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THE SUBDIFFERENTIAL OF THE SUM OF TWO FUNCTIONS
IN BANACH SPACES II. SECOND ORDER CASE

ROBERT DEVILLE AND E L MAHJOUB E L HADDAD

We prove a formula for the second order subdifFerential of the sum of two lower
semi continuous functions in finite dimensions. This formula yields an Alexandrov
type theorem for continuous functions. We derive from this uniqueness results of
viscosity solutions of second order Hamilton-Jacobi equations and singlevaluedness
of the associated Hamilton-Jacobi operators. We also provide conterexamples in
infinite dimensional Hilbert spaces.

1. INTRODUCTION AND DEFINITIONS

In the second section of this paper, we give a formula for the second order subdiffer-
ential (see precise definition below) of the sum of two lower semi continuous functions in
finite dimensions. This formula was implicitly proved by Jensen [4], we refer to the sur-
vey paper of Crandall, Ishii and Lions [2]. However it has never been stated separately
and we feel that it deserves special emphasis.

In the following section, we apply these results to second order Hamilton-Jacobi
equations in finite dimensions. We show how the formula of second order subdiffer-
ential of the sum of two lower semi continuous functions allows a proof to be given
of uniqueness of viscosity solutions of some second order Hamilton-Jacobi equations
without the assumption of ellipticity. We also prove a Alexandrov type theorem for
continuous functions. As a consequence, we show the singlevaluedness of the second
order Hamilton-Jacobi operator associated to a uniformly continuous Hamiltonian.

We shall give also two examples; the first one shows that the formula for the second
order subdifFerential of the sum of two lower semi continuous functions is not available
in £2(N) and the second one shows that this formula is not available in £2(T) in the
Gateaux sense if P is an uncountable set.

Let A" be a Banach space and / : X —> R U {+00} be a lower semi continuous
function. As usual, we denote by D(f) the domain of / :
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236 R. Deville and E.M. El Haddad [2]

DEFINITION 1.1: Let x e D(f). We say that / is twice subdifferentiable at x if
the set :

D2>~f(x) = {j((p'(x),(p"(x)) ;<p:X —> R is C2 and f-<p has a local min imum at x}

is not empty. And we say that / is twice superdifferentiable at x if the set:

D2'+f(x) — {(tp'(x),<p"(x)) ; <p : X —> 1 is C2 and /—<p has a local maximum at x}

is not empty. (For x $ D{f), we define D2<~f(x) = D2<+ f(x) = 0.)

This definition is justified by the following smooth variational principle Theorem
1.2 which is proved in [3]:

THEOREM 1 .2 . Let X be a. Ba.na.ch space, / : X —> R U {+00} be a lower semi
continuous, bounded below function such that D(f) ^ 0. Assume that there exists a
C2-bump function b on X such that b' is Lipschitz continuous. Then for every e > 0,
there exists a C2 -function g on X such that :

(a) f + 9 ha.s a strong minimum at some point xo G D{f),

(b) Halloo < =. llff'lloo < e and H^H^ < e.
Moreover, we have the following localisation property : there exists a constant

c > 0 (depending only on the space X) such that whenever y G X satisfies f(y) ^
inf {/(a;); x G X} + ce3 , tiien the point XQ can be chosen such that \\y — XQ || < £.

Let us recall that a function F : X —* R attains a strong minimum at XQ G X
if, by definition, F(x0) — ini{F(x); x G X} and every minimising sequence (yn) in X
(that is, lim F(yn) = F(x0)) converges to x0.

n—>oo

The norm ||</"(a;)|| is the usual norm of a quadratic form on X :

\\9"{x)\\ = snp{g"(x)(h,k); ( M ) € X2 , \\h\\ < 1, \\k\\ < 1 }.

Using Theorem 1.2, one can prove that for every lower semi continuous / : X —>
RU {+00}, the set of all points x G D(f) such that D2>~f(x) ^ 0 is dense in
D(f). However, it does not seen possible to have a good calculus for second order
subdifferentials. Indeed, if we denote by C 1 ' 1 ^ 2 ^ ) ) the class of all / : £2(N) —> R,
whose first derivatives are locally Lipschitz, then on the Hilbert space £2(N) there exists
convex / G C1'1 (^2(N)) , such that for each x G £2{N),f has no second order expansion
at x (see the proof of Proposition 4.4(1)). Moreover the formula for the second order
subdifFerential of the sum of two lower semi continuous functions is not available in this
space (see Proposition 4.1). So we are lead to introduce a weak notion of second order
subdifFerential:
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Let B(X) be the set of a bilinear symmetric continuous forms on X. We say that

/ is twice Gateaux differentiable at x £ D(f), if it is the Gateaux differentiable in a

neighbourhoud of x and there exists convex Qx £ B(X) such that for all h,k £ X

Using l'Hopital's rule, we obtain that / is twice Gateaux differentiable at x £ D(f),
then / has a second order expansion in the Gateaux sense at x that is, there exist
px £ X* and Qx £ B(X) such that for all h £ X

^ f(x + th) - f(x) - t(f(x),h) - t>2-*Qx(h,h) = Q

t->o t2

For convex / a converse also holds (see [1]).
Now if X is a separable Banach space with separable dual X* and if we denote by

CQ1^) the class of all / : D —> R, D is open, whose first Gateaux derivatives are
locally Lipschitz, then / ' is Gateaux differentiable on a dense subset Dj of D that is,
/ is is twice Gateaux differentiable on Df. This fact is not true in general, for example
on the Hilbert space ^2(r) there exists convex / G Cll l(^2(r))> such that for each
x £ £2(T),f has no second order expansion at x in the Gateaux sense (see Proposition
4.4(2) for the proof).

DEFINITION 1.3: For x E D(f), the Gateaux subdifferential of order two of / at x
is the set: D\~T f(x) = {(<p'(x),<p"(x));(p : X —> R is twice Gateaux differentiable and
/ — tp has a local minimum at z} .

We say that / is twice Gateaux subdifferentiable at x if DQ~ f(x) is not empty.
In a similar way we define the Gateaux superdifferential of order two of / at x

by: D2A+f{x) = {{<p'(x),<p"(x));<p : X —» R is twice Gateaux differentiable and
f — <p has a local maximum at x}.

And / is twice Gateaux superdifferentiable at x if DQ f(x) is not empty (for
x £ £»(/), we define D^f f{x) = D*}+ f(x) = 0.)

It is easy to see that if D2<f f(x) ^ 0 (respectively D\A+f{x) ^ 0 ) , then there exist
px G X* and Qx £ B(X) such that for all h £ X

/(x + </t)-/(a!)-<(p,,fe)-t22-1Qg(/t,fe)^n
um -z ^ u
t—o t

respectively
— f(x + th) - f(x) - t{px, h) - (t*/2)Qx{h,h) ^ n

l^o * <0-
In section 4 (Proposition 4.2), we shall see that the formula for the second order sub-
differential of the sum of two lower semi continuous functions is not available in £2(T)

in the Gateaux sense. So, in this paper we shall be interested in the formula and its
applications in the finite dimensional case.
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2. T H E SECOND ORDER SUBDIFFERENTIAL OF THE SUM OF TWO LOWER

SEMI CONTINUOUS FUNCTIONS IN FINITE DIMENSIONS

In this section, we shall prove the following :

THEOREM 2 . 1 . Let tii,ti2 be two real valued lower semi continuous functions

defined on Rn. Suppose that x0 and (p,Q) G D2'~(ui+u2)(x0) are given. Then,

for every e > 0, there exist Xi,x2 G Kn, there exist (pi,Qi) £ D2'~u1(x1) and

(P2,Q2) £ D2'~u2(x2) such that:

(i) \\xi - xo\\ < e and \\x2 - xo\\ < e.

(ii) |wi(zi) —ui(xo)\ < t and |u2(:c2) - v.2{xQ)\ < e.

(iii) ||pi > i>2 - p|| <e and \\Qi + Qa - Q\\ <£

Alexandrov's theorem states that convex functions on R" have a second order
expansion almost everywhere. The following result can be considered as a weak version
of Alexandrov's theorem for continuous functions.

COROLLARY 2 . 2 . Let u be a continuous function defined on Rn. Then for

every x G E n and for every e > 0, there exist x\,x2 G K", {p~,Q~) G D2'~u{xi) and

(p+,Q+) G D2'+u{x2) such that :

(i) ||a:i — a;|| < e and \\x2 — x\\ < e.

(ii) |ti(s:i) — u(x)\ < £ and \u(x2) — u(x)\ < e.

(iii) | | p - - p + | | < e a n d | | Q - - Q + | | < e .

In order to prove this result, it is enough to apply Theorem 2.1, with Ui — u and
u2 = —u, and to observe that D2'~(—u)(x2) = — D2'*u(x2).

REMARK 2.3.

(1) We have an analogous result for the second order superdifferential of the
sum of two upper semi continuous functions in finite dimensions.

(2) In Theorem 2.1, we can replace Rn by an open subset of R™.

PROOF OF THEOREM 2.1: In this proof we use the following result of Crandall,
Ishii and Lions [2, Theorem 3.2]:

THEOREM. Let Oi be a locally compact subset of R"< for i = 1,2, O = O i X 0 2 ,
let m be lower semi continuous on Oi, and let <p be twice continuously differentiate
in a neighbourhood of O. Set

w(x) — u^xx) + u2(x2) for x = (2:1,3:2) G O

and suppose x = (x~i, xj) G O is a local minimum of w — <p relative to O. Then for

each e > 0, there exists Xi G 5(rif) such that (DXi<p(x),Xi) G D ' Ui(xi) for i — 1,2
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and t i e block diagonal matrix with entries X{ satisfies

wiere A = D2(p(x) G S(n), n — n\ + n 2 , S(n) is the set of symmetric n x n matri-

ces and ~D2'~v,i(xi) = {(p,Q) G Kn i x S(TW); there exists {xn,pn,Qn) G Oi x E"* x

5'(wi)i(Pn><?«) € D2'~ui(xn) and lim (zn,u,(s:n),pn,<5n) = (xi,Ui(xi),p,Q) \ .

The proof proceeds in two steps.

STEP 1. Here we prove that if U\ + u2 has a strict local minimum at XQ , then for

every e > 0, there exist Xi,x2 G K n , there exist (pi,Qi) G £>2'~ui(xi) and (p2 )Q2) G

i?2'~ju2(z2) such that:

(i) ||xi — xo|| < e and ||x2 — xo|| < e.
(ii) |«i(a;i) — «i(zo)| < £ and |u2(x2) — M2(zo)| < £•

(iii) ||pi + p 2 | | < £ and ||Qi + Q2|| < £•

Let us fix e > 0 and suppose that u\ + u2 has a strict local minimum at XQ , so
there exists r > 0 such that

(ui + ii2)(xo) < \ui "I" w2)(x) for x in B(XQ,TJ \ {xo}-

Set K = B(xo,r). For a > 0, consider the function

wa(x,y) — ui(x) + u2(y) + — ||x - y|| for (x,y) G K. x K.

We shall need the following elementary lemma (see Crandall, Ishii and Lions [2, Lemma
3.1] for a proof).

LEMMA . Let O be a subset of Kn and u i ,u 2 be two iower semi continuous func-

tions on O. Set

for a > 0. Let Ma > —00 for large a and (xa,ya) be such lim (Ma — (ui(xa)+U2(ya)
ot—>oo

+(a /2 ) | | z a - ya\\
2)) = 0 . Tien t i e following holds :

(i) lim a | |xa - 2 / a | | 2 = 0 and
a—*oo

(ii) lim M a = M I ( I ) + M2(x) = inf (« i (x )+ K2(x))
ot—>oo O

wienever x G O is a limit point of xa as a —> 00.

Since K, is compact, the function wa has a minimum on K. x K- at some point

(sajj/a) satisfying the following conditions:

(i () lim a | | x a - 2 / Q | | 2 = 0
OE—>oo

(ii') lim wa(xa,ya) — ui(x) + u2(x) = min{ti!(x) + u 2 ( x ) ; x G fC}. Here
a—>oo
x E /C is a limit point of z a as a —» oo.
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From ( i ' ) we deduce that lira ya = x and since xo is a strict minimum of Ui + u2 on
a—>oo

/C, by (ii ') we have x = xo • Let t] be a real positive number. By (ii1) if a is large
enough, we have wa(xa,ya) ^ ui(x0) + "2(^0) + »?, which yields ui(xa) + u2(ya) ^
UI(XQ)+U2(XO) + TI and hence •ui(za) ^ «i(a;o)+ 1*2(̂ 0) — U2(ya)+V- Since u2 is lower
semi continuous, ya —* xo as a —» 00 and 77 is arbitrary, we have lim ui(xa) ^ Ui(xo).

a—*oo

The function ui is lower semi continuous, so lim tti(xa) — Ui(xo). Similarly, we prove
G C — • O O

that lim 1*2(2/0) — ^2(20)- Consequently, there exists M > 0, such that for a ^ M,
oc—>oo

we have
(1) ||xa - xoi| < e/2 and \\ya - xo\\ < e/2.
(2) |ui(a;a) - ui(xo)\ < e/2 and \u2(ya) - u2{x0)\ < e/2.

On the other hand, if we set j>x = — a(xa —ya), p2 = <*(xa — Va) and Q1 =

Q2 — —al where / is the identity matrix of Rn , then {pi,Qi) E D2'~{ui)(xa) and

(p2,Q2) G D2'~(u2)(ya). Unfortunately, Q1 + Q2 — -2al < 0. From now on, we

fix a ^ M. We apply the previous theorem with n-i = n2 = n, w = wa, x = xa

and y = ya on Oi = K. for i = 1,2. This yields the existence of two points xi,x2 in

R", ( p i . Q i ) in ^ - - ( tuXasO, (p2,Q2) in D2'-(u2)(a:2) and Xj.Xz in S{n) such

that :

(3) ||x! - xQ|| < e/2, ||x2 - ya|| < e/2.

(4) M x i ) - U!(xQ)| < e/2, |u2(*2) - u2{ya)\ < e/2.

(5) llPi-Pill < e / 2 for i = 1,2, | < 2 i - * i | < e/2 for t = 1,2

and
^ ^ A , ,2 v, A f - a i

Thus

Let x be in K™. Since the right hand side annihilates the vectors *(x,x) (where lZ

denotes the transpose of the matrix Z), we have

for all x G Kn. So Xi + X2 ^ 0. Finally, if we set p; = pi for t = 1,2, Qj = Qi

and Q2 = Q2 — (Xi + X2) we claim that Xj,pi,Q,-, i — 1,2 satisfy the conditions (i),

(ii) and (iii) of Theorem 2.1 with p = 0 and Q = 0. Indeed, since Q2 > Q2,(pi,Q«) £

||pi +P2II = ||pi - P I + P I - P 2 + P2 -Pall < llPi - PI +P2-P2II < e
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and

= Qi-X1+Q2-X2.

Thus

Moreover

|«2(*2) - «2(*o)| = \u2(x2) - u2(ya)\ + \u2(ya) - u2(a:o)| < ~ + 7: = e

and

ll*i - *oll < ll*i - * 11 + 11* - soil < - + - = e

||*2 - * o | | ^ ||*2 -y<*\\ + \\ya - * o | | < - + - = e.

STEP 2. Let x0 be in Rn, {p,Q) be in D2'~{m +u2)(*o) and 0 < e < 1 be fixed.

By the definition of the second order subdifferential, there exists a C2-function (p :

Rn —> R such that u\ + u2 — <p has a local minimum at xo with p = y?'(*o) and

Q — ip"(xo). Set ui = ui — ip — (e/4) ||. — zo|| • The functions iii and u2 satisfy the

conditions of Step 1, so there exist xi,x2 G Rn, there exist fpi,Qi) G D2'~(ui)(xi)

and (p2,<?2) £ D2'~{u2){x2) such that :

(i") ||a;i — xo || < e and ||x2 — *o || < e/2.

(ii") |«i(si) - «i(*o)| < e/2 and \u2(x2) - u2(x0)\ < e/2.

(iii") ||pi +p 2 | | < e / 2 and | Q I +Q 2 | | <e/2.

But pi = pi — <p'(xo) — e/2(xi — xo), Qi — Qi — v"(*o) — tl and it is clear that
xi,x2,(pi,Qi),(p2,Q2) satisfy the conditions (i), (ii) and (iii) of Theorem 2.1. D

3. APPLICATIONS TO VISCOSITY SOLUTIONS OF SECOND ORDER HAMILTON-JACOBI

EQUATIONS

Let H : R™ x Rn x S(n) —> R be a uniformly continuous function. In this section,
we are interested in the uniqueness of the viscosity solution u : Rn —• R of the equation

(3.1) u + H(x,Du,D2u) =0.
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DEFINITION 3 .1 : A function u : K" —» R is a viscosity subsolution of (3.1) if

(1) u is upper semi continuous on K n .

(2) For every x in R n and for every (p,Q) G D2>+u(x) :

The function u is a viscosity supersolution of (3.1) if

(3) u is lower semi continuous on R n .
(4) For every x in R n and for every (p, Q) € D2'~u(x) :

Finally it is a viscosity solution of (3.1) if u is both a viscosity subsolution and a

viscosity supersolution of (3.1).

For the uniqueness of viscosity solutions of (3.1), we have the following result where
no assumption of ellipticity is assumed.

PROPOSITION 3 . 2 . Suppose that the Hamiltonian H is uniformly continuous

from K " x K n x S(n) into R . Let u,v be two real valued functions defined on Rr t ,
with u bounded above and v bounded below. If u is a viscosity subsolution of (3.1)

and v is a viscosity supersolution of (3.1), then

V.

REMARK 3.3. (1) Let us mention that, if the Hamiltonian H is degenerate elliptic,
then a classical solution of (3.1) is a viscosity solution of (3.1), (see [2]). This fact is no
longer true if H is not degenerate elliptic, for example on R the function x —> x2 — 2
is a classical solution of the equation u + u" — x2 = 0 but is not a viscosity solution.

(2) Observe that when H is not degenerate elliptic, Perron's method for proving
the existence of a viscosity solution of Hamilton-Jacobi equations no longuer works.
Indeed this method uses the fact that classical solutions of (3.1) are viscosity solutions
of (3.1).

(3) Using the techniques of Crandall, Lions and Ishii [2] one can prove a general
assertion that u and v are not bounded but satisfy some growth condition at infinity.

PROOF OF PROPOSITION 3.2: Let us fix e > 0. Since the function u - v is
upper semi continuous and bounded above, by Theorem 1.2 applied to / = — (u — v)
there exist x0 £ Rn and (p, Q) £ D2'+(u - v)(x0) such that ||p|| < e, ||Q|| < e and
(u — V)(XQ) > sup(w — •») — £. Now by applying Theorem 2.1 with U\ = v and 112 = —u,
there exist x\,X2 in Rn, (pi,Qi) £ D2'~v(x1) and {P21Q2) G D2'+u(x2) satisfying

(1) j|a=i — i o | | < £ and ||x2 — Xo\\ < £.
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< e.(2) \v(Xl) - v{xo)\ < e and \u(x2) - u(xo)\
(3) ||P2 -Vi ~P\\ < e and \\Q2 - Q1 - Q\\ < e.

The function u is a viscosity subsolution of (3.1), so

The function v is a viscosity supersolution of (3.1), so

Consequently

sup(u — v) < (u — v)(x0) + e

< u(x2) -v(xi) + 3e

!,pi.QO - H(x2,P2,Q2) + 3e.

Moreover,

| |*i — a;2|| < ||<EI - xo | | + ||zo — *21| < 2e,

\\P2 - Pi\\ ^ \\P2 - Pi - p\\ + \\p\\ < 2e

and

\\Q2-Qi\\^\\Q2-Qi-Q\\ + \\Q\\<2e.

Using the uniform continuity of H and sending e to zero, we get:

sup(u — v) ^ 0.

D
We conclude this section by studying the problem of singlevaluedness of the second

order Hamilton-Jacobi operator. Assume that the map H : R" x Rn x S(n) —> R is
uniformly continuous. We denote by C(Rn) the space of continuous functions defined
on R". We define the operator AH : C(Rn) —> C(Rn) by :

AHU = {/ G C(Rn); /( i) = H(x,u(x),Du(x),D2u(x)) in the viscosity sense }.

We prove the following :

THEOREM 3 . 4 . For every uniformly continuous function H defined on Rn x R x
Rn x S(n), the associated second order Hamilton-Jacobi operator An is singlevalued.

PROOF: Let us assume that H(x,u(x),Du(x),D2u(x)) — f(x) and
H(x,u(x),Du(x),D2u(x)) — g(x) fora £ Rn in the viscosty sense, where / and g
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are two continuous real valued functions defined on R n . We want to prove that f = g.

Let x £ K n and e > 0 be fixed. By Corollary 2.2, there exist (p~,Q~) £ D2<~u(xi)

and (p+,Q+) £ D2'+u(x2) such that :

(1) \\xi — x\\ < e and \\x2 — s|| < e.

(2) |u(xi) - w(a;)| < e and |ii(s:2) - u(x)\ < e.

(3) | | p - -p+ | |< £ and | | g - -g+ | |< e .

Since w is a viscosity subsolution of H(x,u,Du, D2u) = f, we have

Since u is a viscosity supersolution of H(x,u,Du,D2u) = g, we have

Consequently

5(0:2) - f(Xl) < ̂ (asa.tî sj.p-.g-) - { )

Using (1), (2) and (3) the continuity of the functions / and g at x and the uniform
continuity of H, we obtain, as e goes to 0 :

g{x) - f{x) < 0

Similarly, g(x) - f(x) ^ 0. This is true for all x £ Rn, so / = g. D

4. INFINITE DIMENSIONAL CASE

Our first example will prove that the formula for the second order subdifFerential
of the sum of two lower semi continuous functions is not available in ^2(N). For this
let ||.|| be the norm induced by the scalar product (,) in £2(N) and (en) its canonical
basis.

PROPOSITION 4 . 1 . On £2(N), there exist C1'1 and convex U!, u2 horn

into R, satisfying : for all x G £2(N) there exist (p,Q) £ -D2l~(t*i +u2)(x) such that

for all xi,x2 e £2(N) and for all {pi,Qi) £ D2'~Ui{xi), i = 1,2,

We now observe that in non separable Hilbert spaces the formula of the second

order subdifFerential of the sum is not true even in the Gateaux sense.

Let F be an uncountable set, and consider the Hilbert space £2(T) equiped with

the Euclidian norm ||.|| = (.,.) and (e7) its canonical basis.
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PROPOSITION 4 . 2 . On 12{T), there exist C1'1 and convex « i , u2 from £2(T)

into satisfying : for all x G £2(T) there exists (p,Q) G D2Q~(UI + v.2)(x) such that for

all xi,x2 G ^2(r) and for all (pi,Qi) G D\fui{xi), i = 1,2

IIQx + Q2 ~ Q\\ Z 2.

Before proving Propositons 4.1 and 4.2, let us mention the following open problem.

PROBLEM. Is it possible to obtain a formula for the second order Gateaux subdiffer-
ential of the sum of two uniformly continuous or even C1'1 functions on a separable
Hilbert space?

P R O O F OF PROPOSITION 4.1: For x = (xn) e £2(N), set ui(x) = £ ( z + ) 2 an<*
n

u2[x) — X) ( x n ) • ^e^ u s observe that u — u\ + u2 = ||.|| which is twice differentiable
n

on £2(N). Thus D2'~u(x) = {(2x,Q);Q ^ 21} for x G £2(N). In order to prove that
«i and u2 do not satisfy Theorem 2.1, we need the following:

LEMMA 4 . 3 . If (p,Q) G D2-Ui(x); i = 1,2 and if pn = (p,en), qn = {Qen,en),

then

(1) Pn=2x+

(2) lim 9 n ^ 0 .
n—>oo

Moreover if xn = 0, then pn = 0 and qn ^ 0.

PROOF: We only prove the lemma for i = 1, because u2(x) — ui(—z). Since

(p>Q) 6 D2'~ui(x), we have

(4.1) hm «i(« + fc)-"i(*)-(P,fc) > 0 .
||k||-o llftll

If xn > 0, from (4.1) with h = ten and h = —ten; t > 0, we have

iii(x + txnen) - ui(z) - txnpnhm ^ 0
i-o+ tx*

and
«i(z - txnen) - ui(x) + <xnpnlim ^ U.

i-o+ t z «

These yield lim (< + 2)xn - pn ^ 0 and hm (< - 2)xn + p n ^ 0. Thus p n = 2xn.
1-.0+ 1—0+

Now if xn 4: 0, since u ^ x - <en) - ux(x) = ux(x + <en) - «i(x) = 0 for x n < 0
and t small enough and ui(x + ten) — ui(x) = t2 for xn = 0, using (4.1) with h — ten,

we obtain lim (t2 - tpn)/t ^ 0 and liminf (tpn)/t ^ 0. Thus pn - 0.
« 0 +
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Let k 6 N* be fixed. Since lim xn — 0 and (p,Q) e D2>~«i(a!)> we have

(4.2) Ul^X ~ kXB>> ~ ttl(a) + fczP ~ 2 " l t 2 i B g
n—»oo

n / i n >0

and

(4.3) lim Ul^X + kXn6n) ~ ttl(g) ~ fcg"P" ~ 2~1fe2x2 gn > Q

n-»oo

But
0 if xn ^ 0

(Jfe2 + 2Jfc)x2 if Xn >

and

«i(a; + kxnen) - u^x) = i

Ul(x - fcxnen) - Ui(x) = <
[ - x 2 if xn > 0.

By (4.2), we have lim ( -x 2 + 2fcx2 - 2-1A2x2gn)/(ife2x2) ^ 0, that is,
n— ôo

n/zn>0

lim — (l/fc~2) + 2/k — l/2gn ^ 0 and a simple calculation yields lim qn ^
n?rn>0 _ »/^->«
2Jfe~2 — 4fc-1. Consequently, by sending A; to oo, we obtain lim qn ^ 0. Now (4.3)

n/xn>0

implies lim {-kx2
n - 2-1k2x2

nqn)/{k2x2
n) > 0, that is, lim -Jfe"1 - 2~1qn > 0.

n—»oo n—*oo
n/xn<0 n/xn>0

Thus fim gB ̂  -2A;-1 < 0.
n—>oo

n/a!n>0
If xn = 0, since pn = 0 by the definition of subdifFerential of order two, we have

lim («i(s: -ien) - « i ( x ) -i22~1qn)/t
2 ^ 0. But ux(x -ten)-ui(x) = 0, so gn < 0.

*-»o

END OF THE PROOF OF PROPOSITION 4.1: let xi,x2 e £2(N) and (puQi) 6
D2'~Ui{xi); i - 1,2. From Lemma 4.2, if pj, = (pi,en), and g^ = (<5ien,en), then

(1) pl = 2X+, p2 = 2x- and

(2) Urn g ; ^ 0 .
n—^oo

By (1), we observe that «i and w2 are C1'1 on £2(N), and since 2J(en ,en) = 2 for
n G N, by (2), if Q = 2J , we have

! - & + «£) >2-
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PROOF OF PROPOSITION 4.2.: Let u i ,u 2 from £2(F) into R be defined by :

«I((*T)) = E « ) 2 ^ «»((̂ )) = E K)2-
7 7

By reasoning analogous to that in Lemma 4.3 ( i n = 0 case), we get that if x^,X2 G
12{T), (pi,qi) £ D2^~ui(xi) and if 7 £ supp(zj) U supp(x2), then <?i(e7)e7) ^
0 and (pi,e7) = 0 . Q

Finally we observe that in infinite dimensional Hilbert spaces a convex and C1'1-
function can be nowhere twice differentiable. This is shown by the following :

PROPOSITION 4 . 4 . (1) On £2(N), the function defined by g({xn)) = ~E(x+f
n

is C1'1 and convex but nowhere twice differentiable.
(2) On £2(V), the function defined by /((z7)) = £ (a;+)2 is C1'1 and convex but

7
nowhere twice Gateaux differentiable.

PROOF: (2) Assume on the contrary that / is twice Gateaux differentiable at some
point x - (xy) £ £2(T), so there exist px G £2(r) and Qx £ B(£2(T)) such that for all
h

, , , , ,. / (« + th) - f{x) - <(p,, h) - (t2/2)Qx(h,h)
(4.4) hm -2 = 0.

Since F is an uncountable set, there exists 7 G F such that 7 ^ supp(z). According
to Lemma 4.3 (px,e-f) = 0 and Qj.(e7)e7) ^ 0. But / is convex, so (pz,e7) =
Qx(e~f, e7) = 0 and if we put h = e7 in (4.4), we obtain a contradiction.

(1) Assume on the contrary that g is twice differentiable at some point x — (xn) G
£2(N). By the proof of (2), xn ^ 0 for all n G N and by the definition of the differen-
tiability of order two, there exist p G £2(N) and Q G fi(£2(N)) such that

lim «(« + h) - g(x) - (p, h) - Q(h, h)/2
(4.5) li!=! 5 = 0.

From Lemma 4.3 and the convexity of g, pn — (p, en) = 2x* and hm (Qen,en) — 0.
n—>oo

Finally if we put h = — 3znen in (4.5), we obtain a contradiction. D
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