equation (8.9), we have

lim
𝑘→∞

sup
𝑡 ∈[−𝑇 ,𝑇 ]

‖𝑢𝑘 − 𝑢‖
𝐻

1
4 (R)

= 0.
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And combining

lim
𝑘→∞

‖𝑢𝑘 (𝑡) − 𝑢∞(𝑡)‖𝐿∞ (R) = 0,

we can conclude that 𝑢 = 𝑢∞ pointwise in [−𝑇,𝑇] (up to a measure zero set).
By global well-posedness, u exists in 𝐻 1

4 (R) globally. By construction, one can also define 𝑢∞(𝑡) for
all 𝑡 ∈ R.

By symmetry, we consider 𝑡 ≥ 0. Suppose 𝑢∞(𝑡) = 𝑢(𝑡) does not hold for all 𝑡 ≥ 0. Let

𝑡★ = inf{𝑡 ≥ 0|𝑢∞(𝑡) ≠ 𝑢(𝑡)}.

Clearly, by the above argument, 𝑇 < 𝑡★ < ∞.
By the growth rate estimate from Guo [20] and Kishimoto [32], we have for 𝑡 ≤ 𝑡★

‖𝑢(𝑡)‖
𝐻

1
4 (R)

≤ 𝐶 (1 + 𝑡★)𝜅 ‖𝑢0‖
𝐻

1
4 (R)
.

Also by construction, for 𝑡 < 𝑡★,

𝑢∞(𝑡) = 𝑢(𝑡).

By Theorem 8.2, we can find C★ and 𝑇★ depending on 𝐶 (1 + 𝑡★)𝜅 ‖𝑢0‖
𝐻

1
4 (R)

< ∞ to construct X
1
4
𝑇★,C★ .

due to the explicit dependence of T on the size of the initial data in Theorem 8.2, 𝑇★ ≥ 𝜖★ > 0.
By the definition of 𝑡★, we have two situations: firstly,

𝑢∞(𝑡★) ≠ 𝑢(𝑡★) (8.15)

or for any 𝜂 > 0, there exists 𝑡★ < 𝑡𝜂 < 𝑡★ + 𝜂 such that

𝑢∞
(
𝑡𝜂

)
≠ 𝑢

(
𝑡𝜂

)
; (8.16)

in particular, we can take 𝜂 < 𝜖★
8 .

Again, by construction, we have

𝑢∞
(
𝑡★ − 𝜖★

8

)
= 𝑢

(
𝑡★ − 𝜖★

8

)
.

Applying Theorem 8.2 and the first part of this proof using space X
1
4
𝑇★,C★ , we have

𝑢∞
(
𝑡★ − 𝜖★

8
+ 𝑠

)
= 𝑢

(
𝑡★ − 𝜖★

8
+ 𝑠

)
for 𝑠 ∈ [0, 𝜖★] ⊂ [0, 𝑇★] . In particular, 𝑢∞(𝑡★) = 𝑢(𝑡★) and 𝑢∞(𝑡★ + 𝑠) = 𝑢(𝑡★ + 𝑠) for 𝑠 ∈

[
0, 𝜖★4

]
. This

is a contraction with either equation (8.15) or equation (8.16). So our assumption for the existence of 𝑡★
fails.

Thus we can conclude that 𝑢∞(𝑡) = 𝑢(𝑡) for all 𝑡 ≥ 0. Then the asymptotic behaviour of u is obtained
as in Theorem 8.7. �

Remark 8.10. For an alternative approach using low-regularity conservation laws developed in Koch-
Tataru [33] and Killip-Visan-Zhang [31], see our work on the focusing MKdV in [7].
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8.4. Approximation of solutions in 𝐿2 (R)

As we introduced before, it is known from [5] and [30] that𝐻 1
4 is the optimal space to perform the Picard

iteration to construction the strong solution in the sense of the Duhamel formula. With appropriation
notations and topology, in the work by Harrop-Griffiths-Killip-Visan[22], the well-posedness of the
mKdV equation can be obtained in 𝐻𝜏 (R) with 𝜏 > − 1

2 .:

Theorem 8.11 [22]. Let 𝜏 > − 1
2 . Then the mKdV equation (1.1) is globally well-posed for all initial

data in the sense that the solution map Φ extends uniquely from Schwartz spaces to a jointly continuous
map Φ : R × 𝐻𝜏 (R) → 𝐻𝜏 (R).

The notation of the solution used above can be understood as the unique limit of Schwartz solutions.
We also refer to Definition 1.1 in Kappeler-Topalov [27] for the interpretation of this notation of solution.
This notation is well-suited for our global approximation argument since the Schwartz solutions can be
obtained via inverse scattering, and their asymptotics can be computed with uniform error estimates.

From the view of the standard analysis of Jost functions, it suffices to require the potential to be in
𝐿1, which contains 𝐿2,𝑠 with 𝑠 > 1

2 . The well-posedness theory above can extend the asymptotics of
solutions of the mKdV equations with initial data in 𝐿2,𝑠 . Again, here we focus on 𝑠 = 1.

Theorem 8.12. For 𝑢0 ∈ 𝐿2,1 (R), the solution given by Theorem 8.11 has the same asymptotics as in
Theorem 1.3.

Proof. For any 𝑢0 ∈ 𝐿2,1 (R), we pick a sequence of Schwartz functions {𝑢0,𝑘 } such that

lim
𝑘→∞

𝑢0,𝑘 → 𝑢0 (8.17)

in 𝐿2,1 (R) and sup𝑘
��𝑢0,𝑘

��
𝐿2,1 (R) ≤ 𝐶.

Let 𝑢(𝑥, 𝑡) be the solution to equation (1.1) in the sense of 8.11 with initial data 𝑢0 and 𝜏 = 0. Let 𝑢𝑘 (𝑡)
be the Schwartz solution to equation (1.1) with initial data 𝑢0,𝑘 . By construction, we know that ∀𝑡 ∈ R,
𝑢𝑘 (𝑡) → 𝑢(𝑡) in 𝐿2 (R). Then we also know that up to a subsequence, 𝑢𝑘 (𝑡) → 𝑢(𝑡) almost everywhere.

Now for each 𝑢𝑘 (𝑡), via the nonlinear steepest descent, we can write

𝑢𝑘 (𝑥, 𝑡) = 𝐿𝑘 (𝑥, 𝑡) + 𝐸𝑘 (𝑥, 𝑡),

where 𝐿𝑘 (𝑥, 𝑡) gives the leading-order behaviour and 𝐸𝑘 (𝑥, 𝑡) collects the error term, which only
depend the 𝐿2,1 (R) norm of 𝑢0,𝑘 . From the convergence in equation (8.17), by direct scattering, one
has the convergence of the reflection coefficients lim𝑘→∞ 𝑟𝑘 = 𝑟 in 𝐻1(R). Then by the convergence of
reflection coefficients, we know

𝐿𝑘 (𝑥, 𝑡) → 𝐿∞(𝑥, 𝑡)

pointwise. Since the error term 𝐸𝑘 (𝑥, 𝑡) is uniform in k, we can conclude that for an arbitrary fixed t, as
the pointwise limit of 𝑢𝑘 (𝑡) (up to measure zero set), one can write

𝑢(𝑡) = 𝐿∞(𝑥, 𝑡) + 𝐸∞(𝑥, 𝑡),

where the decay estimate for 𝐸∞(𝑥, 𝑡) is the same as 𝐸𝑘 (𝑥, 𝑡) due to the uniform error estimates.
Therefore u also has the asymptotic behaviour as claimed. �
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