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QUANTITATIVE APPROACH TO WEAK NONCOMPACTNESS IN
THE POLYGON INTERPOLATION METHOD

ANDRZEJ KRYCZKA

We study a quantitative approach to weak noncompactness of operators under the
Cobos-Peetre polygon interpolation method for Banach TV-tuples. In the case of op-
erators acting between two J-spaces or two if-spaces obtained by this method we
prove logarithmically convex-type inequalities for certain operator seminorm vanish-
ing on the subspace of weakly compact operators. Geometrically speaking, in these
estimates only some triangles inscribed in the polygon are involved. For operators
acting from a J-space to a K-space we prove logarithmically convex-type estimates
where all polygon vertices are included. In particular, the estimates obtained here
give the new proofs of the results showing the relation between distribution of weakly
compact operators among polygon vertices and weak compactness of operators under
interpolation.

1. INTRODUCTION

A bounded linear operator T: X —> Y acting between Banach spaces is said to
be weakly compact if the image of the unit ball of X under T is a relatively weakly
compact set in Y. This property is inherited by operators under the classical real and
complex interpolation methods. More precisely, given Banach pairs (Ao, A\) and (Bo, Bi)
and interpolation spaces Ai%q, Be,q obtained by Lions and Peetre's [20] real method weak
compactness of the restriction T: Ao -> Bo or T: Ai -> Bx implies that of T: Ag>q -> BB,q
for all 6 € (0,1) and q 6 (l,oo). An analogous implication holds for Calderon's [3]
complex interpolation spaces A[e\, 5[«j with 6 € (0,1). For the real method we have even
more: T: Ag:q -» Bgiq with 9 e (0,1) and q £ (1, oo) is weakly compact if and only if so
is T: Ao n Ai —» Bo + Bi. The similar rule concerns some extensions of these methods
to Banach Af-tuples—the real methods of Yoshikawa [27] or Sparr [25] and (restricted to
finite families) the complex method of Krein and Nikolova [17] or the so-called St. Louis
[11] method (see [2, 16, 21, 22, 23, 24]).
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50 A. Kryczka [2]

The behaviour of weak compactness for the Cobos-Peetre [10] polygon interpolation
method for Banach TV-tuples is different. The rule described above fails both for operators
acting between two A'-spaces and between two J-spaces obtained by this method. If we
imagine that T: Aj -¥ Bj is assigned to the jth vertex of a convex iV-sided polygon II,
then T interpolated by J- or A'-method for II and q E (l,oo) is weakly compact if so are
TV — 2 restrictions T: Aj —>• Bj and the two left are located in some adjacent vertices (see
[4, 6]). On the other hand, T acting from a ./-space constructed for some q € (l,oo)
to the corresponding A*-space is weakly compact if and only if so is the restriction of T
acting from the intersection of all Aj to the sum of all Bj (see [6]).

In this paper using the seminorm introduced in [19], which measure deviation of
bounded linear operators from weak compactness, we study behaviour of this property
for operators under Cobos and Peetre's method. Following some norm estimates for op-
erators proved in [7, 8] we establish logarithmically convex-type estimates for the norms
of elements from J- and AT-spaces with respect to the norms of their representations in
some vector-valued /^-spaces. In our main results we show that similar estimates hold for
the seminorm. This is not the case for the seminorm based on the outer or inner measure
related to the ideal of weakly compact operators (see [5, 9]). Weak noncompactness of
an operator acting between two J-spaces or two A'-spaces is estimated by weak noncom-
pactness of restrictions T: Aj —> Bj located at the vertices of selected triangles. In the
case of an operator acting from a J-space to a AT-space all restrictions are involved. In
both cases logarithmic convexity holds within barycentric coordinates of interior points
of II (these points are the parameters of this method) with respect to polygon vertices.
In particular, the results can be applied to weakly compact operators.

The space of all bounded linear operators between Banach spaces X and Y is denoted
by C{X, Y). We write B(X) for the open unit ball of X. The convex hull of a set A c X

is denoted by conv A.

2. T H E C O B O S - P E E T R E POLYGON INTERPOLATION METHOD

Let A — (Ai,... ,AN) be a Banach N-tuple, that is, a family of Banach spaces
A\, • . •, AN such that all of them are linearly and continuously embedded in a Hausdorff
topological vector space E. The spaces

= Ax n • • • n AN and T,{A) = Ai + --

are Banach spaces with norms

N

\\a\\A. and \\a\\L{A) = inf

N
where the infimum is taken over all decompositions aj e Aj, a— J2
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[3] A quantitative approach to weak noncompactness 51

We now recall the polygon interpolation method studied in [10]. Let iV ^ 3 and
II = P i . . .PN be a convex polygon with vertices Pj = (xj,yj), j = 1,...,N in the
affine plane R2. Given any positive numbers s and t we define the J-functional for every
a 6 A(,4) by

J(s,t:a)= J }

and the /("-functional for every a G E ( J 4 ) by

K(s,t\a) = inf< ^ T V ' ^ \\aj\\A. : a,- € Ajt a = J2aJ }•

These functionals equivalently renorm A(^4) and "E(A), respectively.

In a discrete characterisation of the polygon interpolation method we put s — 2m

and t = 2" for z = (m,n) € Z2. For simplicity, let J(2z;a) = J(2m,2n;a) and K(2z;a)

= K(2m, 2"; a). We write (•, •) and | • | for the standard scalar product and norm in Kn,

respectively.

Set q € [l,oo) and let P € IntFI (the interior of FI). By the ./-space Ap^j we

mean all a € %(A) for which there exists a family u — (u(z)) z2 C A(J4) such that

a = J2 u(z), convergence in T,(A), and

1/9

<oo,

the infimum being taken over all families u representing a just as before. By the /f-space
Ap,q-,K we mean all a S £{A) for which

1/9

< 00.

Under the above norms, A{A) C ^pl();j C >ip,g;if C £(/!) with continuous inclusions.
In the general case, Ap>q-j and Ap^x do not coincide. If FI is a triangle, then Cobos and
Peetre's method is equivalent to Sparr's method for Banach 3-tuples. If FI is the unit
square, then the polygon method coincides with Fernandez's [13, 14] method for 4-tuples.
All these facts can be found in [10].

The definition given in [10] also covers q = oo but we shall not consider this case
here. However, the norm estimates proved here for elements of J- or /("-spaces can be
easily extended to q = oo. In this paper we deal with some discrete norms on APtq.j and
Ap,q-,K equivalent to || • H^ and || • H^ K, respectively. They will be introduced later.

For Banach ./V-tuples A = (Ax,..., AN), B = (/?i, . . . , BN) and a linear operator
T: E(A) -> E(B) we write T: A -> B, if for j - 1,...,N the restriction T\Aj is a
bounded operator into By
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Wherever we consider two families of interpolation spaces obtained by the polygon
method for two Banach Af-tuples A and B we assume that both families were obtained
with respect to the same polygon II.

From the interpolation viewpoint one of the basic facts concerning the polygon
method is the following [10]: if T: A -> B, then T: AP<q.j -> BP<q.j, T: AP,q.K -» BPtq.K
and T: APtQ-j -*• 5p,g;*- are bounded for every P G Int II.

3. MEASURES OF WEAK NONCOMPACTNESS

We recall the measures of weak noncompactness introduced in [19]: 7 for sets and,
related to it, F for operators. Let (xn) be a sequence in a Banach space X. We say
that (yn) is a sequence of successive convex combinations for (xn) if there exist positive
integers 0 = rx < r2 < • • • such that yn G conv{a;j}£L+*+1 for each n. Vectors ui ,u2 are
said to be a pair of sec for (xn) if u\ G com{xi}T

i:=l and u2 G conv{xi}^r + 1 for some
integer r ^ 1. The convex separation of (xn) is defined by

csep(xn) — inf{ ||ui — u2|| : Ui,u2 is a pair of sec for (xn) } .

The measure of weak noncompactness 7 is defined for every nonempty and bounded
set A C X by

j(A) = sup{csep(a;n): (xn) C conv A}.

The measure 7, based on James' criterion of weak compactness, has the following prop-
erty: 7 ( J4 ) = 0 if and only if A is a relatively weakly compact set in X. It is proved [19]
that

j(A) = sup{ lim lim Fm(xn) - lim lim Fm(xn) },
m—KX> n—+00 n—Kx> m—too

the supremum being taken over all (xn) C conv A and (Fm) C X* with | |Fm| | ^ 1 and
such that all the limits exist (here, X is taken over the real field), and

j(A) = supdist(x",conv{a;n}),

the supremum being taken over all weak-star cluster points x" G X** of sequences

(xn) C conv ,4 (here, xn is identified with its canonical image in X"). In general, 7 is

not equivalent to De Blasi's [12] measure of weak noncompactness.

Let X and Y be Banach spaces and let W(X, Y) be the subspace of £(X, Y) consist-

ing of all weakly compact operators. The measure of weak noncompactness of operators

is defined for every T € £(X, Y) by

r(T)=j(T{B(X))).

Clearly, F(T) = 0 if and only if T G W{X, Y). The seminorm T is not equivalent to
the so-called weak essential norm \\T\\W — dist(T, W(X, Y)). A quantitative version of

https://doi.org/10.1017/S0004972700034250 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034250


[5] A quantitative approach to weak noncompactness 53

Gantmacher's duality theorem holds for F (see [18]), which is not the case for || • \\w (see
[26]). The measure F is equivalent to neither of the inner and outer measures (related
to De Blasi's measure) for the ideal of weakly compact operators (see [1, 15, 18]). For
more properties of 7 and F we refer to [18] and [19].

Fix q <E [1, oo), n € {1 ,2 , . . . } and C € Rn- We denote by Z,(C, X) the Banach space

of all families x = (x(z))z€Z* C X such that

1/9
< 00.

The space /,(£, X) is isometrically isomorphic to lq(0, X) with families indexed by natural
numbers. Since 7 is invariant under linear isometries, we can restate Theorem 3.6 from
[19] for lq(C, X). This theorem will be one of the key tools in our work.

THEOREM 3 . 1 . Let X and Y be Banach spaces, T G C(X, Y) and q e (1,00).
Suppose that f € C(lq(C,X),lq((,,Y)) is given by fx = (Tx{z)) for every x = (x(z))
elq{(,X). Then F(f) = F(T).

4. C A S E S J ->• J AND K -» K

Let us first set up some terminology. Let E be a convex polygon with vertices
Qi,..., Qn in R2 and let Q belong to the interior or sides of E. Any nonnegative 9i,...,9n

n n
such that J2 8}'• — 1 a n ^ Q — S @jQj a r e called the barycentric coordinates of Q with

respect to Q i , . . . , Qn. If moreover 9j > 0 for j — 1 , . . . , JV, then 9\,... ,9n are said to
be the positive barycentric coordinates of Q with respect to <5i, • • • ,Qn- Let us recall
two well-known facts. If Q is an interior point of H, then there exist positive barycentric
coordinates of Q with respect to Qi,... ,Qn. If E is a triangle, then the barycentric
coordinates of Q with respect to Qi, Q2, Q3 are unique.

To estimate F for operators acting between two J-spaces or two A"-spaces we need
certain estimates for the norms of elements from ApiQij and Ap^K- Change of variables
leads in this case to a discrete analogue of the function Daj considered in [7].

Let II be a convex polygon with vertices P, = (xj,yj) for j = l,...,N and let
P — (a, P) be an interior point of II. For every M = ( M i , . . . , MN) with Mj ^ 0 for
j = l,...,N define

dp(M) = inf max { 2<p'-p-2>MJ }.

Let Vp denote the set of all triples {ji,J2,J3} such that P belongs to the interior or
sides of the triangle AP, ,P j 2 P j 3 . To cover in one formula the cases when P lies either
in the interior of a triangle or on a diagonal of FI, we adopt here, as throughout, the
convention that 0° = 1.
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LEMMA 4 . 1 . IfM = (Mu ..., MN) and Mj ^ 0 for j = 1 , . . . , N, then

(4.1) dP(M) ^ cP max{ M%M%M%: {ju j 2 , j3} € VP },

where Ox, 92,03 are the barycentric coordinates of P with respect to Pjl,Pj2,Pj3 and

(4.2) cP= max J2(| l '-a |+ l !"-'Jl)/2 'l.

PROOF: Fix M - (Mb . . . , MN) and denote the right-hand side of (4.1) by 6. Let
P+ = {Pj: Mj > 0} and P° = {P,: M, = 0}. Case P+ = 0 is obvious. Suppose that P +

is nonempty and 6=0. Then each triangle containing P has a vertex from P° and if P
lies on a diagonal of II, one of the diagonal ends belongs to P°. Therefore P £ conv P +

and hence 0 = inf max {2<p->-p-z>M,} = dP(M).

Suppose now that 6 > 0. By the proof of Theorem 1.9 in [7], there exist r0 6 R2

and {ji,J2,J3} £ VP such that

inf max { 2<p->-p-r>M,- } = 2<^-p'r°>Mi. = M

for i = 1,2,3. Take z0 € Z2 and p = {pi,fh) € R2 with |pi|,|p2| < 1/2 such that
ro = zo- p. Then 2^-p^Mj ^ 2<p'-p'^Mp1M^M^ for j = 1 , . . . ,N. It follows that

dp(M) > } ^ {

which completes the proof. D

For our computations it will be more convenient to use some equivalent norms on
Ap,q,j and AP^K. Put X(j) = lq(P - Pj, A,) for j = 1,. . . , N. It is easy to check that
|| • \\Ap ^ is equivalent to the norm given by

(4-3) H H I U ^ - i n f max |H|x( j ) ,

where the infimum is taken over all representations

(4-4)

Similarly, || • \\Ap K is equivalent to the norm given by

(4-5) ll|a||UP,,;K = int maxN\\aj\\XU),

where the infimum is taken over all decompositions

( 4 6 ) ( «i = (M*))X6Z» € X(j) for j = 1,. . . , iV
| a = Oi(z) + • • • + a^(z) for every z 6 Z2.

From now on, we assume that AptQ-j and ApiqiK are equipped with the norms described
by (4.3) and (4.5), respectively.
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PROPOSITION 4 . 2 . Let A = {AU...,AN) be a Banach N-tuple. Let II

= P i . . . Pyv be a convex polygon and P G Int II.

(i) If a € APtQ.j and u is a representation of a as in (4.4), then

IMILw < cpmaxj f[ \\u\\eiUi) : {J1.j2.i3} G VP }.

(ii) Jf a 6 Ap<qiK and a.i,.. .,aN is a decomposition of a as in (4.6), then

IIMH-Wc < cpmaxj Yl IK 11*00 : {i1.i2.J3} € VP \.

Here, Cp is given by (4.2), X(j) = lq(P — Pj,Aj) and 61,62,63 are the barycentric coor-

dinates of P with respect to Pj1,PjJ,Pj3-

PROOF: If the elements u = (u(z)) and dj — (a.j(z)) satisfy (4.4) and (4.6), respec-
tively, then for every w £ Z2 do so uw - (u(z - w)) and a™ — (a.j(z - w)). Clearly,

hw\\xU) = *Pi-PtW) MxU) a n d \\ar\\xu) = 2{Pi~P'W)\\aj\\x(jr Combining these with
Lemma 4.1, we obtain immediately our claims. 0

In [5], some estimates of the type we consider in this paper were proved for the inner
or outer measures related to operator ideals (in particular, to weakly compact operators)
under the assumption that one of the iV-tuples A or B reduces to a single Banach space.
In the main result of this section no restrictions on iV-tuples are required.

THEOREM 4 . 3 . Let A = {Au..., AN) and B = {Bu..., BN) be Banach N-

tuples and q € ( l , oo ) . Under the assumptions of Proposition 4.2, ifT: A -> B, then

max{ r ( T : AP>q,j -> BP<q,j),T{T: AP,q.K -> BPtQ,K)

(r(T: Ajt ^ BJ)j f[(

PROOF: Write X{j) = lq{P - Ph Aj) and Y(j) = lq{P - Ph Bj) for j = 1,..., N.
Fix e > 0.

CASE. J -* J. Let (am) C B(APtq.j) and bm — Tam. For each am there ex-

ists a representation um = (um(z)) satisfying (4.4) and such that um € B(X(j)) for

j = 1 , . . . , N. Put vm = (Tum(z)). Of course, vm is a representation of bm as in (4.4) for

B.

Set (v°m) = (vm) and (&£,) = (bm). Consecutively for j = 1 , . . . , N, by [19, Theorem

2.1], we choose a sequence {v3
m) of successive convex combinations for (vJT1) s u c n t n a t
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for every pair W{,VJ% of successive convex combinations for (v]
m). Here, csep(wj,)yu) ^e-

notes the convex separation of (v3
m) in the norm of Y(j). Then v3

m= YL tJ{i)vl for

some sequence of integers 0 = r]' < r?, < • • • and nonnegative tJ'(rj, + 1 ) , . . . , f (
with sum 1 for m — 1,2,. . . (the superscript j indicates the j th step). Put b>m

'm+l

The relation successive convex combinations is transitive. Moreover, if (yn) is a
sequence of successive convex combinations for (xn), then csep(zn) ^ csep(yn). Thus we
obtained the sequences (b^) and (v%) of successive convex combinations for (bm) and
(vm), respectively, such that v% is a representation of b% as in (4.4) and

for j — 1 , . . . , N and all k, I. Applying Proposition 4.2 (i) we obtain

csep(6m) ^ csep(C) ^ \\\b» %
, 3 x

Yl \\vi ~ "ailyoo : Hi,h,h) £ ?P \
^ i=l ' '

+ e)6i: {ji,h,j3} &V

Define fj: X{j) -> Y(j) for j = 1, . . . , N by fjx = (Tx{z)) for every x = (x{z)) € X(j).

Since « ) e f^B^O'))) for j = 1,..., iV, it follows that

i ][Jcsep(6m) ^ c

By Theorem 3.1, T(Tj) = P(T: ^ - ->• Bj). Since the choice of e and (am) was arbitrary,

the proof of this case is complete.

C A S E . K -> K. Let now (am) C B(AP,q;K) and 6m = Tam. For each am there
exists a decomposition aJiJn = (aiim(z)) e B(X(j)), j -1,...,N satisfying (4.6). Then
bj,m = {Taj,m{z)), j = 1 , . . . , TV satisfy (4.6) for bm and B.

Similarly to Case J -> J (see also [19, Theorem 3.8] for Banach pairs), we can find
a sequence of integers 0 = pi < p2 < • • • and nonnegative s(pm + 1 ) , . . . , s(pm+i) with
sum 1 for m = 1, 2 , . . . such that the sequences {b'jm) of successive convex combinations

Pm+l

for (6j,m) defined by b'jm - X) sW^i for j = 1, . . . , JV satisfy
»=P + l
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Pm+l
for all k, 1. Putting b'm = Yl s(i)bi we proceed as in the previous case applying now

i=Pm + l

Proposition 4.2 (ii) and replacing b% by b'm and v% with the norm of Y(j) by 6̂  m . The

assertion follows. D

Distributing weakly compact operators among the vertices of II, we can now deduce
a sufficient condition on weak compactness of T: AP>q-j —)• BPtQ.j and T: APtq.K —t BP<q.K
in the whole range of P. If N ^ 4, it is enough to consider those of P which lie on a
diagonal of II or, in other words, one of its barycentric coordinates with respect to some
triangle is zero. To assure zero on the right-hand side of the inequality in Theorem 4.3,
for each diagonal at least one of the operators located at the diagonal ends has to be
weakly compact (according to our convention 0° = 1, weak compactness at the third
vertex is ignored). If II is a triangle, weak compactness at any vertex is sufficient. In
this way we get the same qualitative result as in [6] (see also [4]), where its optimality is
examined as well.

COROLLARY 4 . 4 . IfT: Aj -¥ Bj is weakly compact for all indices 1 ^ j ^ TV
but two, say j \ and j 2 , such that the vertices Pj1 and Pi2 are adjacent, then T: APq;J

—> Bp^.j and T: APtq;K —> BP%q>K are weakly compact for all P € In t l l and q G (l,oo).
In particular, if Aj is reflexive for all 1 < j ^ TV but j \ and j2 as before, then so are

and AP<q<K-

5. CASE J -» K

We first estimate /f-norms of elements from a ./-space by the norms of their repre-
sentations in lq(P — Pj,Aj). Direct computations, similar to those in [8, Theorem 4.3]
for operator norms, lead to estimates with disturbed barycentric coordinates of P in
exponents. Moreover, the closer we are to some barycentric coordinates, the bigger is
the constant of estimate. To avoid both problems, we shall use the fact observed in [8]
that Ap:Q.j is embedded in Sparr's J- space and AP^K contains Sparr's A'-space (both
embeddings are continuous). Instead of Sparr's spaces equivalent Yoshikawa's [27] spaces
will be used (for equivalence see [25, Remarks 4.5 and 4.6]).

We recall Yoshikawa's construction (our notation differs from the original one in
N

[27]). Let 6 = (0 i , . . . ,0N) e RN and £ 0, = 1 with all 6j positive. Define the vectors

Zj = ($', • • •. CAT) £ K"- 1 by the following formula for j = 1 , . . . , N and i = 2,..., TV:

( ' \0i elsewhere.

LetA = {Ai,..., AN) be a Banach TV-tuple. Set q e [1, oo) and let V(j) = *,((,-, Aj)

for j = 1 , . . . , TV. By the J-space ABtq.j we mean all a € E(J4) which have a representation
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u such that

u={u(w))weZN.1€V(i)n---nv(N)
a= £ u(w) in Z(A).

The norm of a € Ag^j is given by

llalL. . = inf max llu||v(j),

where the infimum is taken over all representations (5.2). By the if-space ASA<K we mean
all a € T.(A) which have a decomposition o i , . . . , aN such that

(5 3) J aJ = ( a»)w ez»-> e ^0) for j - 1,..., N
| t t = ai(w) + • • • + aN(w) for every w 6 ZN~l.

The norm of a € Ag^j is given by

where the infimum is taken over all decompositions (5.3).

The parameter 6 — (Ox,..., 0N) will correspond to P € Int II with positive barycen-
tric coordinates Ox,..., 0N. A particular role in our estimates will play the following
constant:

(5.4) cg =

Note that 1 < ce < 2.

In the next two results we put some geometrical restriction on the polygon (concern-
ing a triangle). Due to [8, Remark 4.1], any two polygons related by an affine isomorphism
give equivalent interpolation spaces. Therefore our estimates remain valid in the general
case up to a constant.

P R O P O S I T I O N 5 . 1 . Let A = (AU...,AN) be a Banach N-tuple. Let II
= Px...PN be a convex polygon with Pr = (0,0), Pk = (1,0), Pt = (0,1) for some k, I

£ { 2 , . . . , TV} and let Ox,.. •, 0/v be some positive barycentric coordinates of P € Int II
with respect to Pu- • • ,Pft- If a, € Ap,q]j and u is a representation of a as in (4.4), then

N

where X(j) = lq{P - Pj, Aj) and Ce depends only on 0\, ...,0N.

P R O O F :
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[11] A quantitative approach to weak noncompactness 59

S T E P I. We first prove that for every e € A.gtq-K

(5-5) \M\\AP,q.,K^cB\\e\\A^K,

(compare to [8, Theorem 3.1]).

Define / : Z2 -*• 7LN~X with f(z) = (w2,.. .,wN), z&Z2 satisfying

2U),+«i-i < 2(pi-pi'z) < 2Wi+0i

foii = 2,...,N. Then
N

i=2

AT Af

fli = T\<2Wi+9i~l)~6i =
i=2

Similarly, estimating from below we get

2 <PI-P,Z> >

If 2 < j ^ TV and we put /,• = {2 , . . . , iV}\{j}, then

'<+^-1)-fl< = cg2~{ii'f<-z))

and

2(PJ-P,Z) ^ 2-(^^>2"(^'/ ( j )>.

By the assumption on APjPfcP;, if y, z € Z2 and y ^ z, then

| < , A , » > | >

This shows that / is an injection. Fix e > 0 and choose a representation e,- of e as in
(5.3) and such that e + \\e\\Ag K ^ max HejUyyj. It follows that

1/9

( | h ( / w ) | | / l j ) ) IIMIU—
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Letting e —¥ 0, we get (5.5).

S T E P II. Let d € Agiq.j and

(5.6)

Replacing in the proof of [27, Proposition 1.14] the 'continuous' norms by the 'discrete'
ones considered here for Yoshikawa's spaces, we check that C$ is finite and

S T E P III . In order to obtain the logarithmically convex-type inequality

(5-8) NU^^c.

for every d € Afli,;j and its representation y = {y{w))w€2lN-i satisfying (5.2), it is sufficient
to change variables as follows. For y ^ 0 (case y = 0 is obvious), we put yv = (y(w

+ " ) )„ ,«"-!• w h e r e u = (U2' • • • >v") € Z'V~1 s a t i s f i e s 2Ui+*'-1 ^ ||l/| |v( j ) |Mlv(i) < ^i+6i

for i — 2 , . . . , N. Proceeding analogously to the estimates for 2^p'~p>z\ we obtain

Since 2^>-v) \\y\\v(J) = ||2/"|lv(». (5-8) holds (compare to [27, Proposition 2.5]).

S T E P IV. Let u — (u(z))z6Z2 be a representation of a E ApA<j satisfying (4.4). Using
the injection / : Z2 —> Z N - 1 described in Step I, we define u = (U(W))W€ZN-I by

~( \ _ i u(z) if ^ = fiz)
1 0 elsewhere.

Then a = £ u(w) in T,(A) and for j = 1,..., N

IH™=( E_, „,.
1/9

= o^j'^'^ Hull

z6Z2 '

Thus u is a representation of a as in (5.2). Applying (5.8) we get

N N
ii ii ^ T T • •—• i»j ^
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Since £ 0,-fo, Q = £ 0,-(l - Oj), we have
i2

Finally, combining (5.5), (5.7) and (5.9), we get the assertion with

(5.10) Cg = Qcg,

where Q and ce given by (5.6) and (5.4), respectively, depend only on 9i,... ,9N. D

In [6], it was proved that T: APtQ.j —>• Bpq.K with P € Int II and g £ (1, oo) is weakly
compact if and only if so is T: A(A) -> £ (£ ) . In particular, if T: Aj -» Bj is weakly
compact for at least one j: = 1 , . . . , N, then so is T: APmj -» BP}Q;K for all P € Int FI and
9 € (1, oo). This fact can be also derived as a corollary from our next result. Repeating
arguments from the proof of Theorem 4.3, J —> J, and applying Proposition 5.1, we
obtain the main theorem of this section.

THEOREM 5 . 2 . Let A = (AU...,AN) and B = (BU...,BN) be Banach N-

tuples and q £ ( l , oo ) . Under the assumptions of Proposition 5.1, ifT: A —» B, then

N

T(T: AP,q.j -»• BP,q,K) ^CeH (T(T: Aj -> B^)0' ,

where Cg given by (5.10) depends only on 9\,..., 9^.
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