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Nonequilibrium quantum processes
in the early universe

As stated in the Preface, we intend the chapters in the last part of the book to
illustrate how quantum field theoretical methods can be applied to nonequi-
librium statistical processes in several areas of current research, specifically,
particle–nuclear processes (in RHIC and DCC), dynamics of cold atoms (BEC)
in AMO physics and quantum processes in the early universe (cosmology) and in
this endeavor also try to present an introduction to an important subject matter
in that area. With this specified emphasis on the applications of techniques of
NEqQFT, these accounts are more in the nature of a research topic exercise or
extended example than a full review, in that the topics are selected because of
the NEqQFT context, and the presentations are illustrations of the methodol-
ogy. Thus we suggest the reader refer to review articles or monographs to get a
more balanced and complete view on different physical approaches to the same
subject matter.

In this chapter on cosmology, after a brief introduction to inflationary cosmol-
ogy, highlighting the stochastic inflation model, we discuss how NEqQFT impacts
on some central issues in cosmology. The methodology introduced in Chapters
4–6 covering particle creation mechanisms and the nPI CTP-CGEA/IF func-
tional formalisms for NEq processes can be applied to solve a number of basic
problems in cosmology.

Some specific processes have been discussed in earlier parts of this book. In
Chapter 5, with the aid of the CGEA and the influence functional [Hu94b] we
learned the relationship between the processes of dissipation, fluctuation, noise
and decoherence. Then, in Chapter 9, we examined, starting from first princi-
ples, under what circumstances the fluctuations of a quantum field transmute
into classical, stochastic fluctuations. We used a simple model to illustrate how
decoherence comes about in a quantum phase transition. We then used a par-
titioned interacting scalar field theory in de Sitter spacetime to show how in
the stochastic inflation paradigm the long-wavelength sector gets decohered and
becomes classical under the influence of the short-wavelength sector acting as
noise (more precisely, the rms value of the fluctuations can be treated as clas-
sical). Here we continue this investigation in early universe quantum processes,
focusing on three major topics: the origin and nature of noise from quantum
fields, structure formation from colored noises, and reheating from particle cre-
ation after inflation.
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448 Nonequilibrium quantum processes in the early universe

15.1 Quantum fluctuations and noise in inflationary cosmology

15.1.1 Inflationary cosmology

In modern cosmology, before the advent of the inflationary universe, the widely
accepted model which explains very well the present day observed universe
(according to the high-precision experiments of the 1990s and 2000s such as
COBE and WMAP) has been the so-called standard model [Pee80] based on the
Friedmann–Lemaitre–Robertson–Walker (FLRW) universe. Filled with a classi-
cal matter source with equation of state pressure p = γρ matter density, its scale
factor a(t) undergoes a power-law expansion a(t) = tα in cosmic time t. Thus for
a spatially flat FLRW universe, in the matter-dominated era γ = 0, α = 2/3 for
a pressureless fluid; and in the radiation-dominated era, γ = 1/3, α = 1/2 for a
relativistic fluid.

Since the 1980s the inflationary cosmology has become a widely accepted
paradigm to explain the observed large-scale flatness and homogeneity of the
universe [LytRio99, Rio02]. Inflation also provides an efficient mechanism for the
magnification of quantum fluctuations to cosmological scales, and the generation
of small curvature perturbations which in principle can produce the observed
cosmic microwave background (CMB) temperature anisotropies and provide the
seeds for the formation of large-scale structures from galaxies to superclusters in
today’s universe.

Inflationary cosmology can be represented by the same FLRW spacetime, but
instead filled with a constant energy density source which drives the universe
(again assuming a spatially flat metric) into a phase of exponential expansion,
a(t) = a0 exp(Ht), where H = ȧ/a is the Hubble expansion rate (a dot over
a quantity stands for a derivative with respect to cosmic time t). This is the
Einstein–de Sitter model obtained by de Sitter in 1917 from a solution of Ein-
stein’s equation with a cosmological term. When interpreted as classical matter
this constant energy density source corresponds to matter with an unphysical
equation of state p = −ρ because it admits acausal propagation. What turned
the de Sitter universe into a viable cosmological model was when Guth in 1981
proposed that this constant energy density in the potential energy is associated
with the expectation value of a quantum field (the Higgs or the gauge field) which
mediates some particle physics symmetry-breaking process in the early universe.
Inflation was originally motivated by the removal of monopole overabundance in
the GUT epoch, which it does, but turned out to be highly successful in address-
ing the flatness and horizon issues which are the more significant and immediate
problems in cosmology.

The quantum scalar field Φ which drives inflation, known as the inflaton,
evolves according to the equation

Φ̈ + 3HΦ̇ + dV [Φ]/dΦ = 0, (15.1)

where the potential V [Φ] can take on a variety of forms, such as the Φ4 double
well potential in Guth’s original “old” inflation [Guth81, Sato81]; an almost-flat
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15.1 Quantum fluctuations and noise in inflationary cosmology 449

Coleman–Weinberg potential (of a massless field with only radiative correction)
in the “new” inflation of Albrecht-Steinhardt and Linde [AlbSte82, Lin82]; a
m2Φ2 potential in Linde’s chaotic inflation [Lin85]; an exponential form giving
rise to power-law inflation [LucMat85] and many more later models suggested
for specific purposes. The main idea is to get the universe into a vacuum energy
dominated stage (the entry problem), to find ways (or rationale) to sustain the
inflation for at least 68 e-folding time so as to produce sufficient entropy content
of our present universe, and to get it out of this supercooled stage (the exit
problem) by reheating it to the radiation-dominated FLRW universe described
by the standard model.

Issues in the three stages pertaining to NEqQFT

Much work in the 1980s till now was devoted to the second issue, i.e. finding
the right potential for inflation to serve specific purposes (see, e.g. [SteTur84]).
Serious work on reheating started in the mid-1990s, but somewhat surprisingly,
the very first issue, the entry problem, i.e. how did the universe get into a vac-
uum dominated phase, has not been taken up and pursued in earnest in the
inflationary cosmology community, except for a brief period in the early 1990s
[SalBon91, Hod90, MMOL91, KBHP91]. In principle one expects this issue can
be resolved if we know what had happened in an earlier epoch. In this regard
there were studies in quantum cosmology in the 1980s pertaining to this question.
There were claims from both the no-boundary wavefunctions proposal of Hartle
and Hawking [HarHaw83] and the “birth” by tunneling idea of Vilenkin [Vil83b]
that these scenarios admit the de Sitter solution. This is an important issue
of principle, related to what metastable states can exist in the pre-inflationary
stage, what mechanisms can induce the universe to become vacuum dominated,
and the probability it actually did. At the level of ideas there were criticisms of
principle and of practice (e.g. [GiHaSt87, HawPag88, HolWal02, KoLiMu02]) and
there were many plausibility arguments presented. More quantitative methods
involve the derivation and solution of a Fokker–Planck equation for the distribu-
tion function constructed out of the universe’s quantum state, from which one
can examine the likelihood the universe could enter into a metastable state (the
false vacuum) and stay there long enough to start inflation. See, e.g. [Sta82].

For the second issue, on the dynamics of inflation, in Guth’s original model
(old inflation) with a double well potential, the universe gets out of the vac-
uum dominated stage by tunneling. However, the underlying nucleation process
happens infrequently and gives rise to a highly inhomogeneous universe. This
can be improved upon by invoking a nearly flat potential as in new inflation,
or by allowing the inflaton to slowly roll down the quadratic potential as in
chaotic inflation. In all these cases, a slow-roll condition is desirable to sustain
the inflationary expansion for a reasonable duration.

For the third issue, in conjunction with the so-called “graceful exit” prob-
lem, much detailed consideration has been devoted in the last 10 years to the
post-inflation reheating processes. This epoch after the inflationary expansion
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contains several stages: preheating, reheating and thermalization. These pro-
cesses are important because the temperature and entropy generated as the
universe reheats after inflation are important parameters which enter into all
ensuing cosmological processes.

What we want to point out is that in all three stages, the basic issues can be
formulated in the language of NEqQFT, and be addressed with the techniques of
NEqQFT we have constructed in earlier chapters. For example, on the “entry” or
“get-started” issue, a more productive approach to the investigation on whether
any metastable state exists could be by means of the Fokker–Planck equation for
the distribution function (or a related master equation for the density matrix)
of the universe. The second issue on the energetics of inflation depends strongly
on the nature and dynamics of phase transition, whether it is first order via
nucleation, as in old inflation or second order via spinodal decomposition as in
new inflation. Vital issues in the quantum theory of structure formation, such
as when the long-wavelength sector of the inflaton becomes classical, and what
kind of noise the short-wavelength sector of quantum fluctuations engender, if
any, are fundamentally NEqQFT problems. The third stage of reheating involves
particle creation from the rapidly changing inflaton field as it descends a steep
potential well, and is reasonably well treated by the CTP 2PI effective action,
as we will illustrate in the last part of this chapter.

Stochastic inflation

To address these issues in some detail and to seek solutions, we now specialize
and delve into one such theory of inflation known as stochastic inflation which
was proposed by Starobinsky [Sta86] (see also earlier work by Vilenkin [Vil83a,
Vil83b]) and developed by many [BarBub87, Rey87, PolSta96, GoLiMu87,
NaNaSa88, NamSas89, Nam89, LiLiMe94, Hab90, StaYok94, Mat97a, Mat97b,
WinVil00]. In this theory the inflation field is divided into two parts at every
instant according to their physical wavelengths, i.e.

Φ(x) = Φ<(x) + Φ>(x) (15.2)

The first part Φ< (the “system field”) consists of field modes whose physical
wavelengths associated with physical momenta p ≡ k/a are longer than the de
Sitter horizon size, i.e. p < σH where σ is a parameter smaller than unity defining
the size of the coarse-graining domain and the shape of the window function.
The second part Φ> (viewed as the “environment field”) consists of field modes
whose physical wavelengths are shorter than the horizon size whereby p > σH.
Inflation continuously shifts additional modes of the environment field into the
system, stretching their physical wavelengths beyond the de Sitter horizon size.
Technically the system field can be obtained from the total field by introducing a
dynamic cut-off in momentum space through a suitable time-dependent window
function that filters out the modes whose frequencies are lower than the comoving
horizon size.
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15.1 Quantum fluctuations and noise in inflationary cosmology 451

Due to the exponentially rapid expansion of spacetime, fluctuations of the
inflaton field Φ(x) on super-horizon scales effectively “freeze” in a few Hubble
times H−1 after they leave the horizon. For this reason, it is often said that after
suitable smoothing on the super-horizon scales, the averaged field containing the
long-wavelength modes (the system field) Φ< can be considered to be classical.
The quantum field comprising of shorter wavelength modes (the environment
field) can effectively be viewed as a classical noise ξ driving the system field via
a Langevin equation of the form

Φ̇< +
1

3H
dV [Φ<]
dΦ<

= ξ (x, t) (15.3)

where V (Φ) is the inflaton potential, and the “noise field” ξ (x, t) is assumed for
simplicity (but not required – this would be true for free fields anyway) to be a
Gaussian random field characterized by its two-point function 〈ξ (x, t) ξ (x′, t′)〉.
This noise correlator plays a key role in stochastic inflation.

To examine the form of the noise field, one can first examine a free scalar
field in the de Sitter spacetime, wherein the scale factor (assuming a spatially
flat FLRW universe) a(t) ∼ eHt. (In reality the scalar field can only be approx-
imately massless and the spacetime approximately de Sitter, because otherwise
the universe will be forever inflating.) In Starobinsky’s original derivation [Sta86]
the noise correlator is given by

〈ξ (x, t) ξ (x′, t′)〉 =
(
H

2π

)2 sin θ

θ
δ (t− t′) (15.4)

where θ ≡ r/R; r ≡ |x − x′|, and R is the spatial averaging scale for the inflaton
field:

R(t) ≡ [σHa(t)]−1 (15.5)

with σ � 1.
This equation is the basis for the investigation of structure formation. Two

basic issues are: How does the long-wavelength sector become classical, and what
is the underlying mechanism? What makes the short-wavelength sector behave
like noise, and what kind of noise is it? As will be shown below, the characteristics
of the noise field play a pivotal role in determining the spectral function of
structures and the decoherence of the system field.

In this model, the partition of the system and environment modes is a crucial
element which affects the outcome of structure formation, since the noise gen-
erated from it after being amplified in the inflationary dynamics is responsible
for the structure of the late universe. Following Starobinsky’s proposal [Sta86]
many papers have been written using a Langevin equation with a white noise
source, but the justification was not so clearly understood. A few authors (e.g.
[HuPaZh93b, CalHu95, CalGon97, Mat97a, Mat97b]) took exception to this way
of noise generation and suggested that, rather than using a window function for
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free fields which contains an arbitrary parameter, an interacting quantum field
(which the inflaton is assumed to be) when partitioned into two sectors can natu-
rally produce noise which in general is colored and multiplicative. Recently it was
pointed out [WinVil00] that the white noise originating from a sharp momentum
cut-off (or the window function being a step function in Fourier space) has some
pathological behavior, whereas a smooth window function will necessarily lead
to a colored noise.

As noticed by Winitzki and Vilenkin (WV) [WinVil00], equation (15.4)
shows a surprisingly slow decay of correlations at large distances. For com-
parison, the two-point function of the time derivatives of the unsmoothed field
〈φ̇(x, t)φ̇(x′, t′)〉 at large separations r behaves as ∝ r−4 (here the angular brack-
ets denote vacuum expectation value rather than statistical average). One would
not expect a smearing of the field operators φ (x, t) on scales R to have such an
effect on correlations at distances r � R.

The analysis of WV shows that the origin of the unusual behavior of the
correlator found by Starobinsky is the sharp momentum cut-off in his smoothing
procedure. With a smooth cut-off, WV recover the r−4 behavior independently
of the cut-off window function and find that the time dependence of the noise
correlator at large times is generically ∝ exp (−2Ht) instead of a sharp δ-function
dependence of equation (15.4).

For the correct prediction of the density contrasts in a quantum theory of
structure formation in the early universe it is necessary to give a proper treatment
of quantum and classical fluctuations and a correct identification of the origin
and nature of noise. We have discussed the issue of decoherence in stochastic
inflation in Chapter 9. We will discuss the issue of noise and structures in two
separate sections below.

15.1.2 Noise in stochastic inflation

Noise from partitioning and smoothing a free field

Consider a free massive (m) scalar field Φ(x, t) in a spatially-flat Robertson-
Walker (RW) spacetime with metric

ds2 = −dt2 + a2(t)dx2 = a2(η)(−dη2 + dx2) (15.6)

where a(t) is the scale factor and η is the conformal time defined by a(t)dη = dt.
Expanding Φ in normal modes with the basis spatial wavefunctions

eik·x/(2π)3/2 of the spatially flat RW spacetime,

Φ (x, t) =
∫

d3k

(2π)3/2
[
akφk(t)eik·x + h.c.

]
(15.7)

the amplitude function φk(t) of the k mode obeys the equation of motion

φ̈k(t) + 3Hφ̇k(t) + ω2
kφk(t) = 0 (15.8)
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15.1 Quantum fluctuations and noise in inflationary cosmology 453

where ω2
k(t) ≡ p2 + m2, p ≡ k/a, k ≡ |k| and an overdot here denotes deriva-

tives with respect to cosmic time t.
In the conformally related field, the normal mode amplitude χk(η) = φka(η)

corresponding to φk obeys the equation of motion

χ′′
k(η) +

(
k2 + m2a2 − a′′

a

)
χk(η) = 0 (15.9)

where a prime denotes taking the derivative with respect to the conformal time
∂η = a∂t.

For the de Sitter universe, in a spatially flat RW coordinate representation,

a(t) = eHt (15.10)

the expansion rate (Hubble parameter) H ≡ ȧ/a is a constant in time and infla-
tion goes on forever. In conformal time (ranging from −∞ to 0)

η = − 1
a(t)H

(15.11)

the evolution equation for the amplitude function χk(η) of the conformally
related field becomes

χ′′
k(η) +

[
k2 − 1

η2

(
ν2 − 1

4

)]
χk(η) = 0 (15.12)

where the parameter ν is defined as

ν =

√
9
4
− m2

H2
≡ 3

2
− εm (15.13)

The generic solution to this equation can be expressed in terms of Bessel functions
of the first and second kind,

c1
√
|η|Jν(k|η|) + c2

√
|η|Yν(k|η|) (15.14)

Requiring each χk to match the plane wave solution e−ikη/
√

2k for k � aH,
when wavelengths are too short to feel any spacetime curvature effects, produces
the standard Bunch–Davies solution

χk(η) =
√
π

2

√
|η|H(1)

ν (k|η|) (15.15)

where

H(1)
ν (x) = Jν(x) + iYν(x) (15.16)

is the Hankel function of the first kind. The amplitude function of the kth normal
mode of the original scalar field φ is given by

φk(η) =
√
π

2
H|η|3/2H(1)

ν (k|η|) (15.17)

which in the massless case (ν = 3
2 ) becomes

φk(η) = H
kη − i√

2k3
e−ikη (15.18)
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454 Nonequilibrium quantum processes in the early universe

In an expanding universe each mode will successively leave the horizon when its
physical wavelength p−1 = a/k reaches H−1. Thus for a de Sitter universe, at
the horizon crossing, |kη| = 1.

Spatial averaging and noise

Field fluctuations on super-horizon scales behave effectively as classical fluctua-
tion modes with random amplitudes. This is conventionally described by aver-
aging the field Φ in space over super-horizon scales and treating the resulting
field Φ< as a classical stochastic field satisfying a Langevin equation with a noise
source described by a Gaussian random field of the shorter wavelength modes,
given by equation (15.3); see [Sta86, GonLin86, NaNaSa88, NamSas89, Nam89,
Mij90, SalBon91].

The averaging of the field Φ is performed by means of a suitable window
function Ws (x;R) with a characteristic smoothing scale R,

Φ̄ (x, t) ≡
∫

d3x′φ (x′, t)Ws (x − x′;R) (15.19)

Here, the physical smoothing scale is taken to be σ−1 times larger than the
horizon size, with σ � 1. The corresponding comoving scale is

R (t) =
1

σHa (t)
(15.20)

The volume-averaged field has a mode expansion

Φ̄ (x, t) =
∫

d3k

(2π)3/2
[
w(kR)akφk (t) eik·x + h.c.

]
(15.21)

where w(kR) is a suitable Fourier transform of the window function Ws.
Starobinsky used a sharp step-function cut-off in Fourier space:

w(kR) = θ(1 − kR) (15.22)

The volume-averaged inflaton field is treated as a classical field Φ< satisfying
the Langevin (15.3) under the potential V (Φ) and an effective “noise field”
source ξ (x, t). In the original proposal the noise source ξ (x, t) was heuristically
defined as a stochastic field that corresponds to the quantum operator of the
free field derivative ˙̄Φ, in the sense that any average of ξ, such as the correla-
tor 〈ξ (x, t) ξ (x′, t′)〉, is assumed to be the same as the corresponding quantum
expectation values of ˙̄Φ in the vacuum state (which for de Sitter spacetime is the
standard Bunch–Davies vacuum). The effective noise field ξ defined in this way
is a Gaussian random field with zero mean, so the correlator 〈ξ (x, t) ξ (x′, t′)〉
completely describes its properties.

We show below the calculation of the noise correlator 〈ξ (x, t) ξ (x′, t′)〉 from
a computation of the corresponding expectation value of the quantum “noise
operator” ˙̄Φ following WV [WinVil00]. The noise correlator generally depends
on the particular window function Ws (x;R) and on the parameter σ. These

https://doi.org/10.1017/9781009290036.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.021


15.1 Quantum fluctuations and noise in inflationary cosmology 455

parameters can in principle be related to observational data such as from the
WMAP via the standard theory of structure formation, a topic we will come to
in a later section.

Correlator of noise

Here we derive the correlators of the effective noise field ξ (x, t) for an arbi-
trary smoothing window. In stochastic inflation the noise field ξ (x, t) is defined
through the time derivative of the averaged field ˙̄Φ in mode expansion

˙̄Φ (x, t) =
∫

d3k

(2π)3/2
[
vk (η) ake

ik·x + h.c.
]

(15.23)

where

vk (η) ≡ d

dt
[w (kR)φk (η)] =

[
−HkRw′ (kR)φk (η) + w (kR) φ̇k (η)

]
(15.24)

In the limit of σ � 1 we may disregard the second term in the square brackets.
The noise correlator then becomes

〈ξ (x1η1) ξ (x2, η2)〉 =
H4η1η2

4π2rσ2

∫ ∞

0

dk sin kr h (k) (15.25)

where h(k) is a dimensionless function of two variables η1, η2

h (k) ≡ (1 + iy1) (1 − iy2) eik(η2−η1)w′
(
−y1

σ

)
w′
(
−y2

σ

)
(15.26)

where y1 = kη1, y2 = kη2. The asymptotic form of equation (15.25) at large r is
given by

〈ξ (x1, η1) ξ (x2, η2)〉 = −
(
H2η1η2

)2
2π2r4σ4

|w′′ (0)|2 + O
(
r−6
)

(15.27)

Now examine the unsmoothed correlator of quantum field derivatives given at
arbitrary space and time points by (Appendix C of WV):〈

Φ̇ (x1, t1) Φ̇ (x2, t2)
〉

=
1

2π2

∫ ∞

0

φ̇k (t) φ̇∗
k (0)

sin kr

r
kdk

=
H4

2π2
(η1η2)

2 3 (η1 − η2)
2 + r2[

(η1 − η2)
2 − r2

]3 (15.28)

As expected, it diverges on the lightcone where r becomes |η1 − η2|. The asymp-
totic form of equation (15.28) at large distances r is〈

Φ̇ (x1, t1) Φ̇ (x2, t2)
〉

= −H4 (η1η2)
2

2π2r4
+ O

(
r−6
)

(15.29)

We see that the stochastic source correlator (15.27) is very similar to the quan-
tum field correlator (15.29). Note also that the asymptotic (15.27) is essentially
independent of the shape of the window function, since the value |w′′ (0)| as
indicated by equation (15.21) has the meaning of the window-averaged squared
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distance and must be of order 1 because the window profile W (q) starts to decay
at q ∼ 1 by construction.

We can obtain a simpler expression for the correlator in the limit when the
smoothing parameter σ is small while the product σHr remains finite. A rescal-
ing r → σHr ≡ ρ and the corresponding change of variable k ≡ σHκ simplify
equation (15.25) because we can omit terms of order σ and smaller; in particu-
lar, the product of mode functions is simplified to

φ∗
k (η1)φk (η2) =

1
2Hκ3σ3

(
1 + O

(
σ2
))

(15.30)

The leading term in the correlator, expressed through κ and ρ, becomes

〈ξ (x1, η1) ξ (x2, η2)〉 =
H6η1η2

4π2ρ

∫ ∞

0

dκ sinκρw′ (−Hη1κ)w′ (−Hη2κ) + O
(
σ2
)

(15.31)
Therefore, in the limit of small σ but finite σHr, the correlator as a function of
the “effective distance” ρ and the time difference (expressed by η2/η1) becomes
independent of σ.

The expression in equation (15.31) allows us to compute the correlator at all
distances in the limit of small σ. Under this condition, for a Gaussian smoothing
window, w (p) = exp

(
−p2/2

)
, we obtain

〈ξ (x1, η1) ξ (x2, η2)〉

=

(
H4η1η2

)2
4π2ρ

∫ ∞

0

exp
[
−H2 η

2
1 + η2

2

2
κ2

]
κ2 sinκρdκ

=

(
H4η1η2

)2
μ4

4π2ρ4

[
1 −
(

1
μ
− μ

)
i

√
π

2
erf
(

iμ√
2

)
exp
(
−μ2

2

)]
(15.32)

where

μ ≡ ρ√
H2 (η2

1 + η2
2)

(15.33)

is a dimensionless quantity. (A plot of this function for η1 = η2 can be found
in WV.) The leading term of the expression in brackets in equation (15.32) at
large μ is

(
−2μ−4

)
, and since for the Gaussian window w′′ (0) = −1, we recover

equation (15.27). The value of the correlator at the coincident points (ρ = 0) as
a function of time separation is

〈ξ (0, η1) ξ (0, η2)〉 =
H4 (η1η2)

2

2π2 (η2
1 + η2

2)2
=

H4

8π2

1
cosh2 HΔt

(15.34)

We can also obtain the leading asymptotics of the unequal-time correlator at
large time separations. Again start with equation (15.25) and assume that the
time separation is much greater than the Hubble time, η2/η1 ≡ a−1 � 1. For
simplicity we can choose the initial time such that Hη1 = −1. Using an expansion
(see equation (A12) of WV) for w

(
a−1k

)
at small a−1κ (since the integration is
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effectively performed over a fixed finite range of k) we obtain

〈ξ (x1, η1) ξ (x2, η2)〉 =
H2w′′ (0)

4π2σ3a2Hr

∫ ∞

0

dk k sin kr w′
(

k

σH

)

× eik/H
(

1 + i
k

H

)
+ O

(
a−4
)

(15.35)

The integral in equation (15.35) is time-independent. Therefore the correlator
decays as a−2 = exp (−2Ht) with time separation at any fixed distance. This
derivation shows how a regular window function produces a colored noise.

Colored noise from coarse graining an interacting field

In addition to using a smoothing window function as illustrated in the above
section [WinVil00, Mat93, Rio02] one could make a frequency or wavelength
partition, splitting the short- and the long-wavelength sectors. This has been
treated in Chapter 5 for a scalar field in Minkowski spacetime and in Chapter 9
for a conformally-related theory in de Sitter spacetime. We now turn to the issue
of structure formation from a colored noise.

15.2 Structure formation: Effect of colored noise

A standard mechanism for structure formation is the amplification of primordial
density fluctuations by the evolutionary dynamics of spacetime [Sak66, LifKal63,
Bar80, Muk05]. In the lowest order approximation the gravitational perturba-
tions (scalar perturbations for matter density and tensor perturbations for grav-
itational waves) obey linear equations of motion. Their initial values and dis-
tributions are stipulated, generally assumed to be a white noise spectrum. In
these theories, fashionable in the 1960s and 1970s, the primordial fluctuations
are classical in nature. In the standard model of FLRW cosmology, the scale
factor of the universe growing in a power law of cosmic time generates a density
contrast which turns out to be too small to account for the galaxy masses. The
observed nearly scale-invariant spectrum [Har70, Zel72] also does not find any
easy explanation in this model [Pee80, ZelNov85].

Inflationary models explain structure formation from amplification of vacuum
fluctuations of a scalar field Φ, the inflaton; see [GuthPi82, Sta82, MukChi82,
Haw82, BaStTu83, Bra83, MuFeBr92, DeGuLa92, YiViMi91, YiVis92, YiVis93,
YiVis93b, GlMaRa82, BoVeHo94, Bur95, Muk05]. Consider the “eternal infla-
tion” stage where the universe has locally a de Sitter geometry, with a constant
Hubble radius (de Sitter horizon) lh = H−1. (In reality H cannot strictly be a
constant, for otherwise the universe cannot reheat to our present FLRW state.)
The physical wavelength l of a mode of the inflaton field is l = p−1 = a/k, where
k is the wavenumber of that mode. As the scale factor increases exponentially,
the wavelengths of many modes can grow larger than the horizon size. After
the end of the de Sitter phase, the universe begins to reheat, turning into a
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radiation-dominated Friedmann universe with power law expansion a(t) ∼ tn.
In this phase, the Hubble radius grows much faster than the physical wave-
length, and some inflaton modes will reenter the horizon. The fluctuations of
these long-wavelength inflaton modes that went out of the de Sitter horizon and
later came back into the FLRW horizon play an important role in determining
the large-scale density fluctuations of the early universe, which in time seeded
the galaxies.

The stochastic inflation paradigm, after a proper treatment of decoherence
of the long wavelength modes1 and a first-principles derivation of noise (arising
from the short wavelength sector), could thus provide a sound rationale for the
Langevin equation depicting the dynamics of the inflaton perturbations or the
Fokker–Planck equation describing the evolution of their probability distribu-
tions.

A key issue in the solution of the Langevin or Fokker–Planck equation is
the choice of the initial conditions for the perturbations. Many authors (see
[SalBon91, Hod90, MMOL91, KBHP91]) agree that it should be consistent to
assume the spatial homogeneity of our observable local patch of the universe, and
therefore the vanishing of all fluctuations right before the moment it crosses the
horizon size, about 60 e-folds before the end of inflation, since at that time only
fluctuations on larger scales could have grown significantly. Therefore, all points
inside the present Hubble radius (at that time contained in the same coarse-
graining domain) must have the same local value of the scalar field, although
this value can be different from the one assumed in other regions of the Universe.

Even if it is generally assumed that inflation started well before the last 60
e-folds, for the white-noise case the evolution of fluctuations is completely insen-
sitive to what happened before that epoch and the constraint really becomes
a new initial condition. In contrast, non-Markovian fluctuations generated by
colored noises [HuPaZh93b] will retain some memory of the evolution before the
constraint.

The linkage of colored noise-generated structure to observations in WMAP
was suggested in [MaMuRi04] (MMR), where evidence was found for a blue
tilt in the power-spectrum on the largest observable scales as a consequence
of the non-Markovian dynamics near the constraint. This is due to the fact
that the increased noise correlation time (with respect to the white-noise case)
acts as a sort of “inertia” against the growth of the perturbations after the
constraint, thereby resulting in a suppression of the power-spectrum on the scales
that crossed the horizon in the ensuing few Hubble times. This is an interesting

1 There are different views on how the long-wavelength modes got decohered, including the
extreme one that no dynamical explanation needs to be provided. This so-called
decoherence without decoherence theme first proposed by Polarsky and Starobinsky
[KiPoSt98] is attractive more because of its expedience than truth value. The original form
has been revised after meeting with criticisms. For a more careful recent study on this
proposal, see, e.g. [CamPar05]. A different approach is suggested by Woodard
[TsaWoo05, Woo05a, Woo06]. For a recent review, see [Win06].
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feature, since the CMB anisotropy measurements made by WMAP [Spe03] give
some evidence for a suppression of the low multipoles, consistent with earlier
analogous results found by COBE [Ben96], although the statistical significance
of such a suppression is not large [TeCoHa03, OTZH04, Efs03, Efs04, BiGoBa04].

A related paper [LMMR04] (LMMR) points out the low multipoles suppres-
sion might also be a consequence of the colored noise. Compared to white noise, a
smooth choice of the window function will in fact slightly suppress the contribu-
tion to the noise given by the field modes whose frequency is immediately higher
than the cut-off scale σ(aH) (while enhancing the lower frequencies). Right
after the time τ∗ at which the homogeneity constraint is set on the comoving
patch of the universe, fluctuations with k � σa∗H∗ will grow less than in the
white-noise case before freezing out, and if σ is not too small this suppression
can be effective also on observable scales. Even in the Markovian case, the noise
correlation function in configuration space has a dependence of σ beyond the
second order which could show up in the power spectrum.

Before getting into the details we want to add a qualifying remark on how this
mechanism is placed in relation to other mechanisms so as to avoid a skewed per-
spective. The colored noise explanation of the suppression of lower multipoles
(blue tilt) mode is only one amongst many proposed. As cautioned in the begin-
ning, we select this topic mainly to illustrate some key ideas in NEqQFT, in this
case, the effect of quantum noise on structure formation in stochastic inflation.
Adopting this perspective we hope that even if at the end the actual physical
scenario may not survive over other competing theories, the readers can learn
the physics of NEq quantum fields through a detailed analysis of these sample
problems.

15.2.1 Colored noise from smooth window functions

Partitioning and smoothing

As discussed earlier, if one uses the cosmological horizon as the partition scale,
the environment field Φ> consisting of the subhorizon (short-wavelength) modes
can be sieved out by the use of a suitable time-dependent high-pass filter
in Fourier space. This is achieved by means of a different window function
W̃σ(y), y ≡ kη such that W̃σ(y) = 0 for k|η| � σ and W̃σ(y) = 1 for k|η| � σ.
(Note that this window function used by LMMR is complementary to the one
used by WV discussed in the last section, which is a low-pass filter.) The param-
eter σ defines the size of the coarse-graining domain and an “effective horizon”
σ(aH):

Φ> =
∫
d3k

W̃σ(kη)
(2π)3/2

[
akφk(η)eik·x + h.c.

]
(15.36)

In the stochastic inflation paradigm, the quantum fluctuations on subhorizon
scales act as a classical noise source ξ with a given probability distribution P [ξ]
in a Langevin equation which drives the super-horizon modes. Our discussions
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in the previous section on the origin and nature of noise from quantum fluctu-
ations and on the decoherence of the long-wavelength mode by this noise may
serve as justification for such a proposal. Technically, the quantum problem of
computing the expectation value of the coarse-grained field is thus reduced to
the classical problem of evaluating the mean of the solution to the stochastic
evolution equation averaged over all possible noise configurations.

Following such a prescription, we can split the scalar field Φ = φ̄ + ϕ into
its statistical mean value φ̄ whose normal mode amplitudes satisfy the classi-
cal equation of motion (15.8) and a fluctuation field ϕ[ξ], with zero mean over
the distribution P [ξ].2 The stochastic equation of motion for the super-horizon
fluctuations was shown before to be

ϕ̈k + 3Hϕ̇k −
(
k2

a2
−m2

)
ϕk =

ξk
a3

(15.37)

or, for the conformally related field normal mode amplitude χk = aφk in con-
formal time η, in a similar decomposition χk = χ̄k + χ̃k the mean field satisfies
(15.9) and the fluctuation field modes χ̃k obeys

χ̃′′
k +
(
k2 + m2a2 − a′′

a

)
χ̃k = ξk (15.38)

The noise ξ is a Gaussian random field, whose configurations are weighted by
the functional probability distribution

P [ξ] = N exp
[
−1

2

∫
d4xd4x′ξ(x)N−1(x, x′)ξ(x′)

]
(15.39)

= N exp
[
−1

2

∫
dηdη′d3kd3k′ξk(η)N−1

k,k′(η, η′)ξk′(η′)
]

(15.40)

where N−1
k,k′(η, η′) is the functional inverse of

Nk,k′(η, η′) = δ(k + k′)
Re[f(y)f∗(y′)]

2k3
(15.41)

and, with y ≡ kη,

f(y) =
√

2k3(W̃ ′′
σχk + 2W̃ ′

σχ
′
k) (15.42)

This probability distribution allows us to calculate the statistical mean value
〈. . .〉ξ of any ξ-dependent quantity averaged over the noise field configurations,
defined as

〈. . .〉ξ =
∫
D[ξ] . . . P [ξ] (15.43)

2 This is true at linear order because nonlinear corrections will shift the mean value. Also, if
Φ is the inflaton field then φ̄ should be the homogeneous background, and as such have no
Fourier decomposition. All is well in the case of a test field with no metric fluctuations,
which is what we will assume here.
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Then, by definition the mean 〈ξ(η)〉ξ of the noise vanishes at all times, while the
two-point correlation function is by definition

〈ξk(η)ξk′(η′)〉ξ = Nk,k′(t, t′) (15.44)

This correlation function, the noise kernel, completely characterizes the statisti-
cal properties of the Gaussian noise field. In configuration space it reads

〈ξ(x)ξ(x′)〉ξ =
∫

d3k
(2π)3

eik·(x−x′) 1
2k3

Re[f(y)f∗(y′)] (15.45)

As we saw before the statistical behavior of the noise depends critically on the
shape of the filter. Choosing the special window function W̃σ(kη) = θ(k|η| − σ)
leads to the standard white-noise two-point correlation function. For x = x′ it
reads

〈ξ(x)ξ(x′)〉ξ =
H3

4π2

(
1 + O(σ2)

)
δ(t− t′) (15.46)

which is highly divergent for t = t′ and has a vanishing characteristic correlation
time. In contrast a smooth window function yields a correlation function with
no divergence and a finite correlation time, therefore producing a colored noise,
e.g. with

W̃σ(y) = 1 − e−
y2

2σ2 (15.47)

the two-point correlation function at r = 0 is given by

〈ξ(t)ξ(t′)〉ξ =
H4

8π2

1
cosh2(H(t− t′))

+ O(σ2) (15.48)

which behaves like e−2H(t−t′) asymptotically. This asymptotic behavior is quite
general for a wide class of smooth window functions [WinVil00].

Fluctuations and structures

The particular solution of the evolution equation (15.38) for the fluctuations χ̃k

sourced by the noise field ξ can be expressed in terms of the general solutions
χ1 =

√
k|η|Jν(|y|) and χ2 =

√
k|η|Yν(|y|) of the homogeneous equation (15.12).

This solution reads

χ̃k[ξ](η) =
∫ η

ηi

dη′ g(y, y′) ξk(y′) (15.49)

where

g(y, y′) =
χ1(y)χ2(y′) − χ2(y)χ1(y′)
χ′

1(y′)χ2(y′) − χ′
2(y′)χ1(y′)

(15.50)

and ηi is the beginning of inflation, at which we set the initial condition
χ̃k(ηi) = 0.
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Keeping this assumption, LMMR impose the constraint that at a much later
time η∗ (roughly about 60 e-folds before the end of inflation) there are no fluctu-
ations in that part of the universe corresponding to the present observable sky.
This is motivated by the fact that all the points we observe today with substantial
homogeneity were included at η∗ in the same coarse-grained domain.3 Physically
this amounts to the assumption that at η∗ the comoving patch of the universe we
observe today has complete homogeneity and all fluctuations on smaller scales
were generated later by the stochastic source represented by the noise term.4

There is no assumption made on the behavior of larger unobservable scales.
We are thus led to consider (for a given noise configuration) a different solu-

tion for the subsequent evolution of the fluctuations, obtained as in (15.49) by
starting the integration at η∗, when a new (stochastic) initial condition holds.
In turn, χ̃k[ξ](η∗) is determined again from (15.49) with the usual vanishing ini-
tial condition at ηi. However, as long as we are dealing with points inside the
present observable universe, we can skip the stochastic initial conditions η∗ since
their inverse Fourier transform is assumed to vanish. Therefore, in configuration
space the subsequent evolution of the fluctuations will only contain noise modes
integrated after η∗. Thus, for relevant x’s we may write

ϕ(x, η) =
∫

d3k
(2π)3/2

eik·x

a

∫ η

η∗

dy′ g(y, y′) ξk(η′) (15.51)

and

ϕ(x, η∗) =
∫

d3k
(2π)3/2

eik·x

a∗

∫ η∗

ηi

dη′ g(y∗, y) ξk(y′) (15.52)

where the first equation is only valid for scales inside our observed patch of the
universe.

As expected, since the fluctuation ϕk[ξ] is linear in ξ, at all times we have that

〈ϕ[ξ](η)〉ξ = 0 (15.53)

while the two-point correlation function in x1 and x2 = x1 + r can be obtained
by integrating the noise correlation function (15.41). LMMR find

C(r, η) ≡ 〈ϕ[ξ](x1, η)ϕ[ξ](x2, η)〉ξ =
∫

d3k
(2π)3

eik·r
|I1(k)|2

2k3
(15.54)

3 Introduced first by Salopek and Bond [SalBon91], such a constraint is necessary if one
wants to use the variance of the single-point probability distribution (which has no spatial
information encoded) to extract some information on the cosmic microwave background.
Without this constraint, the variance will be much larger because fluctuations (specially at
the beginning of inflation) add up very rapidly over time. However, this variance can now
only be used to model the structure on ultralarge scales (of the order of the wavelength of
the first modes crossing the Hubble radius).

4 In principle, solving the Langevin equation with the full space dependence may not require
the imposition of this constraint, because the correlation function is able to distinguish the
scales. At any time, as a consequence of the smoothing, fluctuations on scales smaller than
the filtering scale will not appear (as in white noise) or will appear only in a finite
frequency range around this scale (as with colored noise). In either case imposition of the
window function could effectively serve the function of the homogeneity constraint.
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where

I1(k) =

√
2k3

a

∫ η

η∗

dη′ g(y, y′)(W̃ ′′
σχk + 2W̃ ′

σχ
′
k) (15.55)

In the same way one can calculate the correlation function evaluated at η∗,
yielding

C∗(r, η∗) ≡ 〈ϕ[ξ](x1, η∗)ϕ[ξ](x2, η∗)〉ξ =
∫

d3k
(2π)3

eik·r
|I2(k)|2

2k3
(15.56)

where I2(k) has the same form as I1(k) but it refers to the time interval [ηi, η∗].
One can also define the mixed correlation function of the scalar field pertur-

bations evaluated at different times:

C×(r, η, η∗) ≡ 〈ϕ[ξ](x1, η)ϕ[ξ](x2, η∗)〉ξ =
∫

d3k
(2π)3

eik·r
Re[I1(k)I∗2 (k)]

2k3
(15.57)

With these correlation functions C(r, η), C∗(r, η∗), C×(r, η, η∗) one can proceed
to calculate the conditional correlation function of the scalar field perturbations
– conditional (subscript c) here referring to the constraint defined in the set-up
of the initial conditions described above. In the physically reasonable limit of
ηi � η∗ LMMR [LMMR04] obtained

〈ϕ(x1)ϕ(x2)〉c � C(r) (15.58)

This yields the power spectrum Pδϕ(k) of the fluctuations, defined by

〈ϕ(x1)ϕ(x2)〉c =
1
4π

∫
d3k eik·r

Pδϕ(k)
k3

(15.59)

as

Pδϕ(k) =
1

4π2
|I1(k)|2 (15.60)

In the small-σ limit the standard scale-invariant result Pδϕ(k) = H2/4π2 is
recovered.

15.2.2 Curvature perturbations and blue tilt

So far this treatment has been under the test-field approximation, meaning that
the background spacetime where the quantum field propagates is assumed to be
fixed, i.e. the de Sitter universe. But in reality the quantum field contributes
to the energy–momentum tensor which determines the evolution of the scale
factor, via the slow-roll Friedmann equation H2 � (8πG/3)V (φ), and the field
perturbations induce fluctuations in the metric. These metric perturbations need
be considered alongside the scalar field perturbations ϕ. Let ψ be the curvature
perturbation, which is gauge dependent. To avoid spurious coordinate effects it
is preferable to use the gauge-invariant comoving curvature perturbation R =
ψ + H(ϕ/φ̇) which measures the intrinsic spatial curvature on hypersurfaces of
constant time [Rio02] as the physical degrees of freedom.
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Defining in conformal time v = a2φ′/a′, the variable u = −vR satisfies the
equation of motion

u′′ −∇2u−
(
v′′

v

)
u = 0 (15.61)

Expanding the last term to first order in the slow-roll parameters εV ≡
−3Ḣ/H2; ηV ≡ V ′′/3H2 formed from the Hubble parameter and the inflaton
potential, one finds

v′′

v
� 1

η2

(
ν2 − 1

4

)
(15.62)

where ν � 3
2 + 3εV − ηV .

We see that in the slow-roll approximation the gauge-invariant normal modes
uk satisfy the same equation of motion (15.12), the only difference enters in the
definition of the parameter ν labeling the solutions:

u′′
k +
[
k2 − 1

η2

(
ν2 − 1

4

)]
uk = ξk (15.63)

We can then apply to R the results derived for the power spectrum of the
perturbations of a test scalar field, concluding that for the curvature perturbation
we also have PR(k) ∝ |I1(k)|2.

In the limit k|η| � σ � 1 which is reasonably satisfied on cosmological scales,
the power spectrum simplifies to

PR(k) = A2
RW̃ 2

σ (k|η∗|)(k|η|)2ηV −6εV (15.64)

Since W̃ 2
σ < 1, this shows a blue tilt on large observable scales with k ∼ σa∗H∗,

corresponding to physical lengths about σ−1 times greater than the present Hub-
ble radius. In the limit σ � k|η∗| (since W̃σ(k|η∗|) � 1) we recover the ordinary
result

PR(k) = A2
R(k|η|)2ηV −6εV (15.65)

This blue tilt stems from the fact that a smooth window function does not make
a sharp separation in Fourier space but it gradually weighs the modes, allowing
for a small low-frequency contribution to the short-wavelength part of the field
(in terms of which the noise is defined) while depleting modes whose wavelength
is immediately smaller than the cut-off scale. The colored noise originated from
such a window function is thus able to generate fewer fluctuations than a white
noise on scales slightly smaller than the comoving coarse-graining domain.

As a consequence, under the constraint that in our comoving patch of the
universe the fluctuations can grow only after η∗, the scales that are leaving the
horizon in the following few Hubble times receive fewer “random kicks” before
freezing out than in the white-noise case. Therefore, the power spectrum is a
function of k smoothly interpolating between the values 0 and 1 it assumes for
small and large k, respectively.
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This power spectrum can be used to calculate the CMB multipoles predicted
by a specific choice of the window function W . Quite generally, we expect to
find a suppression of the lowest multipole, which is sensitive to a modification
of the power spectrum on this very large scale. However, in order to quantify
this suppression one needs to choose the shape of the window function and
the precise time η∗ at which the constraint is set. As mentioned before the
significance of the low multipole suppression varies depending on the choice of
the constraint time. Detailed description can be found in LMMR, where our
exposition here is adapted from.

15.2.3 Structures from coarse graining an interacting field

As we learned earlier colored noise can also be generated by coarse graining a sec-
tor of one partitioned interacting quantum field [CalHu95, CalGon97, Mat97a,
Mat97b]. In Chapter 5 we derived the influence functional describing the effect of
high-frequency modes on the low-frequency sector. The real part of the influence
action contains divergent terms and should be renormalized. The imaginary part
is finite and is associated with the decoherence process. From this one can derive
the renormalized semiclassical Langevin equation governing the system field (the
long-wavelength sector) driven by a noise originating from coarse graining the
environment field (the short-wavelength sector). We can use this equation to
understand the generation of classical inhomogeneities from quantum fluctua-
tions, obtaining their power spectrum and be able to compare with observational
data such as from WMAP.

In the φ4 model used by Lombardo and Nacir [LomNac05] we presented in
Chapter 9, there are two such sources ξ2 and ξ3, associated with the interac-
tion terms φ2

<φ
2
> and φ3

<φ> respectively. The full influence function is given in
(9.112). Reading the noise kernels off that equation, we may now treat the gen-
eration of inhomogeneities with noise arising from one interacting quantum field.

We are interested in finding the power spectrum of perturbations to the infla-
ton field up to � and λ2 order. To carry this out, we split the system field as
φ< = φ0(η) + ϕ<, where we identify φ0(η) as a classical background field which
satisfies the slow-roll conditions. The power spectrum of the field fluctuations
ϕ< may be expressed as Pϕ(k) = 2π2k−3Δ2

ϕ(k), with Δ2
ϕ(k) defined by

〈ϕ<(x)ϕ<(x′)〉 =
∫

d3k
Δ2

ϕ(k)
4πk3

exp(−ik · r) (15.66)

where r ≡ x − x′.
Expanding the semiclassical Langevin equation up to linear order in the mode

amplitude of interest ϕ<(�k), we obtain

φ′′
0(η) + 2H̃φ′

0(η) + 4λa2φ3
0(η) = 0 (15.67)

ϕ′′
<(�k, η) + [k2 + 12λa2φ2

0(η)]ϕ<(�k, η) + 2H̃ϕ′
<(�k, η) = −ξ2(�k, η)

a2
φ0(η)

(15.68)
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where terms which do not contribute to the power spectrum up to order � have
been discarded. The term with the ξ3 noise source gives a zero contribution
due to our approximations and the orthogonality of the Fourier modes. Note the
presence of the ξ2 noise source, which is instrumental to the decoherence process.

A general solution ϕ< to equation (15.68) is made up of two parts: a part
ϕq
< which is a solution to the homogeneous equation (i.e. without the source

term on the right-hand side) and a particular solution ϕξ
< with vanishing initial

conditions. Namely, ϕ<(�k, η) = ϕξ
<(�k, η) + ϕq

<(�k, η). The first part is made up
of “intrinsic fluctuations” which coincide with the quantum fluctuations of the
free field. The second part is sometimes called “induced fluctuations” referring
to the influences from the environment. Under some reasonable approximations
the result is analogous to that for the linear quantum Brownian motion (QBM)
[Zha90, HuPaZh92, HuPaZh93a, PaHaZu93, Paz94, HalYu96, KUMS97]. Corre-
spondingly the quantity Δ2

ϕ(k) has two contributions:

Δ2
ϕ(k) = Δ2

ϕq (k) + Δ2
ϕξ(k) (15.69)

Because in equation (15.68) the dissipation kernel is assumed to be small, the first
part follows an almost unitary evolution of the initial density matrix, yielding
the usual result for the case of the free field: Δ2

ϕq (k) = (H/2π)2 (1 + k2η2). The
second part is due to the ξ2 noise source and can be expressed as

Δ2
ϕξ(k) = −λ2 144

π2
k3

∫ η

ηi

dη1

∫ η

ηi

dη2 a4(η1)a4(η2)

×φ0(η1)φ0(η2)h(k, η, η1)h(k, η, η2)

×ReGΛ2
F (η1, η2,�k) (15.70)

where

h(k, η, η′) ≡ 1
a(η)a(η′)

[
sin[k(η − η′)]

k

(
1 +

1
k2ηη′

)
− cos[k(η − η′)]

k2ηη′
(η − η′)

]
(15.71)

On the other hand, the usual contribution Δ2
ϕq (k) is independent of k for a fixed

value of kη, corresponding to a nearly scale-invariant spectrum, whereas Δ2
ϕξ(k)

depends on k and Λ.
Thus, concerning the influence of the environment on the power spectrum

for some modes in the system, the results of Lombardo and Nacir [LomNac05]
indicate that the contribution to the spectrum from the unitary evolution of
the Bunch–Davies initial condition dominates over the contribution from the
system–environment interaction.

15.2.4 Structures from interaction with other fields

In this last subsection we turn to structure formation from colored noise gen-
erated from coarse graining some other quantum field(s) the inflaton interacts
with, using the two-field model discussed in Chapter 5. We report on the findings
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of Wu et al. [WuNgLeeLeeCha06], who show that the inflaton fluctuations driven
by the colored noise are strongly dependent on the onset of inflation and become
scale-invariant asymptotically at small scales. These induced fluctuations would
grow with time only in a certain intrinsic time-scale. For this proposal to work,
one needs to assume that the gravitational perturbations associated with the pas-
sive (or induced) quantum field fluctuations can become larger than the active
(or intrinsic) fluctuations. Some mechanism should be present to suppress the
active fluctuations for this assumption to be valid. Only in the (hitherto not eas-
ily explicable) case when the induced fluctuations contribute a significant portion
to the density perturbation would they cause a suppression of the density power
spectrum on large scales which shows up as a depression of low-l multipoles in
CMB. Of special interest to colored-noise induced structure formation is that the
observed low CMB quadrupole may open a window on the physics of the first
few e-foldings of inflation.

Consider an inflaton field Φ with potential V (Φ) coupled to a massive scalar
quantum field Ψ described by the Lagrangian

L =
−1
2

gμν∂μΦ ∂νΦ +
−1
2

gμν∂μΨ ∂νΨ − V (Φ) −
(
m2

Ψ

2
Ψ2 +

g2

2
Φ2Ψ2

)
(15.72)

where V (Φ) is the inflaton potential that complies with the slow-roll conditions
and g is a coupling constant between Φ and Ψ. Thus, we can approximate the
spacetime during inflation by a de Sitter metric given by equation (15.6). We
can rescale a so that at the initial time of the inflation era, ηi = −1/H. In
the influence functional approach [HuPaZh93b, CalHu94, CalHu95, CalGon97,
KUMS97, Lee04, LomNac05], the environmental field Ψ is traced out up to
the one-loop level. Assuming also that the quantum field has gone through the
quantum-to-classical transition, the Langevin equation for Φ is given by:

Φ′′ + 2aHΦ′ −∇2Φ + a2
[
dV (Φ)/dΦ + g2〈Ψ2〉Φ

]
− g4a2Φ

×
∫

d4x′a4(η′)θ(η − η′) iG−(x, x′)Φ2(x′) =
Φ
a2

ξ (15.73)

where the prime denotes differentiation with respect to η. As we will see later,
the quantum fluctuations of Φ will contribute to the mass correction of Ψ at
one loop. The dissipation term in this Langevin equation is actually divergent.
Wu et al. removed the divergence by using the regularization method that sets
the ultraviolet cut-off Λ = HeHt. They found that this term only contributes a
mass correction of about 10−2g4φ̄2

0 to m2
ϕeff (defined after equation (15.76)) as

well as a small friction term of order 10−2g4φ̄2
0aφ̇/H to equation (15.73). As we

have seen before, the environment field Ψ engenders dissipative dynamics in the
inflaton field Φ via the kernel G− and produces a multiplicative colored noise ξ

with correlator

〈ξ(x)ξ(x′)〉 = g4a4(η)a4(η′)G+(x, x′) (15.74)
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The kernels G± in equations (15.73) and (15.74) can be constructed from the
Green’s function of Ψ with respect to a particular choice of the initial vacuum
state to be specified. They were derived in Chapter 5:

G±(x, x′) = 〈Ψ(x)Ψ(x′)〉2 ± 〈Ψ(x′)Ψ(x)〉2 (15.75)

To focus on noise-generated structure, in the solution of equation (15.73), one
can first ignore the dissipative term.

Following the stochastic inflation paradigm, after sufficient decoherence, we
can decompose Φ(η, �x) = φ̄(η) + ϕ(η,x) into a mean field φ̄ and a fluctuation
field ϕ which obeys the linearized Langevin equation

ϕ′′ + 2aHϕ′ −∇2ϕ + a2m2
ϕeffϕ = φ̄ξ/a2 (15.76)

where the effective mass is defined as m2
ϕeff = d2V (φ̄)/dϕ2 + g2〈Ψ2〉 and the time

evolution of φ̄ is governed by V (φ̄). The equation of motion for Ψ from which
we construct its Green’s function can be read off from its quadratic terms in the
Lagrangian (15.72) as

Ψ′′ + 2aHΨ′ −∇2Ψ + a2m2
ΨeffΨ = 0 (15.77)

where m2
Ψeff = m2

Ψ + g2(φ̄2 + 〈ϕ2
q〉). Here 〈ϕ2

q〉 denotes the active or intrinsic
quantum fluctuations with a scale-invariant power spectrum given by Δq

k =
H2/(4π2). Let us decompose

Υ(x) =
∫

dk

(2π)
3
2
Yk(η) eik·x (15.78)

where Υ = ϕ, ξ, and correspondingly Y = ϕk, ξk

Ψ(x) =
∫

dk

(2π)
3
2

[
bkψk(η) eik·x + h.c.

]
(15.79)

where b†k and bk are creation and annihilation operators satisfying [bk, b
†
k′ ] =

δ(k − k′).
The solution to equation (15.76) is obtained as

ϕ�k = −i

∫ η

ηi

dη′φ̄(η′)ξ�k(η
′)
[
ϕ

(1)
k (η′)ϕ(2)

k (η) − ϕ
(2)
k (η′)ϕ(1)

k (η)
]

(15.80)

where the homogeneous solutions ϕ
(1),(2)
k are given by

ϕ
(1),(2)
k =

1
2a

(π|η|) 1
2H(1),(2)

ν (kη) (15.81)

Here H(1)
ν and H

(2)
ν are Hankel functions of the first and second kinds respectively

and ν2 = 9/4 −m2
ϕeff/H

2. In addition, we have from equation (15.77) that

ψk =
1
2a

(π|η|) 1
2

[
c1H

(1)
μ (kη) + c2H

(2)
μ (kη)

]
(15.82)

where the constants c1 and c2 are subject to the normalization condition, |c2|2 −
|c1|2 = 1, and μ2 = 9/4 −m2

Ψeff/H
2.

https://doi.org/10.1017/9781009290036.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.021


15.2 Structure formation: Effect of colored noise 469

Low � WMAP modes and running spectral index

From this we can calculate the power spectrum of the perturbation δϕ. To main-
tain the slow-roll condition: m2

φeff = m2
ϕeff � H2 (i.e. ν = 3/2), we require that

g2 < 1 and m2
Ψ > H2. The latter condition limits the growth of 〈Ψ2〉 during infla-

tion to be less than about 10−2H2 [BunDav78, VilFor82, EnNgOl88]. Under this
condition, 〈ϕ2

q〉 grows linearly as H3t/4π2 [BunDav78, VilFor82, EnNgOl88] and
thus 〈ϕ2

q〉 � H2 after about 60 e-foldings (i.e. Ht � 60). Therefore, as long as
g2φ̄2 ≤ 2H2, one can conveniently choose m2

Ψeff = 2H2 (i.e. μ = 1/2) for which
Ψ takes a very simple form. Also, it was shown that when μ = 1/2 one can select
the Bunch–Davies vacuum (i.e. c2 = 1 and c1 = 0) [EnNgOl88]. Hence, using
equations (15.74) and (15.80), one obtains

〈ϕ�k(η)ϕ
∗
�k′(η)〉 =

2π2

k3
Δξ

k(η)δ(�k − �k′) (15.83)

where the noise-driven power spectrum is given by

Δξ
k(η) =

g4y2

8π4

∫ y

yi

dy1

∫ y

yi

dy2φ̄(η1)φ̄(η2)
sin y−
y1y2y−

× [sin(2Λy−/k)/y− − 1]F (y1)F (y2) (15.84)

where y− = y2 − y1, y = kη, yi = kηi = −k/H, Λ is the momentum cut-off intro-
duced in the evaluation of the ultraviolet divergent Green’s function in equa-
tion (15.75), and

F (x) =
(

1 +
1
xy

)
sin(x− y) +

(
1
x
− 1

y

)
cos(x− y) (15.85)

Note that the term sin(2Λy−/k)/y− � πδ(y−) when Λ � k, so Δξ
k(η) is insensi-

tive to Λ. Both φ̄(η1) and φ̄(η2) in equation (15.84) can be approximated as a
constant mean field φ̄0, since we are concerned with large scales at which the rate
of change of the mean field at horizon crossing, dφ̄/d ln k � −

√
−2εḢMPl/H,

where ε ≡ −Ḣ/H2 is the slow-roll parameter, is consistent with zero up to the
scale near the first CMB Doppler peak in WMAP measurements [Spe03]. A
plot by Wu et al. of Δξ

k(η) at the horizon-crossing time (defined by y = −2π)
versus k/H shows that the noise-driven fluctuations depend on the onset time
of inflation and approach asymptotically to a scale-invariant power spectrum
Δξ

k � 0.2g4φ̄2
0/(4π

2) at large k. Within the usual models of inflation, the possi-
ble interactions of the inflaton are too restricted for this effect to be observable;
however, the fact that interactions do affect the spectrum of primordial fluctua-
tions has some interest on its own.

On the other hand, if the effect of interactions is expected to be important,
then a nonperturbative evaluation of the influence functional becomes necessary.
We describe below a possible strategy [ZanCal07a].
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15.2.5 Primordial spectrum from nonequilibrium

renormalization group

The basic idea of RG for systems in equilibrium (where time does not enter
in the description) is the coarse graining of the original system, i.e. the change
in the resolution with which the system is observed [WilKog74]. Given a system
with a range of scales which goes up to wavenumber Λ, if we are only interested
in scales up to wavenumber k < Λ, we can separate the original system in two
sectors: a lower wavenumber (soft) sector, with k′ < k, the relevant system, and
a higher wavenumber (hard) sector with k < k′ < Λ, the environment. Once this
division is done, the environment modes are eliminated from the description. In
equilibrium, this is achieved by computing the coarse-grained “in-out” effective
action for the lower sector, complemented with a rescaling of the fields and
momenta that restores the cut-off and the coefficient of the q2 term in the action
to their initial values. The elimination of the modes between Λ and k proceeds
by infinitesimal steps. In this way, the calculation involves only tree and one-loop
diagrams, and the resulting equations form a set of differential equations for the
parameters that define the effective action [WegHou73].

Essentially, the same scheme can be used for nonequilibrium systems. We want
to compute true expectation values at given times, not transition amplitudes
between “in” and “out” asymptotic states, far away in the future and in the past.
We want to follow the real and causal evolution of expectation values, for which
the usual “in-out” representation is not appropriate. A suitable description of
nonequilibrium systems is given within the “closed time path” (CTP) formalism.

It is important to stress two basic differences between the nonequilibrium
and equilibrium RG [Lit98]. The IF may be regarded as an action for a theory
defined on a “closed time path” (CTP) composed of a first branch (going from
the initial time t = 0 to a later time t = T when the relevant observations will be
performed – that is why we need the density matrix at T ) and a second branch
returning from T to 0. Thus each physical degree of freedom on the first branch
acquires a twin on the second branch – we say the number of degrees of freedom
is doubled. The IF is not just a combination of the usual actions for each branch,
but also admits direct couplings across the branches. The damping constant κ

and the noise constant ν are associated to two of those “mixed” terms. Therefore,
the structure of the IF (from now on, CTP action, to emphasize this feature) is
much more complex than the usual Euclidean or “in-out” action.

The second fundamental difference is the presence of the parameter T itself.
In nonequilibrium evolution, it is important to specify the time-scale over which
we shall observe the system. The CTP action contains this physical time-scale
T . From the point of view of the RG, this adds one more dimensional parameter
to the theory, much as an external field in the Ising model. Physically, because
time integrations are restricted to the interval [0, T ], energy conservation does
not hold at each vertex. This is of paramount importance regarding damping.
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The RG for the CTP effective action (obtained by taking the limit T → ∞)
was studied by Dalvit and Mazzitelli [DalMaz96, Dal98]; see also [CaHuMa01]
and [Pol06, ZanCal07a, ZanCal06b].

In formulating a nonequilibrium RG, we must deal with the fact that the CTP
action may have an arbitrary functional dependence on the fields and be nonlocal
both in time and space. In principle, one can define an exact RG transformation
[DalMaz96], where all three functional dependencies are left open. However, the
resulting formalism is too complex to be of practical use. Fortunately, the special
properties of the application to thermalization allow for substantial simplifica-
tions.

The full RG equations for this theory is given in [ZanCal06b]. Here we shall
only highlight those aspects of the calculation most relevant to the application
to primordial fluctuation generation.

We shall work with the conformally scaled field χ = aΦ. For simplicity, we
shall treat χ as a field on flat spacetime. This only induces an error of order 1
in the amplitude of the fluctuations at horizon exit.

Let us call χ1(2) the field variable in the first (resp. second) branch of the CTP.
To write down the CTP action, it is best to introduce average and difference
variables

χ− = χ1 − χ2

χ+ =
(
χ1 + χ2

)
/2 (15.86)

In terms of these variables, a generic CTP action may be written as

SCTP = S0 + Sλ + Sother (15.87)

where S0 is the CTP action functional for a free massless field theory, Sλ

accounts for a λχ4-type self-interaction and Sother includes all other possible
terms. Momentum integrals are bounded by k = Λ. We shall assume that the
initial condition for the RG flow is Sother = 0 at the hard scale Λ, so that if it
appears at soft scales, it is as a consequence of the RG running itself. Note that
this is true, in particular, for the noise and dissipation terms.

To define the nonequilibrium RG we also need to specify the state of the
field at the initial time t = 0. For simplicity, we shall assume this is the vacuum
state for the free action S0. Observe that this is a nonequilibrium state for the
interacting theory.

The value λ0 of the coupling constant λ at the hard scale Λ may be used as the
small parameter in a perturbative expansion of the RG equation. To order λ2

0,
the RG equation for the quartic coupling decouples, and can be solved by itself.
The result is that at soft scales k, λ is both scale and T dependent. There is no
RG running if T = 0, while the usual textbook result is obtained as T → ∞. For
all values of T , λ is driven to zero as k → 0 [ZanCal06b]. Thus it is consistent to
assume that λ is uniformly small in the relevant scale range.
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In particular, in order to compute the RG equations to order λ2, it will be
enough to use in the Feynman graphs the zeroth order propagators, which are
those of the massless free theory. The only exception is in computing the effective
mass, but this calculation is decoupled from the noise and dissipation terms
to order λ2. Observe that it is at the same time a huge simplification and a
strong limitation concerning the range of application of our results, as we expect
substantial shifts in the propagators when T approaches the relaxation time of
the theory.

Because of the nonzero initial value of λ, other couplings will appear as a result
of the RG running. To order λ2, it is enough to consider quadratic, quartic and
six-point terms in the action. All these terms feed back into each other, so they
must be taken self-consistently. To compute the amplitude of the fluctuations at
horizon exit, however, it is enough to focus on the quadratic terms,

Sother → S2 [χ−, χ+] =
∫ T

0

dt1

∫ T

0

dt2

∫
ddk [v21(k; t1, t2) χ−(k, t1)χ+(−k, t2)

+ i v22(k; t1, t2) χ−(k, t1)χ−(−k, t2)] (15.88)

In principle, the induced quadratic terms will be oscillatory functions of Λt1,2.
However, by the time a mode reaches the horizon it becomes insensitive to high
frequencies. To focus on the slow dynamics, we may project out the mass, dissi-
pation and noise terms on which the oscillations are mounted.

To this end, we introduce two projectors. Given a function of two times
v(k; t1, t2), we define

Pv(k; t1, t2) = Pv(k) δ(t1 − t2) (15.89)

and, if v(k; t1, t2) = 0 for t2 > t1,

Qv(k; t1, t2) = Qv(k)
[
2
(

∂

∂t2
+ δ(t2) − δ(0)

)
δ(t1 − t2)

]
(15.90)

where

Pv(k) =
1
T

∫ T

0

dt1

∫ T

0

dt2 v(k; t1, t2) (15.91)

and

Qv(k) =
1
T

∫ T

0

dt1

∫ T

0

dt2 v(k; t1, t2) (t2 − t1) (15.92)

It is easy to verify that P2 = P, Q2 = Q, and that QP = PQ = 0. This proves
that the decomposition

v(k; t1, t2) = Pv(k; t1, t2) + Qv(k; t1, t2) + Δv(k; t1, t2) (15.93)

is unique. Defining

v0 = Pv21 (15.94)
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and

v1 = Qv21 (15.95)

we extract from v21(k; t1, t2) two quantities: −v0(k), which acts as a momentum-
dependent mass squared term, and −v1(k)/2, which is equivalent to a damping
constant.

If we further expand in powers of wavenumber k

v0(k) = v0(0) + k
∂v0(0)
∂k

+
k2

2!
∂2v0(0)
∂k2

+ . . . (15.96)

the linear term vanishes from symmetry, and the appearance of the quadratic
term is prevented by performing a field rescaling as part of the RG transformation
(thus the field acquires an anomalous dimension). The net effect is then to induce
a mass term

m2 = −v0(0) (15.97)

and a damping constant

κ = −v1(0)/2 (15.98)

The noise kernel is obtained in a similar way from the imaginary part of the
CTP action, v22.

After these considerations, the relevant CTP action for long-wavelength, slowly
varying configurations reduces to

SCTP [χ−, χ+]=
∫ T

0

dt

∫
ddk

[
χ̇−(k, t) χ̇+(−k, t)−χ−(k, t)

(
k2 + m2

)
χ+(−k, t)

− 2κ χ−(k, t)χ̇+(−k, t) +
i

2
ν χ−(k, t)χ−(−k, t)

]
(15.99)

The flow of the RG drives the initial interacting theory towards the free theory
(15.99), and allows us to find a relation between expectation values associated
with each theory. The relation is

G (k, t, μ(Λ, T )) = (Λ/k)α(k,T )
G
(
Λ, (Λ/k)β(k,T )

t, μ(k, T )
)

(15.100)

On the left-hand side, G is the two-field expectation value computed for a mode
k at time t, and μ(Λ, T ) stands for the set of parameters which define the action
at scale Λ. In our case the only parameter is the coupling constant λ. On the
right-hand side, G is the expectation value of the theory defined by the set of
parameters μ(k, T ), reached after modes between k and Λ have been eliminated.
The relevant parameters in μ(k, T ) are m2(k, T ), κ(k, T ), and ν(k, T ). Finally,
the exponents α and β depend on the trajectory followed by the action when it
goes from scale Λ to k.

Now we connect to the original problem for the power spectrum of an interact-
ing inflaton field. We must feed the RG group equations with an initial condition
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at scale Λ and then use the relation (15.100) to obtain the expectation value for
the mode k as it exits the horizon. The initial condition, in terms of the confor-
mal field, is given by the CTP action at scale Λ, where t has to be replaced by
the conformal time η. The mode k exits the horizon when

η = −k−1 (15.101)

If inflation starts at η∗, the time that the mode k spends inside the horizon is
given by

τk = −k−1 − η∗ (15.102)

For the physical field (subscript HE stands for horizon exit)

〈Φ(k, t)Φ(k, t)〉HE = k−2 G (k, τk, λ) (15.103)

From equation (15.100), identifying t and T with τk, we get

〈Φ(k, t)Φ(k, t)〉HE = k−2 (Λ/k)α(k,τk)

G
(
Λ, (Λ/k)β(k,τk)

τk,m
2(k, τk), κ(k, τk), ν(k, τk)

)
(15.104)

Here, the relevant elements of μ(k, τk) have been shown explicitly. The right-
hand side of equation (15.104) can be calculated using the G corresponding to
the action (15.99)

G
(
k, t,m2, κ, ν

)
=
(

2
k
− ν

κω2
0

)[
ω2

0

ω2
− κ2

ω2
cos(2ωt) +

κ

ω
sin(2ωt)

]
e−2κt +

ν

κω2
0

(15.105)

where ω2
0 = m2 + k2 and ω2 = ω2

0 − κ2 [ZanCal06b].
The expressions for m2, κ, and ν, and for the exponents α and β, as functions

of k and τk, are given in [ZanCal06b]. The main effects are introduced by the
mass term.

15.3 Reheating in the inflationary universe

We focus here on the so-called reheating regime when the universe began to
warm up due to particle creation from excitations of the vacuum fluctuations
of the inflaton field and other fields coupled to it. The back-reaction of created
particles results in the decay of the inflaton mean field and the turnover of the
universe from the inflationary state described by an approximate de Sitter solu-
tion to a radiation-dominated FLRW solution depicted in the so-called standard
model.

As stated before, the inflationary scenarios can generically be divided into
three eras: (1) entrance into a vacuum energy density dominated era, which can
be a metastable state of the Higgs field in a GUT era, where the universe begins
inflation; (2) a “slow roll” of the inflation field φ either from a relatively flat
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effective potential V (φ), or from a simple φ2 potential, as in the new or chaotic
inflationary cosmology; (3) exiting the inflationary era and entering into an era
when the inflaton field undergoes rapid oscillations, where the vacuum energy
density is transformed into radiation via particle creation and the universe begins
to reheat to a radiation-dominated state.

One can also divide the reheating era roughly into two or even three stages,
preheating, heating and thermalization. In the preheating stage the domi-
nant effect is due to parametric particle creation [KoLiSt97]. Brandenberger,
Traschen and Shtanov [ShTrBr95], Kofman, Linde and Starobinsky [KoLiSt94]
and Boyanovsky et al. [BVHS96] first pointed out the importance of parametric
resonance at work in this stage. We have explained this mechanism of a rather
general nature in Chapter 4, e.g. the narrow and broad resonances. The ther-
malization process is a difficult and complex one. We discussed some aspects
of it in Chapter 12, but the reader should consult representative papers (e.g.
[BoVeSa05, Lin90, Muk05, BaTsWa06]) for a better understanding of the spe-
cific context of thermalization in post-inflationary reheating.

As explained earlier, since the purpose of these latter chapters is to illustrate
how the methods in NEqQFT we have learned can be applied to treat relevant
problems in different contexts, the discussions here on reheating are not meant
to be of a review nature, where ideally all ideas and approaches ought to be rep-
resented. We refer the readers to reviews [BaTsWa06] for a more balanced overall
perspective of the physical processes involved. For our more restricted aim here,
we shall only describe two examples where we have some first-hand experience in
which the full use of the methods of nonequilibrium quantum field theory plays
an essential role. These examples concern the back-reaction of the created par-
ticles on the inflaton field during preheating, and the generation of primordial
magnetic fields as a side-effect of reheating.

15.3.1 Case study I: Back-reaction of Fermi fields

during preheating

The earliest analysis of the reheating stage assumed that the decay of the infla-
ton field could be described perturbatively, by computing the absorption parts
of suitable Feynman graphs. That led to an apparent contradiction between the
theories of reheating and structure formation, since the latter places very strin-
gent limits on the possible couplings of the inflaton. Moreover, the generation
of heavy particles was strongly suppressed, against the expectation that heavy
bosons generated during reheating could play a role in baryogenesis.

This seeming difficulty was overcome when it was realized that the decay of
the inflaton could proceed very efficiently through the parametric amplification
of matter fields, which is an essentially nonperturbative process. As a matter of
fact, in these new scenarios enough reheating is obtained even if the inflaton is
not coupled to any other field at all, other than the gravitational field.
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476 Nonequilibrium quantum processes in the early universe

While the basic mechanism of parametric amplification during reheating are
the broad and narrow resonances, they are also strongly affected by the expan-
sion of the universe [RamHu97b]. As we have seen in Chapter 4, the evolution
of the field under broad resonance may be described as a series of adiabatic
evolutions punctuated by nonadiabatic transitions. The growth factor from one
transition to the next depends on the accumulated phase of the field variable.
The dynamic geometrical background induces changes in this phase, because the
relevant parameters become time dependent, and thus affects the nature of reso-
nance. The general case becomes a sequence of different resonance regimes due to
the process of parametric resonance [KoLiSt97, GKLS97, ChNuMi05]. The non-
linearity of the inflaton oscillations also plays an important role. In the general
case, the oscillating inflaton field will have a full frequency spectrum, not limited
to a few narrow bands, and the amplification of the matter fields may be studied
by the methods of particle production from a time-dependent background, which
we have discussed in Chapters 4 and 8 [Bas98, ZMCB98, ZMCB99].

Eventually, all relevant matter field modes acquire high occupation numbers
and a classical treatment becomes possible [CalGra02]. This observation has been
key to progress in the analysis of the fully nonlinear regime, including inflaton
fragmentation and the so-called turbulent reheating stage [KhlTka96, KoLiSt97,
FelTka00, FeKoLi01, FelKof01, FGGKLT01, MicTka04, PFKP06]. We have dis-
cussed similar processes (albeit on nonexpanding spacetimes) in Chapter 12.

Nevertheless, the back-reaction of the created particles has a strong effect
on the inflaton even before the classical approximation becomes reliable. The
inflaton must be seen as an effectively open system – with all other matter fields
providing an environment – and its dynamics is subject to dissipation and noise
therefrom [Hu91, SinHu91, LomMaz96, DalMaz96, GreMul97].

It was earlier realized that a description of the inflaton dynamics based on the
1PI effective action (cf. Chapter 6) or similar constructs with a c-number inflaton
field as the sole argument is not satisfactory. For one, inflaton fluctuations play
a key role in the theory of structure formation and one should to follow their
evolution through the reheating stage. Most importantly, the equations of motion
as derived from the 1PI effective action are affected by secular terms and become
unreliable after several inflaton oscillations. We have found a similar problem in
the treatment of Bose–Einstein condensates in Chapter 13.

Although it is possible to extract useful information from these secular terms
through dynamical renormalization group analysis, it is best to improve the
model, by including the physical processes that cut off the growth of secular
terms. The most efficient way of accomplishing this is by going over to a 2PI
description (cf. Chapter 6), where the inflaton mean field and fluctuations are
treated self-consistently. The 2PI effective action implements the resummation
of secular terms, and also incorporates the basic processes that eventually could
lead to thermalization, as we have discussed in Chapter 12.
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As a concrete example of the application of 2PIEA techniques to the descrip-
tion of preheating, we shall analyze the evolution of the inflaton field cou-
pled to N Fermi fields. Our treatment here follows [RaStHu98]. While Fermi
fields are subject to Pauli blocking which, unlike the stimulated emission of
Bose fields, opposes particle creation (cf. Chapter 4), the fact that most matter
fields in the standard model are fermionic makes them a proper subject of study
[KoLiSt97].

We consider a model of a scalar inflaton field Φ (with λΦ4 self-coupling) inter-
acting with a spinor field via Yukawa coupling. The system consists of the inflaton
mean field and variance, and the environment consists of the spinor field(s) Ψ.
We construct the CTP-2PI-CGEA, and derive from it the effective dynamical
equations for the inflaton field, taking into account its effect on the environment,
and back-reaction therefrom in a self-consistent manner.

This problem is a good example of how to apply many of the concepts and
techniques presented in earlier chapers. The first step is to derive a set of coupled
nonperturbative equations for the inflaton mean field and variance at two loops.
Only beginning at two loops will both the inflaton mean field and the inflaton
variance couple to the spinor degrees of freedom. They are damped by back-
reaction from fermion particle production. (Calculations using the 1PI effective
action will miss this important effect.) The equations of motion are real and
causal, and the gap equation for the two-point function is dissipative due to
fermion particle production.

As we emphasized in Chapter 9, there is a subtle yet important distinction
between the system–environment division in nonequilibrium statistical mechan-
ics and the system–bath division assumed in thermal field theory. In the latter,
one assumes that the propagators for the bath degrees of freedom are fixed,
finite-temperature equilibrium Green functions, whereas in the case of the CTP-
CGEA, the environmental propagators are slaved (in the sense of [CalHu95a])
to the dynamics of the system degrees of freedom, and are not fixed a priori to
be equilibrium Green functions for all time. This distinction is important for dis-
cussions of fermion particle production during reheating, because it is only when
the inflaton mean field amplitude is small enough for the use of perturbation
theory, that the system–bath split implicit in thermal field theory can be used.
Otherwise, one must take into account the effect of the inflaton mean field on
the bath (spinor) propagators.

As we saw in Chapter 6, the use of the closed time path (CTP) formalism
allows formulation of the nonequilibrium dynamics of the inflaton from an appro-
priately defined initial quantum state. At the onset of the reheating period, the
inflaton field’s zero mode typically has a large expectation value, whereas all
other fields coupled to the inflaton, as well as inflaton modes with momenta
greater than the Hubble constant, are to a good approximation in a vacuum state
[Bra85].
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The model consists of a scalar field Φ (the inflaton field) which is Yukawa-
coupled to a spinor field Ψ, in a curved, dynamical, classical background space-
time. The total action

S[Φ, Ψ̄,Ψ, gμν ] = SG[gμν ] + SF[Φ, Ψ̄,Ψ, gμν ] (15.106)

consists of a part depicting classical gravity, SG[gμν ], and a part for the matter
fields,

SF[Φ, Ψ̄,Ψ, gμν ] = SΦ[Φ, gμν ] + SΨ[Ψ̄,Ψ, gμν ] + SY[Φ, Ψ̄,Ψ, gμν ] (15.107)

whose scalar (inflaton), spinor (fermion), and Yukawa interaction parts are given
by

SΦ[Φ, gμν ] = −1
2

∫
d 4x

√−g

[
Φ(∇2 + m2 + ξR)Φ +

λ

12
Φ4

]
(15.108)

SΨ[Ψ̄,Ψ, gμν ] =
∫

d 4x
√−g

[
i

2
(
Ψ̄γμ∇μΨ − (∇μΨ̄)γμΨ

)
− μΨ̄Ψ

]
(15.109)

SY[Φ, Ψ̄,Ψ, gμν ] = −f

∫
d 4x

√−gΦΨ̄Ψ (15.110)

For this theory to be renormalizable in semiclassical gravity, the bare gravity
action SG[gμν ] of equation (15.106) should have the form [DeW75, BirDav82]

SG[gμν ] =
1

16πG

∫
d 4x

√−g
[
R− 2Λc + cR2 + bRαβRαβ + aRαβγδRαβγδ

]
(15.111)

In equations (15.108)–(15.110), m is the scalar field “mass” (with dimensions of
inverse length); ξ is the dimensionless coupling to gravity; μ is the spinor field
“mass,” with dimensions of inverse length; ∇2 is the Laplace–Beltrami operator
in the curved background spacetime with metric tensor gμν ; ∇μ is the covariant
derivative compatible with the metric;

√−g is the square root of the absolute
value of the determinant of the metric; λ is the self-coupling of the inflaton
field, with dimensions of 1/

√
�; and f is the Yukawa coupling constant, which

has dimensions of 1/
√

�. In equation (15.111), G is Newton’s constant (with
dimensions of length divided by mass); R is the scalar curvature; Rμν is the Ricci
tensor; Rαβγδ is the Riemann tensor; a, b, and c are constants with dimensions
of length squared; and Λc is the cosmological constant, which has dimensions
of inverse length squared. The curved spacetime Dirac matrices γμ satisfy the
anticommutation relation

{γμ, γν}+ = 2gμν1sp, (15.112)

in terms of the contravariant metric tensor gμν . The symbol 1sp denotes the
identity element in the Dirac algebra.

In four spacetime dimensions the terms with constants a, b, and c are related
by a generalized Gauss–Bonnet theorem [Che62], so we have the freedom to
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choose a = 0. It is assumed that there is a definite separation of time-scales
between the stage of “preheating” (see, e.g. [RamHu97b]), and fermionic particle
production. In addition, the fermion field mass μ is assumed to be much lighter
than the inflaton field mass m, i.e. the renormalized parameters m and μ satisfy
m � μ.

We denote the quantum Heisenberg field operators of the scalar field Φ and
the spinor field Ψ by ΦH and ΨH, respectively, and the quantum state by |s〉. For
consistency with the truncation of the correlation hierarchy at second order,
we assume ΦH to have a Gaussian moment expansion in the position basis
[MazPaz89], in which case the relevant observables are the scalar mean field

φ̄(x) ≡ 〈s|ΦH(x)|s〉 (15.113)

and the mean-squared fluctuations, or variance, of the scalar field

〈s|Φ2
H(x)|s〉 − 〈s|ΦH(x)|s〉2 ≡ 〈s|ϕH

2(x)|s〉 (15.114)

where the last equality follows from the definition of the scalar fluctuation field

ϕH(x) ≡ ΦH(x) − φ̄(x) (15.115)

As discussed above, at the end of the preheating period, the inflaton variance
can be as large as the square of the amplitude of mean-field oscillations. On the
basis of our assumption of separation of time-scales and the conditions which
prevail at the onset of reheating, the initial quantum state |s〉 is assumed to be
an appropriately defined vacuum state for the spinor field.

The construction of the CTP-2PI-CGEA for the ΦΨ̄Ψ theory in a general,
curved, background spacetime closely parallels the construction of the CTP-2PI
effective action for the O(N) model discussed in Chapter 6 [LomMaz98]. Within
the spacetime manifold (whose dynamics must be determined self-consistently
through the semiclassical gravitational field equation), let M be defined as the
past domain of dependence of a Cauchy hypersurface Σ�, where Σ� has been
chosen to be far to the future of any dynamics we wish to study. We now define
a “CTP” manifold M as the union of the two copies of M corresponding to the
{+,−} time branches, with their last Cauchy hypersurfaces Σ� identified. As in
Chapter 6, we define an action functional on the closed time path manifold as
the difference of the actions evaluated on each branch. For a function Φ on M,
the restrictions of Φ to the + and − time branches are subject to the boundary
condition (Φ+)|Σ


= (Φ−)|Σ

at the hypersurface Σ�.

Following the general procedure in Chapter 6, we obtain the CTP-2PI-CGEA

Γ[φ̄, G, gμν ] = SΦ[φ̄] − i�

2
ln detGab − i�ln detFab + Γ2[φ̄, G]

+
i�

2

∫
M

d 4x
√−g

∫
M

d 4x′√−g′Aab(x′, x)Gab(x, x′)

(15.116)
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where Aab is the second functional derivative of the scalar part of the classical
action SΦ, evaluated at φ̄,

iAab(x, x′) =
1√−g

(
δ2SΦ

δΦa(x)δΦb(x′)
[φ̄]
)

1√−g′

= −
[
cab(∇2

x + m2 + ξR(x)) + cabcd
λ

2
φ̄c(x)φ̄d(x)

]
δ(x− x′)√−g′

(15.117)

The symbol Fab denotes the one-loop CTP spinor propagator, which is defined
by

Fab(x, x′) ≡ B−1
ab (x, x′) (15.118)

where we are suppressing spinor indices, and the inverse spinor propagator Bab

is defined by

iBab(x, x′) =
1√−g

[
δ2(SΨ[Ψ̄,Ψ] + SY[Ψ̄,Ψ; φ̄])

δΨa(x)δΨ̄b(x′)

]
1√−g′

=
(
cab(iγμ∇′

μ − μ) − cabcfφ̄c(x′)
) δ(x′ − x)√−g

1sp (15.119)

It is clear from equation (15.119) that the use of the one-loop spinor propa-
gators in the construction of the CTP-2PI-CGEA represents a nonperturba-
tive resummation in the Yukawa coupling constant, which (as discussed above)
goes beyond the standard time-dependent perturbation theory. The boundary
conditions which define the inverses of equations (15.117) and (15.119) are the
boundary conditions at the initial data surface in the functional integral which in
turn define the initial quantum state |s〉. The one-loop spinor propagators Fab,
introduced in Chapter 10, are related to the expectation values of the spinor
Heisenberg field operators in the presence of the c-number background field φ̄.

Only diagrams which are two-particle irreducible with respect to cuts of scalar
lines contribute to Γ2. The distinction between the CTP-2PI, coarse-grained
effective action which arises here, and the fully two-particle irreducible effective
action (2PI with respect to scalar and spinor cuts) is due to the fact that we
only Legendre-transformed sources coupled to Φ; i.e. the spinor field is treated
as the environment.

We evaluate the functional Γ2[φ̄, G, gμν ] in a loop expansion, starting with
the two-loop term, Γ(2). The λΦ4 self-interaction leads to two terms in the two-
loop part of the effective action. They are the “setting sun” diagram, which is
O(λ2), and the “double bubble,” which is O(λ), respectively (cf. Chapter 6). The
Yukawa interaction leads to only one diagram in Γ(2)

if2

2
caa

′a′′
cbb

′b′′
∫

d 4x
√−g

∫
d 4x′√−g′Gab(x, x′)trsp [Fa′b′(x, x′)Fb′′a′′(x′, x)]

(15.120)
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where the trace is understood to be over the spinor indices which are not shown,
and the three-index symbol cabc is defined as in Chapter 6.

We treat the λ self-interaction using the time-dependent Hartree–Fock approx-
imation [CoJaTo74], which is equivalent to retaining the O(λ) (double bubble)
graph and dropping the O(λ2) (setting sun) graph. We assume for the present
study that the coupling λ is sufficiently small that the O(λ2) diagram is unimpor-
tant on the time-scales of interest in the fermion production regime of the inflaton
dynamics. The mean-field and gap equations including both the O(λ) and the
O(λ2) diagrams have been derived in a general curved spacetime in [RamHu97a].

The (bare) semiclassical field equations for the two-point function, mean field,
and metric can be obtained from the CTP-2PI-CGEA by functional differentia-
tion with respect to Gab, φ̄a, and gμν , followed by identifications of φ̄ and gμν on
the two time branches [RamHu97b]. The field equation of semiclassical gravity
(with bare parameters) is

Gμν + Λcgμν + c (1)Hμν + b (2)Hμν = 8πG〈Tμν〉 (15.121)

where (1,2)Hμν are tensors constructed from the covariant derivatives of the
metric and connection forms (e.g. defined in [BirDav82]). The (unrenormalized)
quantum energy–momentum tensor is defined by

〈Tμν〉 =
2√−g

δΓ[φ̄, G, gμν ]
δgμν+

∣∣∣∣
φ̄+=φ̄−=φ̄ gμν

+ =gμν
− =gμν

(15.122)

The energy–momentum tensor 〈Tμν〉 is divergent in four spacetime dimensions,
and must be regularized via a covariant procedure [BirDav82, RamHu97b].

Making the two-loop approximation to the CTP-2PI-CGEA, where we take
Γ2 � �

2Γ(2), and dropping the O(λ2) diagram from Γ2, the mean-field equation
becomes (

∇2 + m2 + ξR(x) +
λ

6
φ̄2(x) +

λ�

2
G(x, x)

)
φ̄

+ �fTrsp[Fab(x, x)] − �
2g3Σ(x) = 0 (15.123)

where G(x, x) is the coincidence limit of Gab(x, x′), and Σ(y) is a (self-energy)
function defined by

Σ(y) = −2
∫

d4x
√−g

∫
d4x′√−g′ Re Trsp

[(
θ(x, x′)G(1)(x′, x)F (1)(x, x′)

− GR(x, x′)†FR(x, x′)
)
FR(y, x′)†FR(y, x)

]
(15.124)

where an index 1 refers to a Hadamard propagator (cf. Chapters 6 and 10), and
a subindex R to a retarded propagator. It is clear that the integrand vanishes
whenever x or x′ is to the future of y. The equation for Gab is given by

(G−1)ba(x, x′) = Aba(x, x′) +
iλ�

4
cbaG1(x, x)

δ(x− x′)√−g′

+ �f2caa
′a′′

cbb
′b′′Trsp [Fa′b′(x, x′)Fb′′a′′(x′, x)] (15.125)
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Multiplying equation (15.125) through by Gab, performing a spacetime integra-
tion, and taking the 11 component, we obtain(

∇2 + m2 + ξR +
λ

2
φ̄2 +

λ�

4
G1(x, x)

)
GF (x, x′)

+�f2

∫
dx′′√−g′′K(x, x′′)GF (x′′, x′) = −i

δ(x− x′)√−g′

(15.126)

in terms of a kernel K(x, x′′) defined by

K(x, x′) = −iTrsp

[
FF (x, x′)2 − F+(x, x′)2

]
= Re Trsp [FR(x, x′)F1(x′, x)]

(15.127)

which shows that equation (15.126) is manifestly real and causal. The kernel
K(x, x′) is dissipative, and it reflects the back-reaction from fermionic particle
production induced by the time-dependence of the inflaton variance. Equation
(15.126) is therefore damped for modes above threshold, and this damping is
not accounted for in the 1PI treatments of inflaton dynamics (where only the
inflaton mean field is dynamical). As stressed above, the dissipative dynamics of
the inflaton two-point function can be important when the inflaton variance is
on the order of the square of the inflaton mean-field amplitude; such conditions
may exist at the end of preheating.

The set of evolution equations (15.123) for φ̄ and (15.126) for G is formally
complete to two loops. Dissipation arises due to the coarse graining of the spinor
degrees of freedom. These dynamical equations are valid in a general background
spacetime and are useful for reheating studies and more general purposes.

15.3.2 Case study II: Primordial magnetic field generation

Given the difficulties in constructing a suitable model of the reheating stage,
to further elucidate its physics it helps to investigate other physical processes
coexisting with the reheating of the universe which could have produced an
observable imprint either on the CMB or today’s large-scale structures.

The two processes most studied are the generation of spin-two and spin-one
fields. The former concerns the possible processing of primordial gravitational
fluctuations on super-horizon scales, while the latter addresses the feasibility
of generating primordial magnetic fields during reheating. Gravitational fluc-
tuations ought to have influenced the spectrum and polarization of the CMB,
while a primordial magnetic field could serve as a seed for the magnetic fields
observed today in cosmological structures, and should also have affected the
CMB [Dod03, Lon98].

Fields with a strength of about a millionth of the Earth’s magnetic field are
observed both in galaxies and clusters of galaxies. There are at least three good
reasons to believe these fields have a cosmological origin. First, the fact that
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they extend over huge scales. Second, fields are also observed at high red-shift,
when dynamo mechanisms have less time to operate. This strongly suggests the
field was “already there,” though at the time of writing it is unclear exactly how
fast dynamo amplification can be [BraSub05]. Third, that in any case “local”
mechanisms such as a “galactic dynamo” could amplify an existing seed field,
but not create a field from nothing [GraRub01].

The same reasons of scale make it tempting to place the origin of the field in the
inflationary era (for primordial but not inflationary mechanisms see [BoVeSi03b,
BoVeSi03a, Vac01, VilLea82]). However a large enough magnetic field is not
expected to be generated during inflation because of the conformal invariance of
the Maxwell field.5

We give a semiquantitative discussion here (adopting natural units (� = c =
kB = 1)). As in Chapter 7, the field is described by a vector potential Aμ; we
rescale the field by the gauge coupling constant, so that the curved space free
Lagrangian density reads

L =
−√−g

4
FμνFμν (15.128)

with the abelian field tensor equation (7.5) Fμν = ∂μAν − ∂νAμ. If we assume a
conformally flat FLRW metric written in conformal coordinates (η, �x) (cf. Section
4.6.2), then in four spacetime dimensions the conformal factor drops out of the
free action.

The inhomogeneous Maxwell equations for a field driven by a current

Jμ =
1√−g

δSm

δAμ
(15.129)

are given by

F νμ
;ν = −Jμ (15.130)

During the radiation-dominated era, the current is induced by the Lorentz force
acting on the charged plasma, so we have a constitutive relation

Jμ = σFμνuν (15.131)

where

uμ = aη0μ (15.132)

is the 4-velocity of the plasma in conformal coordinates. The conductivity is
σ ∝ T (see below) [GioSha00], so the combination σ̄ = aσ is independent of the
scale factor. Since we already noted that the free action is independent of the

5 For the sake of discussion, we gloss over the fact that properly speaking we should not be
concerned with a Maxwell field, but rather with a spin-one field which becomes
electromagnetic after electroweak symmetry breaking.
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scale factor in four spacetime dimensions, the result is that a drops from the
Maxwell equations, which read

Ai,i = 0 (15.133)

A0 = 0 and

Aj,00 + σ̄Aj,0 −Aj,ii = 0 (15.134)

For each Fourier mode, the corresponding amplitude behaves as a damped har-
monic oscillator. If the comoving wavenumber k < σ̄/2, the mode is overdamped.
There is a fast decaying component

ffast = e−σ̄η (15.135)

and a slow decaying component

fslow = e−k2η/σ̄ (15.136)

For long enough wavelengths we may approximate fslow = 1. The boundary con-
ditions are that at the beginning of the radiation-dominated era there are no
fields, so Aj (0) = 0. From the constitutive relation we get

Aj,0 (0) = −a2 (0)
σ̄

Jj (0) (15.137)

and so once ffast decays the field settles down to a time-independent value

Aj (∞) = −Jj (0)
σ2 (0)

(15.138)

Associated with the free action there is an energy–momentum tensor (15.122)

Tμν = FλμF
λ
ν − 1

4
gμνFλσF

λσ (15.139)

and an energy density

ρ = Tμνu
μuν (15.140)

In the asymptotic regime, ρ scales as a−4. Therefore the ratio r between the
energy density of the coherent Maxwell field and the total energy density of
radiation is constant, provided the cosmic expansion is adiabatic. Disregarding
the entropy generated during particle annihilations, we may say r is constant
up to our times. A value of r = 10−8 is strong enough to originate the galac-
tic fields without further dynamo amplification [TurWid88]. The lowest value
of r that could seed the galactic field through dynamo amplification is hard to
estimate, as it depends on the details both of the galaxy formation process and
of the cosmological model (i.e. the amount of dark energy or the space curva-
ture) [DaLiTo99]. A primordial field should also leave an imprint on the cosmic
microwave radiation, but present data only provide upper bounds [YIKM06].

To put these numbers in perspective, we may ask which value of r could
be expected for fields coherent over a physical scale Lphys, given thermal
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equilibrium conditions. Since in the Rayleigh–Jeans part of the spectrum we
may assume equipartition, the energy density associated with modes k < L−1

phys

is TtodayL
−3
phys, and so r ≈ (LphysTtoday)

−3. Using Ttoday = 10−4eV, we get
LphysTtoday ≈ 1024 (Lphys/1 Mly). For a galaxy cluster-size scale, r is way below
the interesting range. In this section, we shall use a subindex “today” to indicate
that a quantity is evaluated at the present time (we assume atoday = 1). Simi-
larly, “reh” will denote the end of reheating, and “equiv” the time of equivalence
between matter and radiation.

More generally, r remains constant when both the coherent magnetic field
and the thermal cosmic background evolve in a conformally invariant way. So to
increase the value of r, we must break conformal invariance. In their seminal work
on magnetic field generation [TurWid88], Turner and Widrow have considered a
number of possible conformal symmetry-breaking mechanisms.

The hardest way to break the symmetry is to add to the action a direct cou-
pling of the Maxwell field to curvature, such as, for example, RμνAμAν . How-
ever, this term breaks gauge along with conformal symmetry, and it is hard to
generate in a natural way. Gauge symmetric terms such as f (R)FμνFμν are
more appealing, partly because they arise naturally from radiative corrections
in a curved spacetime. Nevertheless, Mazzitelli and Spedalieri [MazSpe95] have
observed that, after proper resummation of the leading quantum corrections, the
dependence on curvature is at most logarithmic, and so it is hard to achieve effi-
cient magnetic field generation. A similar conclusion, in a wider set of problems,
has been reached recently by Weinberg [Wei05a, Wei06].

Over and above the details of each mechanism, we must consider that the
quantity r generated during inflation may well be diluted at reheating. During
reheating the density of radiation increases by a factor of at least e4N , where N

is the number of e-foldings. Unless the coherent field is also amplified, r decreases
by the same amount.

When we consider the generation of magnetic fields during reheating, a new
possibility opens up. The abrupt changes in metric during this stage may result
in abundant particle creation of charged species. This would generate stochas-
tic currents (recall Chapter 8), which eventually decay onto the Maxwell field
[CaKaMa98].

Before we evaluate whether such a mechanism is feasible, let us observe the
following. Because the inflaton is a gauge singlet, we do not expect it will decay
directly into charged species. Therefore, the model assumes these charged par-
ticles are created from the gravitational field, which in turn responds to the
changes in the equation of state of the inflaton [PeeVil99].

Spin 1/2 particles such as electrons would be conformally invariant at the high
energies prevalent during inflation, so they are not created in large numbers. We
must seek a fundamental charged scalar field, of which there is none in the
standard model. There are suitable candidates in supersymmetric extensions of
the standard model, however [KCMW00].
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An alternative which appeals only to known and proven physics is to replace
the charged field by the gravitational field itself. Inflation generates tensor gravi-
tational fluctuations, and therefore an inflationary universe is not strictly speak-
ing conformally flat. The evolution of these gravitational fluctuations may result
in amplification of the Maxwell field [BaTsWa06, BPTV01, TsaKan05]. How-
ever, due to the weakness of the gravitational couplings, it is hard to achieve the
desired efficiency.

In the following we shall give an estimate of the field strength to be expected
from particle creation of a charged, minimally coupled scalar field φ by the end
of the reheating period. We decompose the field into its real and imaginary parts
Φ = (φ1 + iφ2) /

√
2. The current is

Jμ = Jμ
1 + Jμ

2 (15.141)

where

J1μ = e (φ1∂μφ2 − φ2∂μφ1) (15.142)

J2μ = −e2Aμ

(
φ2

1 + φ2
2

)
(15.143)

In a linearized analysis we set J2 = 0. Each field is decomposed into modes

φi =
∫

d3k

(2π)3
eikx φik (15.144)

where

φik = φkaik + φ∗
ka

+
i−k (15.145)

leading to a mode decomposition of the current. The spatial components become

J1 = ie

∫
d3k

(2π)3
eikx

∫
d3q

(2π)3
[2q − k]φ1k−qφ2q (15.146)

while the charge density is

J10 = −ie

∫
d3k

(2π)3
eikx

∫
d3q

(2π)3
[ω2q − ω1k−q]φ1k−qφ2q (15.147)

where

ωik =
i

φik

dφik

dt
(15.148)

We are interested in the current averaged over a comoving scale L

J1L = ie

∫
d3k

(2π)3
WL [k]

∫
d3q

(2π)3
[2q − k]φ1k−qφ2q (15.149)

where WL is a window function. If the initial state of the field is the vacuum, it
is clear that 〈J1L〉 = 0, but

〈
J2

1L

〉
= e2

∫
d3k

(2π)3
WL [k]2

∫
d3q

(2π)3
[2q − k]2 |φq|2 |φk−q|2 (15.150)
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To see the meaning of this equation, let us consider (and reject) the case of a
conformally coupled field. For conformal coupling, we simply have (cf. Chapter 4)

|φq|2 =
1

2a2q
(15.151)

It would seem that
〈
J2

1L

〉
is dominated by very short modes. However, since

short modes are supposed to thermalize during reheating, they cannot possibly
be described within a linear theory. There must be a comoving cut-off Λ which
marks the limit of the linearized approximation. Assuming however Λ � L−1,
we see that the dominant contribution to

〈
J2

1L

〉
comes from modes where q ≈

Λ � k ≈ L−1. The integrals decouple, and we get

〈
J2

1L

〉
≈ e2Λ3

a4L3
(15.152)

Under the same approximations, the mean square value of the charge density
vanishes.

To transform this into an estimate for the Maxwell field, we need the value
of σ at the end of reheating. The usual estimate for the conductivity is σ ≈
e2nτ/m, where n and m are the density and rest mass of the dominant charge
carriers, and τ a typical mean free time. If the dominant carriers are just electrons
and positrons, then prior to annihilation we have n ≈ T 3. If we assume that
reheating ends as soon as thermal equilibrium is reached, then at that time we
may approximate τ by the effective age of the universe τ ≡ H−1 = mPT

−2
reh .

To conclude, we evaluate the asymptotic vector potential from (15.138) and
the corresponding energy density from (15.140), where we use the result that a
space derivative is ∂ ≈ L−1

ρ ≈
〈
J2

1L

〉
reh

a4L2σ4
reh

≈ 1
a4

[
m4Λ3H4

reh

a4
rehL

5e6T 12
reh

]
(15.153)

Combining these estimates we get

r ≈
(

m

mP e3/2

)4(
Treh

mP

)3( Λ
arehHreh

)3( 1
LTtoday

)5

(15.154)

which is far worse than our previous estimate based on equilibrium conditions.
It is clear from this analysis that to obtain a larger value of r we must amplify

the scalar field fluctuations far above the conformal value. During the radiation-
dominated era the scalar curvature vanishes and any scalar field is conformally
invariant as long as it is effectively massless. But during inflation the behavior
is totally different, because while the conformal fields evolve as a−1 throughout,
the minimal fields freeze upon horizon exit and remain constant until the scalar
curvature is suppressed enough during reheating. To see this, let us return to the
mode equation (15.8). We write the mode functions as

φk =
fk
a3/2

(15.155)
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Using the Friedmann equation H2 = ρ/m2
P , the continuity equation ρ̇ =

−3H (ρ + p) and the equation of state p = γρ, we transform the mode equation
into (4.22)

d2fk
dt2

+ Ω2
k(t)fk(t) = 0 (15.156)

where

Ω2
k(t) =

k2

a2
+ m2 (t) +

9
4
H2γ (15.157)

and we allow for the possibility of a time-dependent mass, for example, due to
thermal corrections (cf. Chapter 10). During inflation γ = −1. Ω2

k starts positive
and becomes negative upon horizon exit. Outside of the horizon there is a growing
mode which remains frozen because the growth of the WKB solution just matches
the a−3/2 suppression, and a decaying mode which soon becomes irrelevant. At
some point during reheating γ becomes positive and Ω2

k changes sign again;
we say the mode “thaws.” Neglecting the decaying solution and assuming a long
enough wavelength, we have immediately after thawing the q-number amplitudes

φik = AkF (t)
[
aik + a+

i−k

]
(15.158)

where |Ak| is of the order of magnitude of the amplitude at horizon exit. Observe
that the time-dependent part F (t) is essentially mode-independent: the field is
performing “Sakharov” oscillations [Sak66]. This implies the vanishing of the
induced charge density.

As a first approximation, we may assume that all modes thaw at the same time
at the end of reheating. As compared with the conformal case, the minimally cou-
pled mode amplitudes are amplified by a factor areh/aexit = arehHreh/k, where
we assume that reheating is fast enough that the Hubble rate remains approxi-
mately time-independent throughout.

Our estimate for the current at reheating now reads〈
J2

1L

〉
reh

≈ e2H4
reh

4

∫
d3k

(2π)3
WL [k]2

∫
d3q

(2π)3
[2q − k]2

1
q3

1
(|k − q|)3

(15.159)

The q integral is dominated by peaks at q = 0 and q = k. They both contribute
the same, as they are transformed into each other by the change of variables
q → k − q. So it is enough to evaluate the contribution from q � k〈

J2
1L

〉
reh

≈ e2H4
reh

4

∫
d3k

(2π)3
WL [k]2

k

∫
dq

q
(15.160)

We evaluate the logarithmic integral as ln [qmax/qmin], where the q’s are the
longest and shortest modes to leave the horizon during inflation. Therefore∫

dq

q
≈ N (15.161)

where N is the number of e-foldings. We obtain〈
J2

1L

〉
reh

≈ e2NH4
reh

4L2
(15.162)
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The improved estimate for r is

r ≈ N

(
m

mP e3/2

)4(
Treh

mP

)4( 1
LTtoday

)4

(15.163)

which is still a very small number.
Although prospects are understandably bleak, our argument has a loophole

[Fin00]. This is the neglect of the “London” current (15.143). Because of this
term, the heavily amplified long-wavelength modes of the scalar field act as
a Landau–Ginzburg order parameter in a superconductor [Tin96]. As in the
Meissner effect, the photon acquires a (here time-dependent) mass. Kandus et al.
have shown that an exponential growth of the Maxwell field during reheating as a
consequence of parametric amplification is possible [CalKan02]. However, in this
case the actual growth factor is sensitive to the details of the reheating scenario,
and so it is not possible to obtain generally valid estimates such as the above.

At the end of this discussion, we reach a situation remarkably similar to our
description of early thermalization in RHICs in Chapter 14. Both the genera-
tion of a primordial magnetic field during reheating and ultrafast equilibration
after the collision are demonstrably beyond the possibilities of weakly interact-
ing fields, but could be allowed because of exponential instabilities in strongly
nonlinear scenarios. In either problem, we do not have answers yet, but it is
clear that finding those answers will require the full application of the meth-
ods of nonequilibrium field theory, whose basic principles we have attempted to
present in this book.
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