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Existence and Multiplicity of Positive
Solutions for Singular Semipositone
p-Laplacian Equations

Ravi P. Agarwal, Daomin Cao, Haishen Lü, and Donal O’Regan

Abstract. Positive solutions are obtained for the boundary value problem

{
−(|u′|p−2u′)′ = λ f (t, u), t ∈ (0, 1), p > 1

u(0) = u(1) = 0.

Here f (t, u) ≥ −M, (M is a positive constant) for (t, u) ∈ [0 , 1]×(0,∞). We will show the existence

of two positive solutions by using degree theory together with the upper-lower solution method.

1 Introduction

In this paper, we establish the existence of positive solutions for the p-Laplacian equa-

tion

(1.1)

{
−(ϕp(u ′)) ′ = λ f (t, u) for t ∈ (0, 1)

u(0) = u(1) = 0.

Here ϕp(s) = |s|p−2s, p > 1, f : [0, 1] × (0,∞) → R is continuous and satisfies the

following conditions.

(H1) There exists M > 0 such that

(1.2) f (t, y) ≥ −M for (t, y) ∈ [0, 1] × (0,∞).

(H2)

(1.3) lim sup
y→∞

f̃ (y)

ϕp(y)
= ∞

where f̃ (y) = inf{ f (t, s) : (t, s) ∈ [0, 1] × [y,∞)} for y > 0.
(H3) ∃a ∈ (0,∞) such that

(1.4) f (t, y) ≥ f (t, a) > 0 for t ∈ [0, 1], y ∈ (0, a].
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(H4) (i) | f (t, y)| ≤ g(y) + h(y) on [0, 1] × (0,∞) with g > 0 continuous and

nonincreasing on (0,∞) , h ≥ 0 continuous on [0,∞) and h/g nonde-

creasing on (0,∞);

(ii) for any R > 0, 1/g is differentiable on (0, R] with g ′ < 0 a.e. on (0, R],
|g ′|1/p

g2/p ∈ L1[0, R], and
∫ ∞

0

|g ′(t)|1/p

(g(t))2/p dt = ∞;

and for any D ≥ 0, there exists a sequence of numbers {Mn} s.t. limn→∞ Mn =

∞ and

(1.5) lim
n→∞

1

ϕ−1
p

(
1 + h(Mn)+D

g(Mn)

)
∫ Mn

0

dy

ϕ−1
p (g(y))

>
p − 1

p
2

p

1−p .

Remark 1.1 It is easy to see that if

(1.6) lim
y→0+

f (t, y) = +∞ uniformly on [0, 1],

then (H3) holds

Remark 1.2 Let b = mint∈[0,1] f (t, a)/2 (here a is as in (1.4)). Then

(1.7) f (t, y) > b for (t, y) ∈ [0, 1] × [0, a].

Remark 1.3 From (1.3) and the definition of limit supremum, there exists a se-

quence {yn} with 0 < yn < yn+1 for n ∈ N, limn→∞ yn = ∞ and

lim
n→∞

f̃ (yn)

ϕp(yn)
= ∞.

Now f̃ (yn) = inf{ f (t, s) : (t, s) ∈ [0, 1] × [yn,∞)}, so we have

(1.8) f̃ (y1) ≤ f̃ (y2) ≤ · · · ≤ f̃ (yn) ≤ f̃ (yn+1) ≤ · · ·

and

(1.9) lim
n→∞

f̃ (yn) = ∞.

Now, since f (t, yn) ≥ f̃ (yn) for t ∈ [0, 1] and n ∈ N, we have

(1.10) lim
n→∞

f (t, yn) = ∞ uniformly on [0, 1].

Equations of the form (1.1) occur in the study of the p-Laplace equation, non-

Newtonian fluid theory, and the turbulent flow of a gas in a porous medium [9].

Existence of positive solutions for problem (1.1) has been studied by many authors,

usually under the condition

f (t, y) ≥ 0 for (t, y) ∈ [0, 1] × [0,∞).
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Recently, Anuradha et al. [3] studied the existence of positive solutions for second

order boundary value problems with p = 2, if conditions (H1) and (H2) hold with

f : [0, 1] × [0,∞) → R continuous and λ > 0 small enough. Motivated by their

work, we consider the p-Laplacian equation (1.1). We use degree theory to establish

the existence of positive solutions, and we also discuss multiplicity.

For p = 2, problem (1.1) (with f : [0, 1]× [0,∞) → R continuous) has a positive

solution u if and only if u + v := u is a solution of

{
−u ′ ′

= λg(t, u − v), t ∈ (0, 1)

u(0) = u(1) = 0,

where v is a solution of the problem −u ′ ′
= 1, u(0) = u(1) = 0, and g : [0, 1]×R →

R+ is defined by

g(x, y) =

{
f (x, y) + M (x, y) ∈ [0, 1] × [0,∞)

f (x, 0) + M (x, y) ∈ [0, 1] × (−∞, 0).

One can use a cone expansion/compression type theorem to establish an existence

result when p = 2. However, no Green’s function is available for general p. As a

result, the method in [3] does not suit the p-Laplacian when p 6= 2.

Several results on the existence of positive solutions for the one dimensional

p-Laplacian boundary value problems have been established in the literature (see

[6, 7, 9, 10]. The key condition used is that the nonlinearity is nonnegative so the

solution u is concave down; if the nonlinearity f is negative somewhere, then the

solution u need no longer be concave down.

The main results of this paper are the following.

Theorem 1.4 Assume (H1), (H2), (H3), and (H4) hold. Then the problem (1.1) has
at least two positive solutions ui ∈ C[0, 1] ∩C1(0, 1) with ϕp(u ′

i ) ∈ C1(0, 1), i = 1, 2

for λ > 0 small enough.

Theorem 1.5 Assume (H1), (H2), (H4), and (1.6) hold. Then the problem (1.1) has
at least two positive solution ui ∈ C [0, 1]∩C1 (0, 1) with ϕp

(
u ′

i

)
∈ C1 (0, 1), i = 1, 2

for λ > 0 small enough.

Next we state three results from the literature [1, 2, 4] which we will use in Sec-

tion 3. Consider the singular boundary value problem

(1.11)

{
−(ϕp(u ′)) ′ = q(t) f (t, u) for t ∈ (0, 1)

u(0) = u(1) = 0.

The singularity may occur at u = 0, t = 0, and t = 1, and the function f is allowed

to change sign.

Lemma 1.6 ( [2]) Let n0 ∈ {3, 4, . . . } be fixed and suppose the following conditions
are satisfied:
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(i) f : [0, 1] × (0,∞) → R is continuous.
(ii) Let n ∈ {n0, n0 + 1, . . . } and associated with each n we have a constant ρn such

that {ρn} is a nonincreasing sequence with limn→∞ ρn = 0 and such that for
0 < t < 1 we have q(t) f (t, ρn) ≥ 0

(iii) q ∈ C(0, 1) ∩ L1(0, 1) with q > 0 on (0, 1) and

∫ 1

2

0

ϕ−1
p

(∫ 1

2

s

q(r) dr
)

ds +

∫ 1

1

2

ϕ−1
p

(∫ s

1

2

q(r) dr
)

ds < ∞.

(iv) There exists a function α ∈ C[0, 1] ∩C1(0, 1) , ϕp(α ′) ∈ C1(0, 1), with α(0) =

α(1) = 0, α(t) > 0 on (0, 1) such that q(t) f (t, α(t)) + (ϕp(α ′(t))) ′ ≥ 0 for

t ∈ (0, 1).
(v) | f (t, y)| ≤ g(y) + h(y) on [0, 1] × (0,∞) with g > 0 continuous and non-

increasing on (0,∞), h ≥ 0 continuous on [0,∞), and h/g nondecreasing on
(0,∞).

(vi) For any R > 0, 1/g is differentiable on (0, R] with g ′ < 0 a.e. on (0, R],

|g ′|1/p

g2/p
∈ L1[0, R] and

∫ ∞

0

|g ′(t)|1/p

(g(t))2/p
dt = ∞.

(vii) In addition assume there exists M > supt∈[0,1] α(t) with

1

ϕ−1
p

(
1 + h(M)

g(M)

)
∫ M

0

dy

ϕ−1
p

(
g
(

y
)) > b0.

holding. Here

b0 = max
{∫ 1

2

0

ϕ−1
p

(∫ 1

2

s

q(r) dr
)

ds,

∫ 1

1

2

ϕ−1
p

(∫ s

1

2

q(r) dr
)

ds
}

.

Then (1.11) has at least one solution u ∈ C[0, 1] ∩ C1(0, 1) with ϕp(u ′) ∈
C1(0, 1) with u(t) ≥ α(t) for t ∈ [0, 1].

Lemma 1.7 ( [4]) Let C be a bounded closed set in a Banach space X and K : [α, β]×
C → C, α < β, a compact mapping. Then the set

Sα,β = {(s, x) ∈ [α, β] ×C | K(s, x) = x}
of “fixed points” of K contains a component Cα,β which connects {α} ×C to {β} ×C.

Remark 1.8 Let S−1 = Sα,β∩({α}×C) and S+1 = Sα,β∩({β}×C). Suppose the set

Sα,β contains a component Cα,β which connects {α}×C to {β}×C and Φ : Sα,β → R
is a continuous map with Φ(S−1) ≤ 0 and Φ(S+1) ≥ 0. Then Φ(s, x) = 0 has at least

one solution in Sα,β .

Lemma 1.9 ( [1]) u ∈ {y ∈ C[0, 1] : y(t) ≥ 0 for t ∈ [0, 1] and y is concave on
[0, 1]}. Then u(t) ≥ t(1 − t)‖u‖∞.

In Section 2, we give some preliminary lemmas. In Section 3, we will prove The-

orem 1.4 and Theorem 1.5. Recall C[0, 1] = C([0, 1], (−∞,∞)), with the norm

‖u‖∞ = supt∈[0,1] |u(t)|.
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2 Preliminary Lemmas

Lemma 2.1 There exist 0 < α ≤ 1 and β ≥ 1 such that ϕ−1
p (x − y) ≥ αϕ−1

p (x) −
βϕ−1

p (y) for x ≥ 0 and y ≥ 0, where ϕ−1
p (s) = |s| 1

p−1 sign(s) is an inverse of ϕp.

Proof Let x ≥ 0, y ≥ 0. If y ≤ x
2
, then

ϕ−1
p (x − y) ≥ϕ−1

p

( x

2

)

= ϕ−1
p

( 1

2

)
ϕ−1

p (x).

If y > x
2
, then

ϕ−1
p (x − y) > −ϕ−1

p (y) + ϕ−1
p (x) − ϕ−1

p (2y)

= ϕ−1
p (x) − (1 + ϕ−1

p (2))ϕ−1
p (y),

since ϕ−1
p is odd and increasing. Therefore ϕ−1

p (x − y) ≥ αϕ−1
p (x) − βϕ−1

p (y) for

x, y ≥ 0, where α := ϕ−1
p

(
1
2

)
, β = 1 + ϕ−1

p (2).

Lemma 2.2 Let λ > 0 be fixed and let u be a solution of

(2.1)

{
−(ϕp(u ′)) ′ = λρ(t),

u(0) = u(1) = 0,

here ρ(t) is a continuous function with ρ(t) ≥ −M for t ∈ [0, 1] (and M > 0 is a
constant). If ‖u‖∞ ≥ β

αϕ−1
p (λM), then

u(t) ≥
(
α‖u‖∞ − βϕ−1

p (λM)
)

min{t, 1 − t} for t ∈ [0, 1];

here α and β are as in Lemma 2.1.

Proof Let u be the solution of (2.1). Then

u(t) =

∫ t

0

ϕ−1
p

(
A + λ

∫ 1

s

ρ(τ ) dτ
)

ds

where ∫ 1

0

ϕ−1
p

(
A + λ

∫ 1

s

ρ(τ ) dτ
)

ds = 0.

We know A exists and is unique, see [9].

Let ‖u‖∞ = |u(t0)| for some t0 ∈ (0, 1). Then (note u ′(t0) = 0)

u(t) =

∫ t

0

ϕ−1
p

(
λ

∫ t0

s

ρ(τ ) dτ − λM(t0 − s)
)

ds for t ∈ (0, t0]
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where ρ(τ ) = ρ(τ ) + M ≥ 0. By Lemma 2.1, we get

u(t) ≥ α

∫ t

0

ϕ−1
p

(
λ

∫ t0

s

ρ(τ ) dτ
)

ds − β

∫ t

0

ϕ−1
p (λM(t0 − s)) ds, t ∈ (0, t0].

Now ∫ t

0

ϕ−1
p (λM(t0 − s)) ds ≤ ϕ−1

p (λM)t, t ∈ (0, t0],

so

(2.2) u(t) ≥ αu(t) − βϕ−1
p (λM)t

≥ −βϕ−1
p (λM)t

≥ −βϕ−1
p (λM)

for t ∈ (0, t0]; here u(t) =
∫ t

0
ϕ−1

p (λ
∫ t0

s
ρ(τ ) dτ ) ds. If ‖u‖∞ ≥ β

αϕ−1
p (λM) >

βϕ−1
p (λM), then ‖u‖∞ = u(t0) > 0. Note u satisfies

{
−(ϕp(u ′)) ′ = λρ(t), t ∈ (0, t0]

u(0) = 0, u(t0) ≥ ‖u‖∞ = u(t0).

In fact, u(t) ≥ u(t) for t ∈ (0, t0].

We next prove that u(t) ≥ v(t) for t ∈ [0, t0] where v satisfies

{
−(ϕp(v ′)) ′ = 0, t ∈ (0, t0]

v(0) = 0, v(t0) = ‖u‖∞.

Suppose it is not true. Then u − v has a negative absolute minimum at τ ∈ (0, t0).

Now since u(0) − v(0) = 0 and u(t0) − v(t0) ≥ 0, there exists τ0, τ1 ∈ [0, t0] with

τ ∈ (τ0, τ1) and u(τ0)−v(τ0) = u(τ1)−v(τ1) = 0 and u(t)−v(t) < 0 for t ∈ (τ0, τ1).

Then

(ϕp(u ′)) ′ − (ϕp(v ′)) ′ = −λρ(t) ≤ 0 for t ∈ (τ0, τ1).

Let w = u(t) − v(t) < 0 for t ∈ (τ0, τ1). Then

∫ τ1

τ0

(
(ϕp(u ′(t))) ′ − (ϕp(v ′(t))) ′

)
w(t) dt ≥ 0.

On the other hand, using the inequality (ϕp(b)−ϕp(a))(b − a) ≥ 0 for a, b ∈ R and

the fact that there exists τ∗ ∈ (τ0, τ1) with u ′(τ∗) 6= v ′(τ∗) we have

∫ τ1

τ0

(
(ϕp(u ′(t))) ′−(ϕp(v ′(t))) ′

)
w(t) dt

= −
∫ τ1

τ0

(ϕp(u ′(t)) − ϕp(v ′(t)))(u ′ − v ′) dt

< 0,
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a contradiction. Consequently, u(t) ≥ v(t) for t ∈ [0, t0].

For t ∈ (0, t0), notice

v(t) =
‖u‖∞

t0

t.

Since u ≥ v for t ∈ (0, t0] and α > 0, we have from (2.2) that

u(t) ≥
( α‖u‖∞

t0

− βϕ−1
p (λM)

)
t, t ∈ (0, t0],

Similarly,

u(t) ≥
( α‖u‖∞

1 − t0

− βϕ−1
p (λM)

)
(1 − t), t ∈ [t0, 1).

If ‖u‖∞ ≥ β
αϕ−1

p (λM), then

u(t) ≥ (α‖u‖∞ − βϕ−1
p (λM)) min{t, 1 − t}, t ∈ [0, 1].

This completes the proof of Lemma 2.2.

By condition (H3) we have

(2.3) f (t, u) ≥ f (t, a) for (t, u) ∈ [0, 1] × (0, a].

Let us consider the problem

(2.4)

{
−(ϕp(u ′)) ′ = λ f ∗(t, u), t ∈ (0, 1),

u(0) = u(1) = 0,

where

f ∗(t, y) =

{
f (t, y) if t ∈ [0, 1], y ≥ a,

f (t, a) if t ∈ [0, 1], y < a.

By (2.3), we have

(2.5) f (t, y) ≥ f ∗(t, y) for (t, y) ∈ [0, 1] × (0,∞).

Let

(2.6) f ∗(t, y) = f ∗(t, y) + M ≥ 0 for ∀(t, y) ∈ [0, 1] × (−∞,∞)

and

(2.7) f̂ ∗(y) = sup{ f ∗(t, x) : 0 ≤ t ≤ 1, x ≤ y} for y > 0.
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Remark 2.3 From (1.10) and

f̂ ∗(yn) = sup{ f ∗(t, x) : 0 ≤ t ≤ 1, x ≤ yn}

≥ f ∗(t, yn)(→ ∞ as n → ∞, uniformly on [0, 1])

(here {yn}(n ∈ N) is as in Remark 1.3), we have

(2.8) lim
n→∞

f̂ ∗(yn) = ∞.

Also, for all n large enough, we obtain

f̂ ∗(yn)

ϕp(yn)
≥ f ∗(t, yn)

ϕp(yn)
≥ f ∗(t, yn)

ϕp(yn)

=
f (t, yn)

ϕp(yn)
≥ f̃ (yn)

ϕp(yn)
(→ ∞ as n → ∞).

Thus, we have

(2.9) lim sup
y→∞

f̂ ∗(y)

ϕ(y)
= ∞.

For u ∈ C[0, 1], define

Tu(t) =

∫ t

0

ϕ−1
p

(
A +

∫ 1

s

λ f ∗(τ , u(τ )) dτ
)

ds

where ∫ 1

0

ϕ−1
p

(
A +

∫ 1

s

λ f ∗(τ , u(τ )) dτ
)

ds = 0.

We know A exists and is unique for every u ∈ C[0, 1], and u = Tu is a solution of

{
−(ϕp(u ′)) ′ = λ f ∗(t, u), t ∈ (0, 1)

u(0) = u(1) = 0.

We know [9] that T : C[0, 1] → C[0, 1] is continuous and completely continuous.

Lemma 2.4 Let λ > 0 be fixed but sufficiently small. Then there exists Cλ > a such
that for any 0 ≤ θ ≤ 1 the problem

(2.10) u = θTu

has no solution satisfying ‖u‖∞ = Cλ.
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Proof Let u be a solution of (2.10). Then

u(t) = θ

∫ t

0

ϕ−1
p

(∫ t0

s

λ( f ∗(τ , u(τ )) − M)dτ
)

ds,

here f ∗(t, u) is as in (2.6), M is as in (1.2) and t0 ∈ (0, 1) is such that ‖u‖∞ = |u(t0)|.
Therefore,

‖u‖∞ ≤
∫ t0

0

ϕ−1
p

(∫ t0

s

λ f̂ ∗(‖u‖∞) dτ
)

ds

≤
∫ t0

0

ϕ−1
p

(∫ t0

0

λ f̂ ∗(‖u‖∞) dτ
)

ds

≤ ϕ−1
p (λ)ϕ−1

p

(
f̂ ∗(‖u‖∞)

)
t2
0

< ϕ−1
p (λ)ϕ−1

p

(
f̂ ∗(‖u‖∞)

)
(because 0 < t0 < 1);

here f̂ ∗(u) is as in (2.7). Thus

(2.11)
1

λ
<

f̂ ∗(‖u‖∞)

ϕp(‖u‖∞)
.

From (2.8), there exists k0 > max{ β
αϕ−1

p (M), a} with f̂ ∗(k0) > 0 (here a is as in

(1.4)). Let

(2.12) 0 < Λ1 ≤ min
{

1,
ϕp(k0)

f̂ ∗(k0)

}

be fixed. Suppose 0 < λ < Λ1. Then

1

λ
>

f̂ ∗(k0)

ϕp(k0)
.

By (2.9), there exists y∗ > k0 such that
f̂ ∗(y∗)

ϕp(y∗)
> 1

λ . On the other hand,
f̂ ∗(y)

ϕp(y)
is

continuous on [k0, y∗]. Thus, there exists Cλ ∈ (k0, y∗) such that

(2.13)
1

λ
=

f̂ ∗(Cλ)

ϕp(Cλ)
.

Hence by (2.11), ‖u‖∞ 6= Cλ. Thus for any 0 ≤ θ ≤ 1 we have that u 6= θTu for u
with ‖u‖∞ = Cλ.

Remark 2.5 In the proof of Lemma 2.4 it is enough to take k0 > 0, and

0 < Λ1 ≤
ϕp(k0)

f̂ ∗(k0)
.

However in Lemma 2.8 we will need k0, and Λ1, chosen as in the proof of Lemma 2.4.
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Lemma 2.6 Assume λ ∈ (0, Λ1) be fixed. Consider the problem

(2.14)

{
−(ϕp(u ′)) ′ = λ( f ∗(t, u) + h),

u(0) = u(1) = 0,

where h > 2M (here M is as in (1.2)) is a constant. Then there exists h0 > 2M such
that the problem (2.14) (with h replaced by h0) has no solution.

Proof Let h > 2M (here M is as in (1.2)). Then

f ∗(t, y) + h = f ∗(t, y) +
h

2
+

h

2

> f ∗(t, y) + M +
h

2

≥ h

2
> 0 (see (2.6)),

for all (t, y) ∈ [0, 1] × (0,∞). Suppose (2.14) has a solution uh (associated to h) for

all h > 2M. First, we prove that

(2.15) lim
h→∞

‖uh‖∞ = ∞.

Fix h > 2M and let ‖uh‖∞ = uh(t0) > 0 for some t0 ∈ (0, 1). Assume that t0 ≥ 1
2
.

Then

‖uh‖∞ = uh(t0)

=

∫ t0

0

ϕ−1
p

(
λ

∫ t0

s

( f ∗(τ , uh(τ )) + h) dτ
)

ds

≥
∫ 1

4

0

ϕ−1
p

(
λ

∫ t0

s

( f ∗(τ , uh(τ )) + h) dτ
)

ds

≥
∫ 1

4

0

ϕ−1
p

(
λ

∫ 1

2

s

( f ∗(τ , uh(τ )) + h) dτ
)

ds

≥
∫ 1

4

0

ϕ−1
p

(
λ

∫ 1

2

1

4

h

2
dτ

)
ds

≥ 1

4
ϕ−1

p (λ)ϕ−1
p (h/8).

Thus (2.15) holds. On the other hand, let

B =
2β

α
ϕ−1

p (Λ1M), δ =
α

8
;
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here α, β are as in Lemma 2.1 and Λ1 is as in (2.12). By (2.15), there exist H > 0

such that for all h > H we have

‖uh‖∞ ≥ B.

Then

‖uh‖∞ ≥ 2β

α
ϕ−1

p (Λ1M)

≥ β

α
ϕ−1

p (Λ1M)

≥ β

α
ϕ−1

p (λM).

Thus, by Lemma 2.2, uh(t) > 0 for t ∈ (0, 1). Also since α‖uh‖∞ ≥ 2βϕ−1
p (Λ1M),

we have
α

4
‖uh‖∞ − β

4
ϕ−1

p (Λ1M) ≥ α

8
‖uh‖∞.

Then for all t ∈
[

1
4
, 1

2

]
, we have

uh(t) ≥ (α‖uh‖∞ − βϕ−1
p (λM)) min{t, 1 − t}

≥ α

4
‖uh‖∞ − β

4
ϕ−1

p (λM)

≥ α

4
‖uh‖∞ − β

4
ϕ−1

p (Λ1M)

≥ α

8
‖uh‖∞ = δ‖uh‖∞.

Now for all h > max{2M, H} we have

‖uh‖∞ = uh(t0)

=

∫ t0

0

ϕ−1
p

(
λ

∫ t0

s

( f ∗(τ , uh(τ )) + h) dτ ) ds

≥
∫ 1

4

0

ϕ−1
p

(
λ

∫ t0

s

( f ∗(τ , uh(τ )) + h) dτ
)

ds

≥
∫ 1

4

0

ϕ−1
p

(
λ

∫ 1

2

s

( f ∗(τ , uh(τ )) + h) dτ
)

ds

≥
∫ 1

4

0

ϕ−1
p

(
λ

∫ 1

2

1

4

( f ∗(τ , uh(τ )) + h) dτ
)

ds

≥ 1

4
ϕ−1

p (λ)ϕ−1
p ( f̃ ∗(δ‖uh‖∞)),
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where f̃ ∗(y) = inf{ f ∗(t, x) : (t, x) ∈ [0, 1] × [y,∞)} for y > 0. This yields

(2.16)
f̃ ∗(δ‖uh‖∞)

ϕp(δ|uh‖∞)
≤ ϕp(4)

λϕp(δ)
.

We now prove that there exist h1 > max{2M, H} with

(2.17)
f̃ ∗(δ‖uh1

‖∞)

ϕp(δ‖uh1
‖∞)

>
ϕp(4)

λϕp(δ)
.

If this is true, we are finished. Let h∗ > max{2M, H, 2} be fixed. By (1.3) and the

definition of f ∗, we have

lim sup
y→∞

f̃ ∗(y)

ϕp(y)
= ∞.

Then there exists C∗ > δ‖uh∗
‖∞ with

(2.18)
f̃ ∗(C∗)

ϕp(C∗)
>

ϕp(4)

λϕp(δ)
.

On the other hand, by (2.15), there exists h∗ > h∗ such that δ‖uh∗‖∞ > C∗.

We next prove that there exists h1 ∈ (h∗, h∗) so that the solution uh1
of problem

(2.14) (with h replaced by h1) satisfies

C∗ = δ‖uh1
‖∞.

By (1.5), there exist M∗ > max{‖uh∗
‖∞, ‖uh∗‖∞, a} (here a is as in (1.4)) such that

(2.19)
1

ϕ−1
p

(
1 + ĥ(M∗)+h∗

g(M∗)

)
∫ M∗

0

dy

ϕ−1
p (g(y))

>
p − 1

p
2

p

1−p ;

here

ĥ(u) =

{
h(u) u ≥ a,

h(a) u ≤ a.

Let the function f ∗∗ be defined by

f ∗∗(t, y) =





f (t, M∗) + r(M∗ − y) for y > M∗ and 0 ≤ t ≤ 1,

f (t, y) for a ≤ y ≤ M∗ and 0 ≤ t ≤ 1,

f (t, a) for y < a and 0 ≤ t ≤ 1,

where r : R → [−1, 1] is the radial retraction defined by

r(x) =





x for |x| ≤ 1,
x

|x| for |x| > 1.
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For u ∈ C[0, 1] and h ∈ [h∗, h∗], define

(2.20) K(u, h)(t) =

∫ t

0

ϕ−1
p

(
A +

∫ 1

s

λ( f ∗∗(τ , u(τ )) + h) dτ
)

ds

where ∫ 1

0

ϕ−1
p

(
A +

∫ 1

s

λ( f ∗∗(τ , u(τ )) + h) dτ
)

ds = 0.

We know A exists and is unique for every u ∈ C[0, 1], and notice u = K(u, h) is a

solution of

(2.21)

{
−(ϕp(u ′)) ′ = λ( f ∗∗(t, u) + h), t ∈ (0, 1)

u(0) = u(1) = 0.

We know [9] that K : C[0, 1] × [h∗, h∗] → C[0, 1] is continuous and completely

continuous.

Next we show any solution u, of the equation

u = K(u, h), h ∈ [h∗, h∗] and u ∈ C[0, 1]

satisfies

(2.22) ‖u‖∞ ≤ M∗.

Suppose it is false. Now since u(0) = u(1) = 0, there exist either (i): t1, t2 ∈ (0, 1)

with 0 ≤ u(t) ≤ M∗ for t ∈ [0, t2), u(t2) = M∗ and u(t) > M∗ on (t2, t1) with

u ′(t1) = 0 or (ii): t3, t4 ∈ (0, 1), t4 < t3 with 0 ≤ u(t) ≤ M∗ for t ∈ (t3, 1],

u(t3) = M∗ and u(t) > M on (t4, t3) with u ′(t4) = 0.

We can assume without loss of generality that either t1 ≤ 1/2 or t4 ≥ 1/2. Sup-

pose t1 ≤ 1/2. Notice for t ∈ (t2, t1) that we have

(2.23) −(ϕp(u ′)) ′ = λ[ f ∗∗(t, u)+h] ≤ g(M∗)+h(M∗)+h∗
= g(M∗)+ĥ(M∗)+h∗.

Integrate (2.23) from t2 to t1 to obtain

ϕp(u ′(t2)) ≤ [g(M∗) + ĥ(M∗) + h∗](t1 − t2),

and this together with the fact that u(t2) = M∗ yields

(2.24)
ϕp(u ′(t2))

g(M∗)
≤ [1 +

ĥ(M∗) + h∗

g(M∗)
](t1 − t2).

Also for t ∈ (0, t2) we have

−(ϕp(u ′(t))) ′ = λ[ f ∗∗(t, u(t)) + h] ≤ g(u(t)) + ĥ(u(t)) + h∗.
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and so
−(ϕp(u ′(t))) ′

g(u(t))
= 1 +

ĥ(u(t)) + h∗

g(u(t))
≤ 1 +

ĥ(M∗) + h∗

g(M∗)

for t ∈ (0, t2). Integrate from t ∈ (0, t2) to t2 to obtain

−ϕp(u ′(t2))

g(u(t2))
+

ϕp(u ′(t))

g(u(t))
+

∫ t2

t

[ −g ′(u(x))

g2(u(x))

]
|u ′(x)|p dx ≤

[
1+

ĥ(M∗) + h∗

g(M∗)

]
(t2−t),

and this together with (2.24) yields

ϕp(u ′(t))

g(u(t))
≤

[
1 +

ĥ(M∗) + h∗

g(M∗)

]
(t1 − t) for t ∈ (t, t2).

Thus

u ′(t)

ϕ−1
p (g(u(t)))

≤ ϕ−1
p

(
1 +

ĥ(M∗) + h∗

g(M∗)

)
ϕ−1

p (t1 − t) for t ∈ (t, t2).

Integrate from 0 to t2 to obtain

∫ M∗

0

du

ϕ−1
p (g(u))

≤ ϕ−1
p

(
1 +

ĥ(M∗) + h∗

g(M∗)

) ∫ 1

2

0

ϕ−1
p

( 1

2
− t

)
dt

≤ p − 1

p
2

p

1−p ϕ−1
p

(
1 +

ĥ(M∗) + h∗

g(M∗)

)
.

This contradicts (2.19), so (2.22) holds (a similar argument yields a contradiction if

t4 ≥ 1
2
). On the other hand, we can easily see that f ∗∗(t, u) + h > 0, for 0 ≤ t ≤ 1

and u ∈ R, since

f ∗∗(t, u) + h ≥ f ∗∗(t, u) +
h∗
2

+
h∗
2

≥ min
0≤t≤1

a≤y≤M∗

f (t, y) − 1 + M +
h∗
2

(since h∗ > 2M)

≥ h∗
2

− 1 (since f (t, u) + M ≥ 0)

> 0 (since h∗ > 2)

Thus (ϕp(u ′)) ′ < 0 for t ∈ (0, 1), so ϕp(u ′) is decreasing. As a result u ′ is decreasing,

so u is concave on [0, 1]. Combining u(0) = 0, u(1) = 0 and Lemma 1.9, we see that

u(t) > 0 for t ∈ (0, 1). Thus we have

0 < u(t) < M∗ + 1 ≡ M∗∗ for t ∈ (0, 1).
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Let C = {x ∈ C[0, 1]
∣∣ ‖x‖∞ ≤ M∗∗}. By Lemma 1.7, the set

Sh∗,h∗ = {(s, x) ∈ [h∗, h∗] ×C | K(s, x) = x}

contains a component Ch∗,h∗ which connects {h∗} ×C to {h∗} ×C and (h∗, uh∗
) ∈

Sh∗,h∗ , (h∗, uh∗) ∈ Sh∗,h∗ .

Define Φ : Sh∗,h∗ → R by

Φ(u) = ‖u‖∞ −C∗/δ;

here C∗ is as in (2.18). Then Φ is a continuous map with Φ(S−1) < 0 and Φ(S+1) > 0

(see Remark 1.8 for definitions of S−1 and S+). By Remark 1.8, there exist h1 ∈
(h∗, h∗) such that (2.21) (with h replaced by h1) has a solution uh1

satisfying

0 < uh1
(t) < M∗∗ for t ∈ (0, 1) and ‖uh1

‖∞ = C∗/δ.

Thus, uh1
is a solution of problem (2.14) (with h replaced by h1) such that

C∗ = δ‖uh1
‖∞.

As a result (2.17) is true. Thus there exists h0 > 2M such that the problem (2.14)

has no solution.

Consider the boundary value problem

(2.25)

{
−(ϕp(u ′)) ′ = λ[ f ∗(t, u) + τh0], t ∈ (0, 1)

u(0) = u(1) = 0;

here h0 is as in Lemma 2.6. For ∀τ ∈ [0, 1], define Sτ : C[0, 1] → C[0, 1] by

(2.26) (Sτ u)(t) =

∫ t

0

ϕ−1
p

(
A + λ

∫ 1

s

[ f ∗(r, u(r)) + τh0] dr
)

ds

where ∫ 1

0

ϕ−1
p

(
A + λ

∫ 1

s

[ f ∗(r, u(r)) + τh0] dr
)

ds = 0.

We know A exists and is unique for every u ∈ C[0, 1], and u = Sτ u is a solution of

{
−(ϕp(u ′)) ′ = λ[ f ∗(t, u(t)) + τh0] t ∈ (0, 1)

u(0) = u(1) = 0.

Also it is known [9] that Sτ : C[0, 1] → C[0, 1] is continuous and completely contin-

uous.

Lemma 2.7 Let 0 < λ < Λ1 (here Λ1 is as in (2.12)) be fixed, 0 ≤ τ ≤ 1 and h0 be
as in Lemma 2.6. Then the solutions of (2.25) are a priori bounded.
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Proof Suppose the result of the lemma is false. Let

B =
2β

α
ϕ−1

p (Λ1M), δ =
α

8
;

here α, β are as in Lemma 2.1, Λ1 is as in (2.12) and M is as in (1.2). Suppose u is a

solution of (2.25) for some τ . Now either ‖u∞‖ ≥ B or ‖u‖∞ < B. Suppose

‖u‖∞ ≥ B.

Then

‖u‖∞ ≥ 2β

α
ϕ−1

p (Λ1M)

≥ β

α
ϕ−1

p (Λ1M)

≥ β

α
ϕ−1

p (λM).

By Lemma 2.2 (see the proof of Lemma 2.6) we have

u(t) > 0 for t ∈ (0, 1) and u(t) ≥ δ‖u‖∞ for t ∈
[ 1

4
,

1

2

]
.

Suppose ‖u‖∞ = u(t0) for some t0 ∈ (0, 1) and t0 ≥ 1
2
. Using Lemma 2.1 (see

the proof of Lemma 2.2) we get

‖u‖∞ = u(t0)

≥ α

∫ t0

0

ϕ−1
p

(
λ

∫ t0

s

f ∗(t, u(t)) dt
)

ds − βϕ−1
p (λM)

≥ α

∫ 1

4

0

ϕ−1
p

(
λ

∫ t0

s

f ∗(t, u(t)) dt
)

ds − βϕ−1
p (λM)

≥ α

∫ 1

4

0

ϕ−1
p

(
λ

∫ 1

2

1

4

f ∗(t, u(t)) dt
)

ds − βϕ−1
p (λM)

≥
( α

4ϕ−1
p (4)

ϕ−1
p

(
f̃ ∗(δ‖u‖∞)

)
− βϕ−1

p (M)
)

ϕ−1
p (λ)

and so

(2.27)
( α

4ϕ−1
p (4)

ϕ−1
p

(
f̃ ∗(δ‖u‖∞)

)

‖u‖∞
− βϕ−1

p (M)

‖u‖∞

)
ϕ−1

p (λ) ≤ 1 if ‖u‖∞ ≥ B;

here f̃ ∗(y) = inf
{

f ∗(t, x) : (t, x) ∈ [0, 1] × [y,∞)
}

for y > 0.
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By (2.6) we have

f̃ ∗(y) = f̃ ∗(y) + M.

From (1.3) and the definition of f ∗, we have

lim sup
y→∞

ϕ−1
p

(
f̃ ∗(y)

)

y
= lim sup

y→∞

f̃ ∗(y) + M

y

= lim sup
y→∞

f̃ ∗(y)

y

= ∞.

Thus

δα

4ϕ−1
p (4)

lim sup
y→∞

ϕ−1
p

(
f̃ ∗(δy)

)

δy
= ∞

where δ > 0 is defined above. Let τ0 ∈ [0, 1]. If (2.25) has a solution uλτ0
, then

(2.27) holds if we assume ‖uλτ0
‖∞ ≥ B. The equality above implies that there exists

c1 > max{B, ‖uλτ0
‖∞} with

(2.28)
( α

4ϕ−1
p (4)

ϕ−1
p

(
f̃ ∗(δc1)

)

c1

− βϕ−1
p (M)

c1

)
ϕ−1

p (λ) > 1.

Now since we assume the result of the lemma is false, there exists τ1 ∈ [0, 1] so that

the solution uλτ1
(associated to λ, τ1) of (2.25) satisfies

‖uλτ1
‖∞ > c1 > ‖uλτ0

‖∞.

A similar argument as in Lemma 2.6 implies that there exist τ2 ∈ (τ0, τ1) (if τ1 > τ0)

or τ2 ∈ (τ1, τ0) ( if τ1 < τ0) so that the solution uλτ2
satisfies

‖uλτ2
‖∞ = c1.

From (2.28) we have

(2.29)
( α

4ϕ−1
p (4)

ϕ−1
p

(
f̃ ∗(δ‖uλτ2

‖∞)
)

‖uλτ2
‖∞

− βϕ−1
p (M)

‖uλτ2
‖∞

)
ϕ−1

p (λ) > 1.

Now (2.27) and (2.29) yield a contradiction. Hence the assertion of Lemma 2.7 fol-

lows.

Lemma 2.8 Let 0 < λ < Λ1 (here Λ1 is as in (2.12)) be fixed. Then problem (2.4)

has at least one solution u∗ ∈ C[0, 1], and ‖u∗‖∞ ≥ Cλ > a (here Cλ is as in Lemma
2.4) with u∗(t) > 0 for t ∈ (0, 1).
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Proof Let 0 < λ < Λ1 be fixed, and 0 ≤ θ ≤ 1. No solution of (I − θT)u = 0 lies

on the boundary of B(0,Cλ), by Lemma 2.4. Therefore

deg(I − θT, BCλ
, 0) = constant.

This gives

deg(I − T, BCλ
, 0) = deg(I − θT, BCλ

, 0)

= deg(I, BCλ
, 0)

= 1.

From Lemma 2.7, we can choose

(2.30) R > Cλ

such that no solution of Sτ (u) = u, τ ∈ [0, 1] lies on the boundary of BR. Then

deg(I − Sτ , BR, 0) = constant.

Thus by Lemma 2.6

deg(I − T, BR, 0) = deg(I − S0, BR, 0)

= deg(I − S1, BR, 0)

= 0.

Therefore

deg(I − T, BR\BCλ
, 0) = −1.

As a result there exist u∗ ∈ BR\BCλ
such that

Tu∗ = u∗.

That is,

(2.31)

{
−(ϕp(u ′

∗)) ′ = λ f ∗(t, u∗), t ∈ (0, 1)

u∗(0) = u∗(1) = 0.

Clearly ‖u∗‖∞ ≥ Cλ. From (2.12), we know that k0 > β
αϕ−1

p (M) ≥ β
αϕ−1

p (Λ1M).

Thus for all λ ∈ (0, Λ1), we have ‖u∗‖∞ ≥ Cλ > β
αϕ−1

p (Λ1M) > β
αϕ−1

p (λM). Also

by Lemma (2.2), for all λ ∈ (0, Λ1) we have

u∗(t) ≥ (α‖u∗‖∞ − βϕ−1
p (λM)) min{t, 1 − t} for t ∈ [0, 1];

here α and β are as in Lemma 2.1. In particular u∗(t) > 0 for t ∈ (0, 1).
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3 Proof of Theorem 1.4

Let λ ∈ (0, Λ1) be fixed; here Λ1 is as in (2.12). From (2.5) and (2.31) we have

0 = (ϕp(u ′
∗)) ′ + λ f ∗(t, u∗) ≤ (ϕp(u ′

∗)) ′ + λ f (t, u∗) for t ∈ (0, 1);

here u∗ is as in Lemma 2.8. Thus u∗ is a lower solution of problem (1.1).

On the other hand, from (1.5), there exists M > supt∈[0,1] u∗(t) with

1

ϕ−1
p

(
1 + h(M)

g(M)

)
∫ M

0

dy

ϕ−1
p (g(y))

>
p − 1

p
2

p

1−p .

Let ρn =
a

2n+1 , (n ∈ N). From (1.4), we have {ρn} is a nonincreasing sequence with

f (t, ρn) ≥ f (t, a) > 0, for t ∈ [0, 1] (here a is as in (1.4)). Thus Lemma 1.6(ii) is

true. Now Lemma 1.6 guarantees that (1.1) has a solution u1 ∈ C[0, 1] ∩ C1(0, 1)

with ϕp(u ′
1) ∈ C1(0, 1) and u1(t) ≥ u∗(t) for t ∈ [0, 1]. Also (from Lemma 2.8)

‖u1‖∞ ≥ ‖u∗‖∞ ≥ Cλ > a (here a is as in (1.4)). Next we prove problem (1.1) has

another solution u2 such that 0 < ‖u2‖∞ ≤ a. We consider the auxiliary equation

(3.1)

{
−(ϕp(u ′)) ′ = λg(t, u), t ∈ (0, 1)

u(0) = u(1) = 0,

where

(3.2) g(t, y) =

{
f (t, y) for (t, y) ∈ [0, 1] × (0, a]

f (t, a) for (t, y) ∈ [0, 1] × [a,∞).

Then g(t, y) > b for (t, y) ∈ [0, 1] × (0,∞), where b is given in (1.7).

Let e0 = φ, en = [ 1
2n+1 , 1 − 1

2n+1 ], n ≥ 1. Also we let

θn(t) = max
{ 1

2n+1
, min

{
t, 1 − 1

2n+1

}}
, 0 ≤ t ≤ 1

and

fn(t, y) = max{g(θn(t), y), g(t, y)},

Then fn : [0, 1] × (0,∞) → (0, +∞) is continuous.

Define

g1(t, y) = f1(t, y)

gn+1(t, y) = min{gn(t, y), fn+1(t, y)}.

Then gn : [0, 1] × (0,∞) → (0,∞) is continuous and

g(t, y) ≤ · · · ≤ gn+1(t, y) ≤ gn(t, y) ≤ · · · ≤ g1(t, y)
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for (t, y) ∈ [0, 1] × (0,∞).

Let ε1 =
a
2
, and εn ↓ 0. Note that

(3.3) g(t, y) > b, (t, y) ∈ en × (0, εn].

Consider the problem

(3.4)n

{
l − (ϕp(u ′)) ′ = λgn(t, u), t ∈ (0, 1)

u(0) = u(1) = εn.

Claim 3.1 Let cn ∈ (0, εn] with αn(t) = cn, 0 ≤ t ≤ 1. Then αn is a lower solution

of problem (3.4)n

Proof of Claim 3.1 We must show

(3.5) gn(t, cn) ≥ 0 for all cn ∈ (0, εn].

We prove the validity of the above inequality for each n ≥ 1, by induction. Let

c1 ∈ (0, ε1]. Then (3.3) implies

g1(t, c1) = f1(t, c1)

= max{g(θ1(t), c1), g(t, c1)}
≥ g(θ1(t), c1)

≥ min
t∈e1

g(t, c1)

> b > 0.

Suppose that (3.5) holds for a given index n ≥ 1. Let us check its validity for n + 1. If

cn+1 ∈ (0, εn+1] ⊂ (0, εn], then

gn+1(t, cn+1) = min{gn(t, cn+1), fn+1(t, cn+1)}
≥ min{0, max{g(θn+1(t), cn+1), g(t, cn+1)}}
≥ min{0, b}
= 0.

Claim 3.2 If zn ∈ C1[0, 1], ϕp(z ′n) ∈ C1(0, 1) is a solution for problem (3.4)n, then

(ϕp(z ′n)) ′ + λgn+1(t, zn(t)) ≤ 0 for 0 < t < 1

(i.e., zn is an upper solution of (3.4)n).
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Proof of Claim 3.2

(ϕp(z ′n)) ′ + λgn+1(t, zn(t)) ≤ (ϕp(z ′n)) ′ + λgn(t, zn(t))

= 0 for 0 < t < 1.

Claim 3.3 For all n ≥ 1, (3.4)n has at least one solution un ∈ C1[0, 1], ϕp(u ′
n) ∈

C1(0, 1), with εn+1 ≤ yn+1(t) ≤ yn(t) for all 0 ≤ t ≤ 1.

Proof of Claim 3.3 Consider the problem

(3.6)

{
−(ϕp(u ′)) ′ = λq(t), t ∈ (0, 1)

u(0) = u(1) = ε1.

where

q(t) = q(θ1(t)) + q(t) and q(t) = max
u∈[ a

2
,a]

f (t, y) for t ∈ [0, 1].

It is easy to check that (3.6) has a solution

z0(t) =

{
ε1 +

∫ t

0
ϕ−1

p

(∫ A

s
λq(r) dr

)
ds 0 ≤ t ≤ A,

ε1 +
∫ 1

t
ϕ−1

p

(∫ s

A
λq(r) dr

)
ds A ≤ t ≤ 1,

where A satisfies

∫ A

0

ϕ−1
p

(∫ A

s

q(r) dr
)

ds =

∫ 1

A

ϕ−1
p

(∫ s

A

q(r) dr
)

ds.

Let

Λ2 = ϕp

( C−1a

2

)

where a is as in (1.4) and

C = max
{∫ 1

2

0

ϕ−1
p

(∫ 1

2

s

q(r) dr
)

ds,

∫ 1

1

2

ϕ−1
p

(∫ s

1

2

q(r) dr
)

ds
}

.

Let

(3.7) Λ = min{Λ1, Λ2},

where Λ1 is as in (2.12). Then for

(3.8) λ ∈ (0, Λ]
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we have

(3.9) ‖z0‖0 = ε1 + ϕ−1
p (λ)

∫ A

0

ϕ−1
p

(∫ A

s

q(r) dr
)

ds

= ε1 + ϕ−1
p (λ)

∫ 1

A

ϕ−1
p

(∫ s

A

q(r) dr
)

ds

≤ a

2
+ ϕ−1

p (λ)C

≤ a

2
+ ϕ−1

p

(
ϕp

( C−1a

2

))
C

≤ a.

Moreover, z0 ∈ C1[0, 1] with ϕp(z ′0) ∈ C1(0, 1), and z0(t) ≥ ε1 =
a
2

for 0 ≤ t ≤ 1.

On the other hand,

(ϕp(z ′0)) ′ + λg1(t, z0) = −λq(t) + λg1(t, z0)

= −λq(t) + λ min{ f (θ1(t), z0), f (t, z)}
≤ 0.

Thus, z0 is an upper solution for problem (3.4)1.

By Claim 3.1, αn(t) = cn ∈ (0, εn], 0 ≤ t ≤ 1, is a lower solution of problem

(3.4)n and

ε1 ≤ z0(t) for all 0 ≤ t ≤ 1.

From [11, Lemma 4], we deduce that (3.4)1 has at least one solution z1 ∈ C1[0, 1],

such that ϕp(z ′1) ∈ C1(0, 1) and

ε1 ≤ z1(t) ≤ z0(t) for all 0 ≤ t ≤ 1.

Suppose now that (3.4)n has a solution zn ∈ C1[0, 1] such that ϕp(z ′n) ∈ C1(0, 1) and

εn ≤ zn(t) for all 0 ≤ t ≤ 1.

By Claim 3.2, zn(t) is an upper solution for problem (3.4)n. Observe also that

εn+1 ≤ εn ≤ zn(t) for all 0 ≤ t ≤ 1,

so [11, Lemma 4] guarantees that (3.4)n has at least one solution zn+1 ∈ C1[0, 1],

such that ϕp(z ′n+1) ∈ C1(0, 1) and εn+1 ≤ zn+1(t) ≤ zn(t) for all 0 ≤ t ≤ 1.

Claim 3.4 Suppose there exist ν∗ ∈ C1[0, 1], ν∗(0) = ν∗(1) = 0, ν∗(t) > 0,
0 < t < 1 such that for all h : (0, 1) × (0,∞) → (0,∞) and z ∈ C1[0, 1], z(t) > 0,
0 < t < 1, z(0) ≥ 0, z(1) ≥ 0 the following conditions are satisfied:

(i) h(t, y) ≥ g(t, y), (t, y) ∈ (0, 1) × (0,∞);
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(ii) (ϕp(z ′(t))) ′ + λh(t, z(t)) = 0, 0 < t < 1.

Then z(t) ≥ ν∗(t) , 0 ≤ t ≤ 1.

Proof of Claim 3.4 Using [11, Lemma 2], we know there exists a function ν ∈
C1[0, 1], such that ϕp(ν ′) ∈ C1(0, 1) M = max0≤t≤1 |(ϕp(ν ′)) ′| > 0, and 0 <
ν(t) < εn for all t ∈ en\en−1, n ≥ 1.

Let m = min{1, (b/M)1/(p−1)}. We prove

(3.10) z(t) − mν(t) ≥ 0 for all 0 ≤ t ≤ 1.

Suppose that there exists t0 ∈ (0, 1) with

(3.11) min
0≤t≤1

{z(t) − mν(t)} = z(t0) − mν(t0) < 0.

Note z ′(t0) − mν ′(t0) = 0. Also there exists an ε > 0, with z ′(tε) − mν ′(tε) ≥ 0 for

tε ∈ (t0, t0 + ε). Since ϕp is an increasing function, we get

(ϕp(z ′(t))) ′|t=t0
= lim

ε→0+

ϕp(z ′(tε)) − ϕp(z ′(t0))

tε − t0

≥ lim
ε→0+

ϕp(mν ′(tε)) − ϕp(mν ′(t0))

tε − t0

= (ϕp(mν ′(t))) ′|t=t0
.

Suppose t0 ∈ en\en−1. Then 0 < ν(t0) < εn. By (3.11) we obtain 0 < z(t0) <
mν(t0) < εn. Thus (3.3) with the above yields

b < g(t0, z(t0)) ≤ h(t0, z(t0))

= −(ϕp(z ′(t))) ′|t=t0
≤ −(ϕp(mν ′(t))) ′|t=t0

≤ mp−1|(ϕp(ν ′(t))) ′|t=t0
|

≤ mp−1M

≤ b,

a contradiction.

Let ν∗(t) ≡ mν(t).

By Claim 3.3, problem (3.4)n has at least one solution un ∈ C1[0, 1], such that

ϕp(u ′
n) ∈ C1(0, 1), with

(3.12) 0 < εn+1 ≤ un+1 ≤ un ≤ · · · ≤ u1, 0 ≤ t ≤ 1

and

(3.13) un(0) = un(1) = εn.
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By Claim 3.4, there exists ν∗ ∈ C1[0, 1], ν∗(0) = ν∗(1) = 0, and ν∗(t) > 0 for

0 < t < 1 such that un(t) ≥ ν∗(t), 0 ≤ t ≤ 1, n ≥ 1. Let

u(t) = lim
n→∞

un(t), 0 < t < 1.

Now u(t) ≥ ν∗(t) for t ∈ (0, 1). Also u(0) = u(1) and u(t) > 0 for t ∈ (0, 1).

Now let [c, d] ⊂ (0, 1) be a compact interval. There is an index n∗ such that

[c, d] ⊂ en for all n > n∗ and therefore, for these n > n∗,

(3.14) (ϕp(u ′
n(t))) + λg(t, un(t)) = 0, c ≤ t ≤ d.

On the other hand, ν∗ ∈ C1[0, 1] and ν∗(t) > 0 for all 0 < t < 1. Let r =

minc≤t≤d ν∗(t) > 0. Moreover, by (3.2) there exist qr ∈ C[0, 1] such that

g(t, y) ≤ qr(t), (t, y) ∈ [0, 1] × [r, +∞).

It is easy to see that there exists a continuous function g̃ : [0, 1] × R → R such that

|g̃(t, y)| ≤ qr(t), (t, y) ∈ (0, 1) × R,

and

g̃(t, y) = g(t, y), (t, y) ∈ (0, 1) × [r, +∞).

It is clear that un(t) ≥ r, c ≤ t ≤ d for all n ≥ 1. Moreover,

(3.15) (ϕp(u ′
n(t))) ′ + λg̃(t, un(t)) = 0, c ≤ t ≤ d.

Now define N1 : C1[c, d] → C1[c, d] by

N1(u(t)) = u(c) +

∫ t

c

ϕ−1
p

(
Au +

∫ d

s

λg̃(τ , u(τ )) dτ
)

ds,

where Au is such that

∫ d

c

ϕ−1
p

(
Au +

∫ d

s

λg̃(τ , u(τ )) dτ
)

ds = u(d) − u(c).

By (3.15), we have N1(un(t)) = un(t), c ≤ t ≤ d for n ≥ n∗.

Next, we notice for n ≥ n∗ that

max
c≤t≤d

|un(t)| ≤ max
c≤t≤d

|u1(t)| < +∞.

It is easy to see that there exists a subsequence S of {n∗ + 1, n∗ + 2, . . . } with

max
c≤t≤d

|un(t) − u(t)| → 0, and max
c≤t≤d

|u ′
n(t) − u ′(t)| → 0 as n → ∞.
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Consequently, ϕp(u ′) ∈ C1(c, d), and

(ϕp(u ′(t))) ′ + λg(t, u(t)) = 0, c ≤ t ≤ d.

Since [c, d] ⊂ (0, 1) is arbitrary, we find that

u ∈ C1(0, 1) and (ϕp(u ′(t))) ′ + λg(t, u(t)) = 0 for all 0 < t < 1.

It remains to show the continuity of u(t) at t = 0 and t = 1. This follows immediately

from the fact that un(t) ↓ u(t) and un(0) = un(1) = εn ↓ 0. Thus u ∈ C[0, 1].

On the other hand, (3.12) and (3.9) yield

0 < u(t) ≤ u1(t) ≤ z0(t) ≤ ‖z0‖0 ≤ a for t ∈ (0, 1).

Then {
(ϕp(u ′(t))) ′ + λ f (t, u(t)) = 0 for all 0 < t < 1,

u(0) = u(1) = 0.

As a result u( · ) is another solution of problem (1.1) with 0 < u(t) ≤ a on [0, 1].

The proof of Theorem 1.4 is complete.

Proof of Theorem 1.5 By (1.6) there exist a ∈ (0,∞) such that

f (t, y) ≥ f (t, a) for (t, y) ∈ [0, 1] × [y,∞).

Then the conditions of Theorem 1.4 are satisfied.

Example 1 Consider the problem

(3.16)

{
−u ′ ′

= λ
(

1
u

+ q(u) − µ2
)

for all 0 < t < 1

u(0) = u(1) = 0

where µ > 1.

Define {xn}∞n=1 as x1 = 2, x2n = x4
2n−1, x2n+1 = x2n + 1, and

q(y) =





y2 if y ∈ [0, 2],

x2
2n−1 if y ∈ [x2n−1, x2n],

x2
2n+1 −

√
x2n

x2n+1 − x2n

(y − x2n) +
√

x2n if y ∈ [x2n, x2n+1].

Then, (3.16) has two solutions ui ∈ C[0, 1] ∩ C1(0, 1) with ϕp(u ′
i ) ∈ C1(0, 1) if

λ > 0 is small enough.

To see this, we will apply Theorem 1.5 with

M = µ2, g(y) =
1

y
and h(y) = q(y) + µ2.
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Notice

f (t, y) =
1

y
+ q(y) − µ2 ≥ −M for (t, y) ∈ [0, 1] × (0,∞).

Clearly (1.2) is satisfied. Now

f̃n(x2n+1) = inf{ f (t, s) : (t, s) ∈ [0, 1] × [x2n+1,∞)}

= x2
2n+1 − µ for n ∈ {2, 3, . . . }

and

lim
n→∞

f̃n(x2n+1)

x2n+1

= ∞.

Then

lim sup
y→∞

f̃ (y)

y
= ∞.

On the other hand,

lim
y→0+

f (t, y) = ∞ uniformly on [0, 1].

Clearly (1.4), (H4)(i) and (ii) are satisfied. Let D ≥ 0 be fixed. Let Mn = x2n for

n ∈ {2, 3, . . . }. Then limn→∞ Mn = ∞ and

lim
n→∞

1

1 + h(Mn)+D
g(Mn)

∫ Mn

0

dy

g(y)
= lim

n→∞
1

1 + Mn(h(Mn) + D)

∫ Mn

0

y dy

= lim
n→∞

x2
2n

2

1

1 + x2n(
x2

2n+1
−√

x2n

x2n+1−x2n
(x2n − x2n) +

√
x2n + D)

= lim
n→∞

x2
2n

2(1 + x
3/2

2n + Dx2n)

= ∞

>
1

8
for n ∈ {2, 3, . . . }.

The condition (1.5) is satisfied.
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