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Abstract

This article proposes a framework of linked software agents that continuously interact with an underlying knowledge
graph to automatically assess the impacts of potential flooding events. It builds on the idea of connected digital twins
based on the World Avatar dynamic knowledge graph to create a semantically rich asset of data, knowledge, and
computational capabilities accessible to humans, applications, and artificial intelligence. We develop three new
ontologies to describe and link environmental measurements and their respective reporting stations, flood events, and
their potential impact on population and built infrastructure as well as the built environment of a city itself. These
coupled ontologies are deployed to dynamically instantiate near real-time data frommultiple fragmented sources into
the World Avatar. Sequences of autonomous agents connected via the derived information framework automatically
assess consequences of newly instantiated data, such as newly raised flood warnings, and cascade respective updates
through the graph to ensure up-to-date insights into the number of people and building stock value at risk. Although
we showcase the strength of this technology in the context of flooding, our findings suggest that this system-of-
systems approach is a promising solution to build holistic digital twins for various other contexts and use cases to
support truly interoperable and smart cities.

Impact Statement

Given an ever-growing abundance of smart city data, streamlined and computer-aided data handling is essential
for evidence-based and timely decision-making. This holds even more true during crisis situations and disaster
management to ensure the safety and well-being of individuals and protect city infrastructure. We propose an
ecosystem of connected autonomous software tools that continuously interact with an underlying knowledge
graph to combine various flood-related information and automate the impact assessment for potential flood
hazards. Our system dynamically ingests and connects real-time data from multiple previously isolated sources
and automatically determines the number of people and buildings as well as the total building stock value at risk
of flooding.
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1. Introduction

Cities have an incomparable amount of urban data that can boost innovation and provide decision support
from strategic planning to day-to-day operations. Despite the abundance of data, it often remains
fragmented in silos. Numerous smart city applications have emerged to leverage those ever-increasing
amounts of data; however, most of these solutions either focus on individual domains or provide tailored
platform solutions to combine datasets for specific use cases using proprietary data models. On the
contrary, FAIR data principles (Wilkinson et al., 2016) promote open findability, accessibility, interoper-
ability, and reusability of available data to maximize the value of individual pieces of information, foster
collaboration, and promote more holistic perspectives. Connected and enriched data can be seen as a
strategic asset, providing valuable insights, allowing timely and evidence-based decision-making, and
enabling myriad automation opportunities. Real interoperability, however, requires not just merging data
from different domains, sources, and temporal dimensions, but creating and instantiating the underlying
knowledge models, allowing for comprehensive assessments of cross-domain effects.

Ontologies play a crucial role in enabling intelligent systems to comprehend both the conceptual and
causal aspects of real-world phenomena (Sermet and Demir, 2019), thereby facilitating effective know-
ledge inference from ever-increasing sensor data in the environmental and urban domain. The use of
semantics in smart city modeling enables the discovery and analysis of data based on spatial, temporal,
and thematic context (Wang et al., 2020) and enhances both the quantity and quality of information
available from large-scale sensor networks. While numerous ontologies exist to help disambiguate
heterogeneous urban information (Wang et al., 2020; Mughal et al., 2021), most of the available
ontologies focus on conceptualizing static domains instead of representing actual data. Depending on
their scope, they provide more or less detailed representations of certain smart city aspects, but are hardly
linked or utilized to instantiate actual live data feeds; however, exactly this dynamism would be required
to create truly interoperable smart city ecosystems which remain current in time.

Floods are among the most devastating natural disasters, causing extensive damage to people,
properties, and the environment (Pour et al., 2020; Mughal et al., 2021). Managing flood risk effectively
requires an accurate and timely assessment of potential impacts on human lives, infrastructure, and the
economy (Scheuer et al., 2013). Hence, identifying and extracting relevant pieces of information as well
as making accurate inferences from various data sources rapidly is critical. Although several publicly
available flood assessment tools support some consolidated insights, all of them remain limited to
individual domains. For example, a live flood map for the UK (Met Office and Environment Agency,
2022) shows current flood warnings and alerts, together with current readings for river, sea, groundwater,
and rainfall levels, and the expected flood risk over the next 5 days; however, no indication of potential
impacts in terms of people and built infrastructure at risk is provided. Nevertheless, such cross-domain
awareness has been shown to have a positive impact throughout all phases of the disaster management
cycle (Oktari et al., 2020), especially as floods are very complex phenomena involving a large number of
stakeholders and domain experts to collaborate seamlessly (Wrachien et al., 2012). Ontology-driven
systems have been proposed to create a universal understanding across the different stakeholders to enable
semantic interoperability, flexibility, and reasoning support (Sinha and Dutta, 2020).

Knowledge graph technology can be used to instantiate ontologies and connect data about various
aspects of urban environments into a network of entities and their relationships. The use of knowledge
graphs has gained traction as a vital technology for offering machine-interpretable, semantic information
about real-world entities on a large scale. For example, the recently developed geographic knowledge
graph WorldKG (Dsouza et al., 2021) offers an ontological instantiation of geographic entities in the
OpenStreetMap dataset to promote the use of semantic geographic knowledge across various real-world
applications, such as event-centric and geospatial question answering as well as geographic information
retrieval. Although this work significantly enhances previous efforts, such as LinkedGeoData (Stadler
et al., 2012) or YAGO2geo (Karalis et al., 2019), which solely focused on instantiating entities instead of
also providing respective class definitions, the proposed ontology seems too light-weight to represent
comprehensive connections between related entities. Johnson et al. (2022) have presented a scalable
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workflow for merging multiple geospatial datasets to create a comprehensive knowledge graph of urban
infrastructure data. Furthermore, machine learning models are applied to the graph to infer and populate
missing data in order to ensure the availability of important information for emergency responders during
flood events. Buildings and demographics at risk of flooding can be queried; however, no dynamic data
assimilation is supported and a new graph needs to be created on demand for each new analysis, lacking
continuous insights into real-world situations.

The World Avatar dynamic knowledge graph is designed as an extensible semantic system to foster
interoperability and effectively address cross-domain questions (Akroyd et al., 2021). It combines
ontologies (i.e., data definitions) with actual data instances (i.e., from [open] APIs), and computational
services operating on the instantiated data (i.e., so-called agents). Autonomous computational agents
accomplish tasks such as updating the knowledge graph, simulating systems, or transmitting responses to
the physical world. Based on Semantic Web technologies, the World Avatar intends to overcome the
limitations of previous platform approaches, such as cumbersome data ingestion pipelines or potential
lock-in effects. The effectiveness of this approach has been demonstrated in its ability to create
ecosystems of connected digital twins that provide real-time information about the world’s state,
intelligently control complex systems, or support system design through elaborate what-if analyses.
The World Avatar constitutes a versatile system to conduct geospatial (Akroyd et al., 2022), temporal
(Savage et al., 2022), as well as cross-domain scenario analyses (Eibeck et al., 2020). The derived
information framework (Bai et al., 2024) can be deployed to track data provenance within the knowledge
graph and ensures that newly instantiated data automatically traverses through the graph, including
changes to all dependent information when required.

The purpose of this article is to address the identified lack of dynamism and cross-domain interoper-
ability when assessing potential flooding events. Three coupled ontologies are developed as foundational
knowledge models to dynamically assimilate and connect real-world data feeds related to flooding. A
sequence of connected autonomous software agents continuously monitors the knowledge graph to
re-evaluate the likely impacts of imminent floods with regards to people and buildings at risk whenever
relevant inputs become updated. The deployment of a knowledge graph native solution to track data
provenance and dependencies enables the automatic cascading of information to maintain an up-to-date
worldview evolving in time. The system is hosted in the cloud using a containerized implementation
approach to ensure collaborative deployment together with a unified visualization interface.

The structure of this article is as follows: Section 2 summarizes previous technical works and provides
a review of relevant ontologies as well as used data sources; Section 3 introduces the target use case and
details both the ontology and agent development to create a dynamic knowledge graph-based digital twin
to address it; Section 4 describes the deployment of the developed system and highlights its results; and
Section 5 concludes the work.

2. Background

The Semantic Web (Berners-Lee et al., 2001) is an extension of the World Wide Web with the aim of
making web content machine-readable and interoperable by adding structured metadata. It involves the
use of ontologies and the Resource Description Framework (RDF) (Klyne and Carroll, 2004) as standard
for representing such metadata. The Semantic Web aims to enable a “Web of Data” that can be easily
understood and processed by machines, thus facilitating the development of more sophisticated and
intelligent web-based and automated applications.

2.1. Ontologies and knowledge graphs

An ontology provides a conceptual description of a certain domain of interest. It describes relevant
concepts (also known as classes), relationships between these concepts (referred to as properties), and
restrictions and rules describing these relations explicitly. Properties are relationships whose domain and
range are defined in terms of concepts, where object properties connect an instance of one class (the
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domain of the property) to another instance of a class (the range of the property) and data properties link
an instance of a class to an actual data element, a so-called Literal. A so-called Terminological Component
(TBox) defines the classes and properties that can exist within the ontology, while the Assertion
Component (ABox) contains specific instances of those classes as well as their object and data properties.
Ontologies can be represented in various forms, such as formal representations using Description Logic
(Baader et al., 2007) or the widely accepted Web Ontology Language (OWL) (W3C, 2012), which is
currently considered the standard by the World Wide Web Consortium (W3C) (Allemang and Hendler,
2011).

Ontologies can be designed in a modular fashion: upper ontologies (also known as top-level
ontologies) capture general knowledge about a certain field by providing basic notions and concepts,
and domain ontologies refine these notions to include more detailed knowledge valid for a particular
application or domain (Sinha and Dutta, 2020). Users of a common ontology commit themselves to ask
queries and make assertions in a way that is consistent, but not complete, with respect to the knowledge
model specified by the ontology (i.e., supporting the open world assumption). Hence, ontologies ease
knowledge sharing and reuse without sharing actual (and potentially proprietary) data and enable
knowledge to be machine-processable for better information retrieval (Sinha and Dutta, 2020). Strict
formalization allows for additional automation as well as knowledge discovery, reasoning, or the
inference of new and implicit information. Reasoners such as HermiT (Data and Knowledge Group,
2019) can be used to check the consistency of an ontology and to deduce indirect subclass relationships.
Ontology-Based Data Access (OBDA) (Botoeva et al., 2016) using tools like Ontop (Xiao et al., 2020)
enables access to data from a variety of structured sources (e.g., relational databases) using ontologies,
allowing for more efficient and effective data integration and management.

Representing data using ontologies results in the formation of directed graphs, so-called knowledge
graphs (KGs), where nodes define concepts, instances, or data, and edges denote their relationships
(i.e., properties). KGs provide an extensible data structure that is well suited to represent arbitrarily
structured data and which can be hosted decentralized (i.e., distributed over the internet) using Semantic
Web technology in the form of Linked Data (Berners-Lee, 2006; Bizer et al., 2011). As KG resources can
be uniquely identified via Internationalized Resource Identifiers (IRIs), Semantic Web data can unam-
biguously be linked to one another across the web to allow for the identification of related information as
well as the creation of a collaborative knowledge graph, where every concept and relation can be
referenced back to its original definition. Linked Data fosters FAIR data principles (Wilkinson et al.,
2016), improves machine readability, enhances clarity by identifying and dissolving inconsistencies,
provides additional context information, and increases discoverability of information across isolated data
sources.

Knowledge graphs can be stored in graph databases, also known as triple stores, such as RDF4J or
Blazegraph (Blazegraph, 2020a). Graph databases are designed to host RDF data (and thus KGs) in the
form of subject-predicate-object triples and can be queried and updated using SPARQL (Aranda et al.,
2013), a query language designed to interact with semantic information.

2.2. The World Avatar

TheWorldAvatar (TWA) project intends to create an all-encompassingmodel of our world, with a current
emphasis on automation and decarbonization in chemistry (Farazi et al., 2020; Bai et al., 2022; Kondinski
et al., 2023), process and energy industry (Devanand et al., 2020; Atherton et al., 2021), and smart cities
and city planning (Chadzynski et al., 2022, 2023a, 2023b). TWA aims to provide a technology agnostic
and scalable architecture based on open standards and protocols to create a collaborative knowledge-
model based system to foster interoperability along three themes (Akroyd et al., 2021): (1) providing
cross-domain insights into the current state of physical assets in the real world, (2) controlling real-world
entities, and (3) facilitating complex what-if scenario analyses. TWA builds on Semantic Web technolo-
gies and is implemented as dynamic knowledge graphwhich can be distributed across theweb, combining
the ontological descriptions of relevant concepts and instances with semantically annotated
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computational agents to operate upon them. The combination of ontological descriptions, instantiated
data, and automated agents makes TWA a powerful, extensible, and FAIR-compliant system for
representing and reasoning about complex domains of knowledge. The overall design idea is depicted
in Figure 1.

As a dynamic KG, computational agents are an integral part of TWA and provide versatility and
dynamism to the overall system. Similar to a micro-service architecture, TWA follows a system-of-
systems approach, trying to avoid large monolithic models and breaking them down into sequences of
individual agents with tailored capabilities, such as ingesting real-world data, interacting (autonomously)
with instantiated information, restructuring the KG, or assembling new composite agents to accomplish
more complex tasks (Zhou et al., 2019). The design of TWA as dynamic KG has been demonstrated as a
suitable approach to implement a comprehensive ecosystem of connected digital twins to describe the
behavior of complex systems (Akroyd et al., 2021).

2.3. Derived information framework

The derived information framework (DIF) provides a knowledge graph native solution to track data
provenance and dependencies within a dynamic KG (Bai et al., 2024) by semantically annotating how a
specific piece of information can or has been derived from other data instantiated within the KG. Another
feature provided by the framework is its ability to automatically detect outdated agent outputs in order to
trigger a subsequent re-evaluation when necessary. The underlying idea is that all active agents share the
same worldview and can be chained together by using the same instance IRIs: by declaring the output
instances of one agent operation as input instances of another agent operation, entire cascades of
information updates can be executed automatically. This design removes the need for direct agent-to-
agent communication and allows for a distributed ecosystem of agents solely connected via their input/
output resources within the KG. A short introduction is provided below and illustrated in Figure 2, while
the interested reader is referred to Bai et al. (2024) for more details.

The term derivation denotes the fact that a specific piece of information (i.e., a specific instance) has been
obtained or computed from other instantiated information. OntoDerivation (Bai et al., 2024) has been
proposed as light-weight ontological markup to denote such dependencies between related instances
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Figure 1. The design of the World Avatar dynamic knowledge graph. The World Avatar consists of three
principal components: (1) ontological description of relevant domains (i.e., concepts), (2) actual data
instantiated based on those ontologies (i.e., instances), and (3) automatable computational agents to
operate on the knowledge graph. Image reproduced from Akroyd et al. (2021) under a CC BY 4.0 license.
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explicitly and re-uses OntoAgent (Zhou et al., 2019) to specify the agent instance responsible for a specific
derivation task. While OntoAgent describes the computational capabilities of agents conceptually, Onto-
Derivation concentrates on the instance level, that is, connects a specific agent instancewith the actual input
and output instances processed and generated by it, respectively. Upon initialization, each derivation aswell
as all its pure inputs are marked with a timestamp according to the W3C standard (Cox et al., 2020).
Throughout the lifespan of a derivation, these timestamps determinewhether a derivation is still up to date or
considered outdated.Whenever a derivation output is requestedwithin theKG, the framework compares the
timestamp of the derivation instance with the timestamps of its inputs. In case any of the inputs have been
amended after the last derivation calculation (i.e., has amore recent timestamp than the derivation instance),
an update of the output instance is conducted before returning the requested information.

The framework differentiates between two types of derivations, namely synchronous and asynchron-
ous derivations, to cater for different response times upon receipt of a query: The synchronous mode
utilizes the agent’s HTTP endpoint for communication, making it faster and suitable for applications that
require immediate responses. Conversely, asynchronous mode communicates exclusively through the
KG (i.e., using specific status markup to track the progress of a derivation computation) to suit slower and
computationally more expensive agent operations. Regardless of the communication protocol, all
derivations are instantiated consistently: Outputs (i.e., representing derived information) are connected
to their respective derivation instance via a belongsTo relationship. Inputs (i.e., a set of
source information instances) are related to the derivation instances via an isDerivedFrom relation-
ship. The connection between a derivation instance and the respective agent is denoted with an
isDerivedUsing relationship. Although there is no limit to the number of inputs or outputs of a
single derivation, any output instance cannot be associated with more than one derivation instance.
Chains of derivations can be formed if an instance belongsTo to a certain derivation (i.e., as one of its
output entities), but also has an isDerivedFrom relationship with another derivation instance
(i.e., representing one of its input entities). The framework supports derivation dependencies from basic
linear chain to non-linear polytree to generic directed acyclic graph.

2.4. Available public data sources

A comprehensive search for available open data sources and existing ontologies concerning built
infrastructure as well as environmental measurement and flood-related data has been conducted, with

Figure 2. Chain of derivations. The derived information framework facilitates automatic information
cascading in a dynamic KG by capturing dependencies at the instance level, including details about

associated agents:Which agent is responsible for computing a specific instance?Which inputs are used in
deriving that output? And is that output instance itself potentially input to another derivation? Image

reproduced from Bai et al. (2024) under a CC BY 4.0 license.
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primary focus on the UK. Relevant static sources and application programming interfaces (APIs) are
summarized below and the interested reader is referred to Supplementary Material SI.5 as well as
Hofmeister et al. (2023) for more details.

2.4.1. Environmental observations data
The Met Office DataPoint API provides open access to both weather observations and forecasts (e.g.,
temperature, wind speed and direction, humidity, etc.) for thousands of stations across the UK (Met
Office, 2022). While forecasts cover a 5-day period, actual observation values are provided for the
previous 24 hours. Similarly, the UK Air Information Resource (UK-AIR) provides real-time air quality
data for various pollutants via a machine-readable Sensor Observation Service (Department for Envir-
onment, Food, and Rural Affairs, 2023), including nitrogen dioxide, particulate matter, and ozone. The
Environment Agency (EA) provides several API endpoints with (near) real-time information related to
flooding and flood risk: The Real Time flood-monitoring API (Environment Agency, 2021b) provides a
continuously updated list of current flood alerts and warnings, together with applicable flood areas, as
well as live readings of water levels and flows recorded at various measuring stations along rivers and
other water bodies. Furthermore, precipitation and hydrological data about river levels, river flows,
groundwater levels, and water quality are provided via EA’s Hydrology API (Environment Agency,
2021a). As the official government agency responsible for environmental protection and regulation, EA
operates its own UK-wide monitoring system to collect river level, hydrological, and rainfall data. With
regards to flood risk management, EA deploys a widely recognized early warning dissemination system
as part of its flood risk reduction and adaption strategy, including proactive communication to the wider
public (Pathak and Eastaff, 2014). The agency employs domain experts specialized in hydrology and
flood risk assessment to collect and disseminate accurate information, and, in collaboration with the Met
Office, forms the Flood Forecasting Centre which produces the best-combined understanding of flood
risk based on weather forecasts, flood forecasts, catchment conditions, and the operational status of flood
defenses (Flood Forecasting Centre, 2017). They generate a daily flood risk forecast, assessing the
likelihood of flooding 5 days into the future.

2.4.2. Flood warnings data
The EA Real Time flood-monitoring API (Environment Agency, 2021b) provides a listing of all current
flood alerts andwarningswith applicable flood areas aswell as furthermeta information (e.g., severity and
associated water bodies) and is updated every 15 minutes. Flood alerts and warnings refer to different
warning stages: flood alerts express that flooding is possible and it is important to stay alert and vigilant,
while flood warnings refer to situations when flooding is expected and immediate action is required to
protect people and properties. Since 1996, the Environment Agency has been designated as the lead
authority for issuing accurate, reliable, and timely flood warnings to both emergency responders and the
wider public in the UK (Pathak and Eastaff, 2014). The agency’s system offers an end-to-end approach,
including live data acquisition, data quality control, post-event data collection, reporting, and archiving.
EA’s early warning strategy integrates traditional methods, like using measured water levels as triggers,
with advanced modeling and forecasting, including relatively simple techniques like correlating peak
levels/flows across sites as well as linked rainfall-runoff models with hydrological channel routing.
Probabilistic and deterministic weather forecasts from the Met Office automatically feed into flood
forecasting and warning processes, while measured rainfall intensities are used for real-time validation
purposes (Pathak and Eastaff, 2014). The performance of flood forecast models is evaluated regularly and
continuous model recalibration cycles based on validation datasets from a series of past flood events
ensure current, meaningful, and accurate flood forecasts. While the exact methodology remains undis-
closed, in part due to the exclusive access to more detailed data granted to emergency responders, the
public warnings data provided is highly trusted by authorities and public services (Met Office and
Environment Agency, 2022) as well as academia, both as data source (Barker and Macleod, 2019; Wolf
et al., 2022) and benchmark (Smith et al., 2009). As the focus of our work lies on the methodology of

Data-Centric Engineering e14-7

https://doi.org/10.1017/dce.2024.11 Published online by Cambridge University Press

http://doi.org/10.1017/dce.2024.11
https://doi.org/10.1017/dce.2024.11


integrating flood-related data from various domains and sources, the interested reader is referred to Pathak
and Eastaff (2014) formore details aboutmodels as well as validation and dataworkflows deployed by the
Environment Agency.

2.4.3. Building data
The Ordnance Survey (OS), as the national mapping agency of Great Britain, provides several open (e.g.,
OpenMap Local) and premium (i.e., Building Height Attribute) datasets describing the physical charac-
teristics of the built environment in various levels of detail (Ordnance Survey, 2022). While the Building
Height Attribute (BHA) data represents the most granular data about individual buildings, including their
base polygon, building height, and ground elevation, the OpenMap Local contains building data on a
more aggregated level and lacks information about building heights. Premium datasets are generally
license-restricted; however, made available via Digimap (EDINA Digimap Ordnance Survey Service,
2022) for educational and research purposes. The Unique Property Reference Number (UPRN), which
constitutes a unique and officially maintained identifier assigned to every addressable location in the UK,
can be used to cross-links building information across datasets. The Department for Levelling Up,
Housing & Communities offers open Energy Performance Certificate (EPC) data (Department for
Levelling Up, Housing, and Communities, 2022) via three dedicated APIs for domestic, non-domestic,
and display (i.e., mostly public buildings) certificates. This data contains property-level information about
energy efficiency, key construction characteristics (i.e., number of rooms, total floor area, building type,
etc.), high-level usage classification as well as address and location details, and is updated every
4–6 months. His Majesty’s Land Registry publishes several public datasets related to residential property
sales on a monthly basis: The UK House Price Index (UKHPI) (HM Land Registry, 2022d) captures the
monthly change in the value of residential properties on different levels of geospatial granularity. And the
Price Paid Data (PPD) (HM Land Registry, 2022b) contains information about actual prices and dates of
residential property sales, including address and property type.

2.4.4. Population data
The OpenPopGrid (Murdock et al., 2015) provides an open-gridded population dataset for England and
Wales based on the Office for National Statistics (ONS) 2011 Census as well as OS OpenData. It aims to
enhance the spatial accuracy of the ONS population dataset by redistributing the population to actual
residential areas.

2.5. Existing domain ontologies

Knowledge model-based systems require structured and curated data to be represented in the form of
ontologies. The following section introduces several relevant existing ontologies together with their
limitations, with further details provided in Supplementary Material SI.6.

2.5.1. Sensor and measurement ontologies
Several sensor ontologies have been proposed in the literature, each with its own design principles,
coverage, and target applications: The Sensor, Observation, Sample, and Actuator (SOSA) ontology
(Janowicz et al., 2019) provides a light-weight, modular, and self-contained core ontology for describing
basic concepts related to sensors, observations, and actuators. While its simplicity compared to other
ontologies fosters re-use, its limited coverage is not suitable for all sensor-related applications. The
Semantic Sensor Network (SSN) ontology (World Wide Web Consortium, 2017) extends SOSA with
more specialized and domain-specific concepts to provide a more expressive ontology to describe sensors
and their observations, samples, and procedures used, observed properties, and actuators. While its
comprehensive coverage of standardization is one of the key advantages, some aspects of the ontology
may be overly complex for certain use cases. The Modular Environmental Monitoring (MEMOn)
ontology (Masmoudi et al., 2020) defines a set of concepts and relationships for describing environmental
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monitoring equipment, including sensors, together with clear guidelines for mapping sensor data to the
ontology. While MEMOn’s domain specificity ensures an accurate representation of environmental
monitoring data, it may be overly specific for various applications. The Smart Appliances REFerence
(SAREF) ontology (ETSI, 2020b) aims to provide a standardized framework for representing smart
appliances and associated data and is designed in a modular fashion. Compared to SSN and SOSA,
SAREF has a narrower scope, focusing specifically on smart appliances rather than sensors and
observations more broadly; however, it can easily be extended.

Several ontologies have been proposed to describe environmental water resources and associated
sensor readings; however, the focus has mainly been on either aligning heterogeneous data from various
sensor web resources (Liu et al., 2012; Dutta and Morshed, 2013; Wang et al., 2020) or supporting water
quality monitoring (Xiaomin et al., 2016). A hydrological sensor web ontology-based on the SSN
ontology has been developed to align semantics and support collaboration between individual water-
related sensor networks (Wang et al., 2018), primarily in response to natural disasters such as floods. It
introduces hydrological domain classes and establishes relevant reasoning rules.

2.5.2. Flood ontologies
Various ontologies have been proposed for natural disaster management in general (Klien et al., 2006;
Kollarits et al., 2009) as well as flooding in particular (Wrachien et al., 2012; Agresta et al., 2014;
Khantong et al., 2020; Mughal et al., 2021). Recent systematic reviews of existing flood ontologies
confirm the increasing usage of ontological approaches for flood knowledge and disaster management
(Sinha and Dutta, 2020; Mughal et al., 2021). Ontologies have been developed for different aspects
and types of flood disasters, including urban flooding, flood risk and environmental assessment, and
stakeholder and response management. The majority of the 14 flood ontologies reviewed by Sinha
andDutta (2020) are formal application ontologies built around small tasks performed during the response
phase of flood disasters (Sinha and Dutta, 2020). Among these, very few intend to conceptualize the
broader domain knowledge of flood disasters, but are mostly scenario and/or task-specific. The number of
classes varies significantly between 4 and 410; however, most of the ontologies are modular to simplify
the complexity of conceptualizing large-scale spatiotemporal systems, such as floods (Sinha and Dutta,
2020;Mughal et al., 2021). The study reveals that there is no standard flood ontology available in the field.
The most commonly re-used ontologies comprise the Semantic Web for Earth and Environmental
Terminology (SWEET) ontologies (Buttigieg et al., 2018) and theMONITOR riskmanagement ontology
(Kollarits et al., 2009).

SWEET ontologies define a hierarchy of many flood risk-related terms and are often referenced for a
variety of environmental concepts (Buttigieg et al., 2018). The Environmental Ontology (ENVO) is a
domain ontology describing various environment types across several levels of granularity. Its environ-
mental hazard module contains suitable concepts to represent a single flood and flooding in general,
including more detailed descriptions of typical kinds of flooding; however, no concepts to describe the
social or economic damage of floods are considered. Several domain ontologies have been proposed to
resolve ambiguity in information exchange and enable seamless collaboration between various stake-
holders during flood disaster management (Khantong et al., 2020;Mughal et al., 2021). The focus of these
ontologies is mainly on conceptualizing the structure and sequence of relevant information, involved
organizations, roles as well as the interplay between them rather than representing the actual data itself.
Kollarits et al. (2009) have developed MONITOR as formalized knowledge model to describe the
relations between natural, social, and built environments, potentially hazardous events, and several risk
assessment and management terms. The proposed risk model has been refined by Scheuer et al. (2013)
proposing a tailored ontology for multi-criteria flood risk assessment.

Although most of the proposed ontologies are claimed to be available in OWL, only ENVO could be
found in coded form online. This matches previous findings by Sinha and Dutta (2020), which
significantly hinders the re-usability of previous efforts and partially undermines the fundamental idea
of common ontologies to enable machine-interpretability.
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2.5.3. Building ontologies
OntoCityGML has been proposed as a comprehensive ontology (Chadzynski et al., 2021) for three-
dimensional geometrical city objects based on the CityGML 2.0 standard (Gröger et al., 2012). CityGML
is an open data model and XML-based format developed by OGC to describe urban environments by
providing a common definition of the basic entities, attributes, and relations within a 3D city model.
OntoCityGML provides a multi-scale model with five consecutive Levels of Detail (LoD), where the
geometric representation of any building is successively refined from LoD0 to LoD4. A single building
can have multiple spatial representations in different LoDs at the same time, for example, a simple 2D
footprint polygon as LoD0 and a set of 3D surfaces confining the building volume as LoD1 representation.
OntoCityGML primarily focuses on the geospatial representation of buildings to support spatial analyses and
city planning. Further information about a building (e.g., building usage, year of construction, energy rating)
can be encoded using predefined code lists or so-called genericAttributes. Although this approach
provides further information about a building, it does not fulfill the requirements for semantically
Linked Data.

A review of 40 metadata schemas for different phases of the building life cycle is provided by Pritoni
et al. (2021). Five popular ontologies/schemas have been scrutinized in detail with regards to suitability
and potential gaps in buildingmodeling, namely the Brick Schema (2022), the BOTontology (Rasmussen
et al., 2021), the RealEstateCore ontology (RealEstateCore Consortium, 2020), SAREF including
extensions (ETSI, 2020a) as well as SSN/SOSA (World Wide Web Consortium, 2017; Janowicz et al.,
2019). The ontologies differ in perspective of how they represent building information, from focus on
topologies of buildings and their sub-components (BOT) to sensors (SSN/SOSA) or devices (SAREF)
and assets (Brick Schema). General-purpose ontologies such as BOT, SSN/SOSA, and the core of SAREF
tend to leave gaps that require a modeler to supplement them with extensions or external schemas.
Conversely, application ontologies like Brick, RealEstateCore, and SAREF4BLDG may not be as
broadly applicable but offer domain-specific features. While the Brick Schema seems most suited for
large, complex building automation, the Haystack ontology suits smaller-scale systems. Key ontologies
are briefly discussed in SupplementaryMaterial SI.6.3, and the interested reader is referred to Pritoni et al.
(2021) for more details.

Despite the fact that the proposed ontologies differ in how exactly they represent building sub-
components and their relationships, most of them are extensible and compatible with one another. Further
perspectives on buildings are provided by specific domain ontologies, such as the iCity Building ontology
(Katsumi, 2021) providing a foundational vocabulary to represent building-related data within the urban
context or the Domain Analysis-Based Global Energy Ontology (DABGEO) (Cuenca et al., 2020)
fostering interoperability across the energy domain, with a focus on smart home and smart city energy
management (Cuenca et al., 2020). The DABGEO ontology (Cuenca and Larrinaga, 2019) contains a
tailored sub-module for knowledge about infrastructure and buildings, containing classes, properties, and
axioms to represent static building features (e.g., surface, material), geometrical details (rooms, floors) as
well as internal and external environmental conditions (e.g., room temperature).

2.6. Representation of geospatial and time series data

Common graph databases are optimized to handle large-scale RDF data and perform complex queries
efficiently; however, native support for geospatial capabilities is limited in most off-the-shelf triple stores
(Akroyd et al., 2022). Furthermore, the representation of large quantities of time series data where each
data point is instantiated as an individual triple with full semanticmarkup can pose performance issues due
to the vast amount of (partially redundant) statements.

Numerous guidelines for encoding geospatial data in RDF have been published, including the
GeoSPARQL (OGC, 2012) as well as CityGML (OGC, 2021) standards, both created by the OGC.
GeoSPARQL forms the de-facto standard for representing and querying geospatial data on the Semantic
Web, including an extension to the SPARQL query language for processing geospatial data. The level of
support for GeoSPARQL varies among different triple stores, but remains limited and inconsistent
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(Chadzynski et al., 2021; Jovanovik et al., 2021): While RDF4J, for example, provides “partial
GeoSPARQL support” (Eclipse Foundation, 2021), Blazegraph (which is used in this study) does not
support GeoSPARQL at all and instead offers a custom subsystem for simple geospatial queries
(Blazegraph, 2020b).

3. Methodology development

3.1. Use case

The first key motivation behind this work is to instantiate a rich knowledge basis of built environment as
well as transient and live environmental sensor data for a set of autonomous agents to subsequently act
upon. Connecting previously isolated data sources enables both humans and software agents to make
better evidence-based decisions, especially if the various data sources provide complementing perspec-
tives on related domains, for example, bringing together data about potential flood events (i.e., severity,
areal extent) with data about buildings (i.e., building locations, building usages, property values). This
requires the development of domain ontologies to represent relevant building, flood, and environmental
observation information as well as multiple input agents to continuously ingest data feeds from physical
entities in the real world.

Secondly, the agent-enabled autonomous cascading of information through the KG shall be demon-
strated with an automatic re-assessment of potential flood impacts using the DIF (Bai et al., 2024): Current
flood alerts and warnings are steadily instantiated as part of creating the underlying knowledge basis. Each
alert or warning pertains to a specific geographical extent, posing potential risk to both people and built
infrastructure within that area. The proposed agent framework ensures that whenever a new flood alert or
warning gets instantiated or already instantiated information gets updated, the potential impact with regards
to the number of people and buildings as well as the estimated building stock value at risk gets re-assessed.

The use case is implemented for a mid-size coastal town in the UK, King’s Lynn, and schematically
illustrated in Figure 3. While this work focuses on the technical details and implementation, gained
insights and the added value for flood risk management are discussed elsewhere (Hofmeister et al., 2023)
in more detail.

3.2. Ontology development

Typically, ontology development is not a goal in itself, but follows specific usage objectives, such as
semantic search, reasoning, or allowing cross-domain interoperability. Competency questions are often

Figure 3. Schematic of use case implementation. For details see Figures 10, 17, and 20, respectively.
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used to assess whether an ontology provides a specific enough description of the domain of interest (Noy
and McGuinness, 2001). A good set of competency questions should target TBox, ABox, and the
combination of both. A satisfactory response to predefined competency questions is one way to assess
the suitability of a proposed ontology.

Ontology development can follow a “top-down” or “bottom-up” approach, or a combination of both.
The former targets broad applicability by defining high-level concepts first before adding any increasingly
specific terminologies, while the latter focuses on introducing tailored concepts to represent specific
applications or data sources first (i.e., before any optional generalization). A hybrid approach initially
defines salient concepts before either generalizing or specializing them as needed. In this article, a hybrid
approach is used, guided by available data aswell as the target use case, while ensuring a sufficient level of
generality to foster re-usability. Ontology development is an iterative process (Noy and McGuinness,
2001), consisting of (1) defining the domain and scope of the ontology, (2) identifying core concepts and
relationships for the intended use case, (3) re-using existing concepts and ontologies to the extent possible
to foster integration between applications and leverage previous efforts by domain experts, and finally
(4) encoding classes, properties, individuals, and restrictions (i.e., value types, cardinality, domain and
range restrictions) in OWL format.

The following subsections delineate the development of three domain-specific ontologies and their
interconnections. Although the ontologies strongly reflect the data and structure of the resources detailed in
Section 2.4, they are kept as general as practicable to ease re-usability. Concepts fromexisting ontologies are
re-used where applicable and links to equivalent external concepts are introduced to enrich the meaning of
instantiated data. Re-using established ontologies builds on the collective understanding of a domain
developed and codified by subject matter experts. It leverages and enhances prior domain expert efforts
for accurate representation of concepts, relationships, and rules widely shared among practitioners, which
can further be refined and/or extended to accommodate use case-specific requirements.

The names of ontological classes and properties are written in typewriter font. All three ontologies rely
on the established Ontology of units of measure (OM) (Rijgersberg et al., 2020) to represent measured or
reported quantities, numerical values, and associated units. Furthermore, an aligned representation of
geospatial information using GeoSPARQL (OGC, 2012) is used. All proposed ontologies have been
checked for consistency using the HermiT reasoner in the Protege editor (Musen, 2015) to identify and
eliminate logical contradictions. Sets of competency questions have been formulated to evaluate the
ontologies’ abilities to capture relevant information about their respective domain of interest, with subsets
provided in Supplementary Material SI.7. A formal representation of the ontologies using description
logic (Baader et al., 2007) is provided in Supplementary Material SI.8, with the OWL versions being
publicly available on GitHub.

3.2.1. Geospatial and time series representation
The following approaches are used to overcome limitations in representing geospatial and time series data
(see Section 2.6):

To avoid using custom-typed Literals to encode geospatial coordinates suitable for Blazegraph’s
geospatial engine (as done in previous studies: Chadzynski et al., 2021; Akroyd et al., 2022), OBDAvia
Ontop (Xiao et al., 2020) is usedwith the actual geospatial information being stored in a PostGIS database.
PostGIS is an open-source spatial database extender for PostgreSQL, enabling the storage and retrieval of
geospatial data. It adds support for geographic objects and geospatial functions, making it a powerful tool
for managing spatial information within a relational database. Ontop, on the other hand, is a semantic data
virtualization system that allows users to query relational databases via SPARQL as if they were triple
stores. It “hides” the actual data source and exposes the data in terms of the mapped ontological concepts
and relationships based on predefined mappings between SQL column and ontology concept names.
Ontop facilitates the transformation of relational data into a semantic representation, promoting inter-
operability and advanced querying capabilities. Although Ontop is not fully compliant with OGC
GeoSPARQL 1.0, it supports the main geospatial properties and functions. Hence, geospatial information
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can be served as virtual triples according to provided OBDA mappings and combined with actually
instantiated data in Blazegraph.

To overcome issues with instantiating myriad individual time stamps, a light-weight time series
ontology (Lee et al., 2021) has been developed together with a dedicated TimeSeriesClient: upon creation,
each time series gets instantiated within the KG with full semantic markup, while the actual tabular data
(i.e., time stamp and data value) get stored in an associated relational database (e.g., PostgreSQL). The
client provides a robust mapping between any data instance in the KG and the respective values stored in
the relational database. Adding or deleting time series data only adds or deletes data points in the database,
while deleting an entire time series via the TimeSeriesClient also deletes all associated relationships from
the KG.

3.2.2. Environmental Measurement Station ontology
Several sensor ontologies have been proposed in the literature (see Section 2.5.1); however, most of them
focus on detailed representations of measurement devices and procedures together with actual measure-
ment values. In contrast, the Environmental Measurement Station ontology (OntoEMS) aims to establish
an aligned conceptualization for environmental measurement observations from a variety of sources.
OntoEMSdisregards a comprehensive sensor and procedure representation, as such information ismainly
unavailable from public APIs (such as theMet Office DataPoint, EA Real Time flood-monitoring API, or
UK-AIR), and focuses on the nature of reported quantities, their geo-location, and time series data for
historical readings and forecasts. It represents a light-weight top-level ontology designed to accommodate
various data sources without imposing strict limitations on the required data coverage, while still
providing an appropriate semantic representation of measured quantities. Given its modular design,
OntoEMS can easily be extended with more detailed domain knowledge.

As depicted in Figure 4, the central concept is a ReportingStation, which represents any entity
reporting environmental observations and/or forecasts. This general term is used because most of the
screened data feeds from public APIs do not contain detailed information about the actual measurement
devices. Instead, only high-level metadata regarding the location and nature of the supplied data is given,
alongwith the actual readings data. AReportingStation can refer to a physical asset that houses one
or more actual sensors/measurement devices or a virtual station that provides certain readings. To enable
geospatial capabilities using GeoSPARQL, each ReportingStation is defined as a rdfs:sub-
ClassOf a geo:Feature. All reported quantities are defined as a rdfs:subClassOf a om:

Figure 4. OntoEMS top-level ontology. OntoEMS represents the top-level ontology to represent envir-
onmental reporting stations (e.g., measurement stations) and associated readings of environmental

observations (including time series values). Further domain knowledge can be incorporated with domain
ontologies enriching ontoems:ReportingStation, om:Quantity, and om:Measure. All
referenced namespaces are declared in Appendix A.1, with missing explicit namespace declarations

referring to ontoems. Newly introduced concepts and relationships are depicted in red, while re-used
ones are shown in black.
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Quantity and time series data are represented using the Time Series ontology (Lee et al., 2021).
Figure 5 illustrates this definition for WaterLevel and Rainfallmeasurements, which are declared
as subclasses of om:Height, which itself is a subclass of om:Quantity. References to equivalent
external concepts are captured using owl:equivalentClass or rdfs:subClassOf relation-
ships, depending on the actual definition of the concept.

The OntoEMS top-level ontology can easily be refined to provide a more detailed description of
specific domains, as illustrated in Figure 6 for water-level reporting stations. In this case, a Water-
LevelReportingStation subclass is introduced to include additional information about attached
water bodies, such as the catchment or river name, as well as the relative location to other stations along
the same river (i.e., up- and downstream stations). A Range and Trend concept are included to provide
additional context for current water level measurements. Such domain-specific extensions facilitate the
direct import of application-specific ontologies, such as the RDF data model utilized by the EAReal Time
flood-monitoring API (Environment Agency, 2021b). Furthermore, additional ABox level assertions can
be incorporated, for example, to link instantiated air pollutants with equivalent instances in the European

Figure 5. Example definition of a reported quantity. OntoEMS design requires reported quantities to be
subclasses of om:Quantity; exemplarily depicted for rainfall and river level measurements, including

references to further ontologies to leverage the power of Linked Data.

Figure 6.ExampleOntoEMS domain ontology extension. TheOntoEMS top-level ontology can be refined
to suit needs for more detailed domain representations by elaborating ontoems:ReportingSta-
tion, om:Quantity, and om:Measure; exemplarily shown for water-level reporting stations
monitoring the water level in rivers. All referenced namespaces are declared in Appendix A.1, with

missing explicit namespace declarations referring to ontoems. Newly introduced concepts and rela-
tionships are depicted in red, while re-used ones are shown in black.
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General Multilingual Environmental Thesaurus (GEMET) (European Environment Information and
Observation Network, 2021) using owl:sameAs relationships.

Several amendments to theOntology of units ofmeasure have been proposed (i.e., the inclusion of new
quantities and corresponding units), which are currently being tracked in a fork of the official ontology. It
is intended that these amendments will be submitted as a pull request in the future.

3.2.3. Flood Risk ontology
The aim of the proposed Flood Risk ontology (OntoFlood) is twofold: (1) to provide a reasonably general
conceptualization of the flood risk domain, while (2) providing a suitable description for the available
floodwarning and forecast data provided by the EAReal Time flood-monitoring and Flood Forecast APIs
(Environment Agency, 2021b; Flood Forecasting Centre, 2017). Compared to many previous ontology
efforts, the focus is less on establishing a full-fledged conceptual representation of the entire domain and
more on providing a semantic description of relevant phenomenological data to instantiate and oper-
ationalize actual data feeds. The majority of previously identified ontologies (see Section 2.5.2) is not
publicly available and direct re-use of core concepts and relations is not possible. Hence, the majority of
required concepts and relationships is created independently in OntoFlood and links to previously
published ontologies are only included for a few classes where useful to enrich the semantic meaning
(i.e., ENVO (Buttigieg et al., 2016), SWEET (Buttigieg et al., 2018)). Nevertheless, key design choices in
OntoFlood are based on previous conceptualizations to build on existing domain knowledge. Several
concepts are borrowed directly from the data model used by the EA Real Time flood-monitoring API
(Environment Agency, 2021b) (prefixed with rt). Compared to previous flood ontologies, the proposed
ontology represents the areal extent of a flood by any arbitrarily shaped polygon instead of linking a flood
to a particular predefined region or district. This allows for more versatile geospatial representation,
similar to the flood hazard map concepts developed by Scheuer et al. (2013). However, the primary
purpose is an accurate assessment of affected buildings and people using geospatial queries, as compared
to pure visualization purposes.

OntoFlood is capable of describing floods and associated impacts in three different stages: actual
flooding events, flood alerts and warnings (i.e., expected flooding events), and flood forecasts
(i.e., potential flooding events, but less certain). The core concept to describe a flood is the envo:
flood class, which is defined as a rdfs:subClassOf of soph:Event. Each event is associated
with a certain time interval and a Location which provides information about the parent Adminis-
trativeDistrict as well as the actual ArealExtentPolygon of the flood. The ArealEx-
tentPolygon is defined as subclass of a geo:Feature and the encompassing
AdministrativeDistrict shall either be the corresponding IRI from ONS Geography Linked
Data (Office for National Statistics, 2022) or refer to it via an owl:sameAs relationship. This enables
geospatial capabilities, such as the identification of certain geo:Features within a flood polygon or
insights into most relevant flood areas in a particular county. An event can resultIn a monetary
Impact (positive or negative) describing the total monetary consequences of its occurrence. In the case
of flooding, this value describes the total (potential) damage to all affected infrastructure assets. More
detailed insights into the (potential) effects of a envo:flood are represented using the affects
relationship, connecting to Population and infrastructure assets, such as Buildings, representing
both the count and estimated monetary value.

The rt:FloodAlertOrWarning is the key concept for the flood warnings and alert stage, which
represents the key data provided by the flood-monitoring API (Environment Agency, 2021b). Each alert
or warning warnsAbout a potential envo:flood event and is associated with a certain Severity
and rt:FloodArea. Required levels of severity are defined and instantiated as ABox together with the
Tbox of the ontology. The concept of a FloodAlertOrWarningHistory is introduced to store key
information (i.e., date of issue/change, severity, impacts) of previously issued flood alerts and warnings
for a particular rt:FloodArea. This allows us to investigate potential trends in both frequency and
severity of floodwarnings for a certain area and tailor efforts where to take preventivemeasures. The flood
forecast stage is centered around the FloodForecast concept, which predicts a potential envo:
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Figure 7. OntoFlood ontology (extract only). The OntoFlood ontology describes flood events and their (potential) impacts in three stages: (1) actual flood
events, (2) flood warnings, and (3) forecasted floods. The ontology has been designed to represent available data from the Environment Agency Real Time
flood-monitoring API (Environment Agency, 2021b) and assess built infrastructure as well as population at risk. All referenced namespaces are declared in

Appendix A.1, with missing explicit namespace declarations referring to ontoflood.
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flood event. As a flood forecast is less certain and, hence, less quantitative than a rt:Flood-
AlertOrWarning, it is mainly characterized by its RiskLevel expressing a hazard potential defined
by expected likelihood and impact.

3.2.4. Building Environment ontology
The Building Environment ontology (OntoBuiltEnv) aims to create a lightweight ontology to represent
properties (i.e., buildings and flats) suitable for a variety of use cases within TWA. It is designed to
integrate with existing agents and knowledge representations, such as OntoCityGML and the City Energy
Analyst (CEA) Agent (Chadzynski et al., 2023a). Compatibility and interoperability with previous
building instantiations based on OntoCityGML is ensured by introducing a link between corresponding
building instances across both ontologies. While OntoCityGML represents all geospatial and geometric
aspects of a building (i.e., in various LoDs), OntoBuiltEnv provides a semantic representation of
additional building information (i.e., to replace previously used non-semantic ExternalReference
and genericAttribute). The ontology is designed to represent publicly available building data
based on the Energy Performance Certificate and HMLand Registry APIs (Department for Levelling Up,
Housing, and Communities, 2022; HM Land Registry, 2022c) and follows a use case specific approach,
considering only a required subset of all available data for now, that is, focusing on key construction
properties as well as property market value relevant information. However, the design ensures extensi-
bility to accommodate additional use cases in the future and already captures building usage as well as
solar photovoltaic descriptions to support ongoing efforts to refine the CEA agent.

The ontology reuses existing concepts from multiple screened ontologies (see Section 2.5.3), such as
DABGEO or iCity Building (Cuenca and Larrinaga, 2019; Katsumi, 2021). A few public concepts from the
customHMLandRegistry datamodel (HMLandRegistry, 2022b) are included to represent propertymarket
data (prefixed with lrppi). A Property represents the central concept of the ontology, with dabgeo:
Building and Flat as relevant subclasses. While each Property holds multiple relationships
regarding its location, construction characteristics, and market valuation details, certain information is
restricted to buildings only, for example, elevation and roof area specifications (see Figure 8). The
dabgeo:Building class is the key concept to represent buildings and the hasOntoCityGMLRe-
presentation relationship connects it with an external IRI representing the corresponding OntoCi-
tyGML instance containing all geospatial information. To enrich semantics, owl:equivalentClass
relationships are included to refer to building definitions in further ontologies. This ensures linking and
easier integration of potentially more elaborate buildingmodels in the future (e.g., BIM representation). All
buildings are again represented as geo:Feature to enable geospatial capabilities using GeoSPARQL
(e.g., to assess whether a building is located within a particular flood polygon). Each property is connected
with an icontact:Address containing detailed address information, including owl:sameAs links to
corresponding statistical ONS geography IRIs for instantiated PostalCodes and Administrative-
Districts to enable further navigation and geospatial analyses.

Figure 9 illustrates the current representation of PropertyUsage types, which has been aligned
between available data from the API and requirements from the CEA agent. Furthermore, several
subclasses have been introduced to formalize relevant property types (e.g., maisonette or house), built
forms (e.g., terraced or detached), and key construction components. ThehasIdentifier relationship
is used to provide a unique identifier for each instantiated building, required for external referencing or
instance matching. In UK context this corresponds to the UPRN of the property, which can be used to
unambiguously identify each property and potentially assimilate further data in the future. The hasLa-
testEPC refers to the identifier of the underlying energy performance assessment of the instantiated data
and can be used to assess whether this data still reflects latest information available from the API.

3.3. Agent framework

The developed ontologies are used by a set of input agents to dynamically assimilate data from a variety of
sources (see Section 2.4) as well as multiple autonomous agents which subsequently operate upon it. As

Data-Centric Engineering e14-17

https://doi.org/10.1017/dce.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.11


introduced in Section 3.1, latest flood warnings from the EA API get instantiated on an ongoing basis,
before being processed by a sequence of agents to understand the share of population which is potentially
affected, the number of buildings located within the flood area and how that translates into building stock
value at risk of flooding.

The overall ecosystem of interacting agents is schematically depicted in Figure 10 to provide a high-
level overview of the interplay between agents, external data sources, and ontologies within TWA. The
sequence of key agent interactions in the automated flood impact assessment is depicted in Figure 11.
While the initial data instantiation relies on active user input, subsequent tasks operate autonomously,
with agents communicating directly through the knowledge graph via DIF. All derivation agents
(i.e., agents deriving new information based on existing entities using the DIF) honor the OntoAgent
(Zhou et al., 2019) ontology to refer to associated inputs, outputs, and their respective service descrip-
tions. All agents are implemented in Python or Java and packaged as individual Docker containers. Details
about agent deployment are provided in Section 4.

An overview of key agent tasks and dependencies (i.e., due to information maintained by other agents)
is provided in Table 1, before explaining each agent in detail below.Activity diagrams are used to illustrate
key agent logic in a simple manner, avoiding unnecessary complexities that might impede a comprehen-
sive understanding; however, a few pseudocode snippets and example SPARQL queries are provided in
Supplementary Materials SI.2 and SI.3 for illustration purposes. While the pseudocode reveals further
details about the underlying algorithms, it needs to be noted that the actual implementationmight differ for
performance considerations or the use of established libraries, such as pandas.

Figure 8. OntoBuiltEnv ontology part 1 (extract only). The OntoBuiltEnv ontology provides a semantic
description for properties (i.e., both buildings and flats), including location and address details as well as
information about previous sales transactions and current market value estimates. The ontology has been

designed to represent available data from both Energy Performance Certificates (Department for
Levelling Up, Housing, and Communities, 2022) and His Majesty’s Land Registry (HM Land Registry,
2022a), while seamlessly integrating with OntoCityGML (Centre Universitaire d’Informatique at Uni-
versity of Geneva, 2012) for the geospatial representation of buildings. All referenced namespaces are
declared in Appendix A.1, with missing explicit namespace declarations referring to ontobuiltenv.
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3.3.1. Met Office Agent
The Met Office Agent recurringly queries the Met Office DataPoint API (Met Office, 2022) for latest
weather observation and forecast data and instantiates it according to the OntoEMS ontology. This agent
also serves as template for other OntoEMS input agents to keep TWA in sync with the real world. A

Figure 9. OntoBuiltEnv ontology part 2 (extract only). The OntoBuiltEnv ontology provides relevant
concepts to represent properties, including their usage classification, major construction components,

property type and built form, and energetic characteristics.

Figure 10. Agent Ecosystem. Schematic depiction of all agents involved in the flood assessment use case.
Input agents (i.e., all agents in the bottom row of the figure) interact with external data sources to

instantiate (or update) data within the KG, while other software agents operate (autonomously) on the
instantiated data.
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detailed UnifiedModeling Language (UML) diagram is provided in Figure 12. The agent offers dedicated
endpoints to update (1) instantiated reporting stations, (2) reported quantities (i.e., measured and/or
forecasted parameters), and (3) the actual time series data of those quantities. Additionally, an endpoint to
update all instantiated information is provided, performing tasks 1–3 sequentially: Upon invocation
(either via HTTP request or scheduled background task), the agent queries all available reporting stations
from both the API and TWA. In case stations are available from the API, but not TWA, they get
instantiated. Subsequently, all available stations and their associated readings are queried from both
the API and TWA. Similarly, potentially missing quantities are instantiated and the associated time series
instances to store actual readings get initialized. Lastly, the latest time series data are queried from the API
for all instantiated quantities and added to the respective TimeSeries instances. Potentially, duplicated
timestamps are overwritten to ensure that latest information is available from TWA at all times.

3.3.2. Air Quality Agent
The Air Quality Agent recurringly queries air pollutant concentration data from the UK-AIR Sensor
Observation Service (Department for Environment, Food, and Rural Affairs, 2023) and instantiates it
according to the OntoEMS ontology. It follows the same implementation approach as the Met Office
Agent, with consecutive updates of reporting stations, measured quantities, and actual time series data.
Similarly, only not yet instantiated stations and readings are added to the KG on subsequent agent
invocations. To leverage the power of Linked Data, each unambiguously identifiable air pollutant reading
is linked to its equivalent concepts of the European air quality e-Reporting initiative (European Envir-
onment Information and Observation Network, 2021) via an owl:sameAs relationship. This provides

Figure 11. Agent Sequence. Sequence diagram of key agent interactions and dependencies required for
the automated flood assessment.While initial data instantiation requires active user input, recurring tasks

occur automatically and agents communicate directly via the knowledge graph.
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additional information about relevant protection targets, (commonly used) units, and measurement
equipment, besides further metadata. Moreover, this eases alignment and interoperability with other data
sources and stations potentially to be incorporated later.

3.3.3. River Level Agent
TheRiver Level Agent retrieves sensor observation data from the EA flood-monitoring API (Environment
Agency, 2021b) and instantiates it according to the OntoEMS ontology. It downloads all available data in
RDF format once per day and updates the KG by assimilating new station and readings information as
well as adding new time series data. The agent instantiates all provided readings, not just river levels,
including water flow rates, rainfall, and wind measurements. For WaterLevelReportingSta-
tions at rivers the agent enriches the RDF data with additional information about stage scales, such as

Table 1. Agent overview

Agent Agent type Key task(s)
Required
predecessor

Met Office Agent Input agent Instantiate latest weather observation and
forecast data

Air Quality Agent Input agent Instantiate latest air pollutant observation data
River Level Agent Input agent Instantiate latest water level readings (as well

as water flows and rainfall data for some
locations)

Building Importer
Agent

Input agent Instantiate buildings from CityGML files
(using OntoCityGML ontology)

TSD Agent Update agent Enhance instantiated LoD1 buildings into
LoD2 by identifying thematic surfaces

Building Importer
Agent

UPRN Agent Input agent Instantiate UPRNs for instantiated buildings TSD Agent
EPC Agent Input agent Instantiate properties with their energy and

construction characteristics based on EPC
data (using OntoBuiltEnv ontology)

Building
Matching
Agent

Update agent Link corresponding building instances
between OntoBuiltEnv and OntoCityGML
(based on their UPRN)

UPRN Agent, EPC
Agent

Property Sales
Agent

Input agent Instantiate latest property sales transactions
and price index data

EPC Agent

Average Square
Meter Price
Agent

Derivation
agent

Estimate average square meter price of
properties per postcode

Property Sales
Agent

Property Value
Estimation
Agent

Derivation
agent

Estimate the current market value of
properties

Property Sales
Agent

Flood Warnings
Agent

Input agent Continuously instantiate latest flood alert and
warnings data

Flood Assessment
Agent

Derivation
agent

Estimate the number of people and buildings
as well as the total building stock value at
risk of flooding from any flood warnings

Flood Warnings
Agent

Note.Overview of all agents, their key task(s), and their required predecessors, that is, agents which need to be executed prior to (1) instantiate required
data within TWA or (2) instantiate required derivation markup to reflect information interdependencies. Input agents instantiate new data into TWA,
update agents operate upon instantiated data to enrich/connect individual instances, and derivation agents deduce new information based on existing
entities using the DIF.
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Figure 12.MetOffice Agent. TheMetOffice Agent recurringly queries theMetOfficeDataPoint API (Met
Office, 2022) for both latest weather observation and forecast data and instantiates it according to the
OntoEMS ontology. This agent also serves as template for other OntoEMS input agents to keep TWA in

sync with the physical world.
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the reference datum and typical low/high readings, and adds relationships to potential downstream
stations. Data about the relative location of stations is obtained from another government service (Met
Office and Environment Agency, 2022) through web scraping. The agent also derives and instantiates the
current Range and Trend for each WaterLevelReportingStation with associated stage scale
instance. The Range is determined by comparing the latest water level reading with typical low and high
readings, while the Trend is based on an assessment of the readings over the last 12 hours. A rising or
falling Trend is instantiated if the difference between the last and first value in that period exceeds
± 10%, respectively.

3.3.4. Building Importer Agent
The Building Importer Agent imports entire CityGML files and instantiates respective buildings accord-
ing to the OntoCityGML ontology (Chadzynski et al., 2023a, 2023b). The agent supports building
representations in multiple LoDs; however, given the available data fromOS, this work relies on building
instantiations in LoD1, with buildings represented as simple block models describing their overall shape
and layout (i.e., building footprints as polygon). Additional building data, such as building height or
associated postcode, are also instantiated according to OntoCityGML, either as dedicated data property
(e.g., building height) or as genericAttribute (e.g., postcode).

3.3.5. Thematic Surface Discovery Agent
The Thematic Surface Discovery (TSD) Agent enhances instantiated OntoCityGML LoD1 building
representations to LoD2 (Chadzynski et al., 2023a). The agent identifies wall, roof, and ground polygons
and adds explicit semantic annotations to complement their pure geometrical perspective in an OntoCi-
tyGML compliant form. The agent also offers an endpoint to only identify and restructure the ground
surface, that is, footprint, of a building. As this work focuses on LoD1 building representations, most of
the thematic surface restructuring is not necessary; however, the ground surface classification is a
prerequisite for the instantiation of UPRN information by the UPRN Agent.

3.3.6. Unique Property Reference Number Agent
The Unique Property Reference Number (UPRN) Agent enriches instantiated OntoCityGML building
instanceswith a unique identifier, that is, their UPRNgiven theUK context of this work. Depending on the
provided HTTP request parameters, the agent processes individual buildings (i.e., single OntoCityGML
city object with provided IRI) or targets all buildings instantiated in a provided triple store namespace. For
each target building, the agent queries the OS Features API (Ordnance Survey, 2022) with the building’s
bounding box to retrieve all enclosed UPRNs. Subsequently, all returned UPRNs are tested against the
ground surface to exclude UPRNs not intersecting the building itself. Only intersecting UPRNs are then
instantiated and linked to the respective building(s).

3.3.7. Energy Performance Certificate Agent
The Energy Performance Certificate (EPC) Agent retrieves data from all three EPCAPIs (Department for
Levelling Up, Housing, and Communities, 2022) (i.e., domestic, non-domestic, and display certificates)
and instantiates relevant building data according to the OntoBuiltEnv ontology. To manage the size of
individual API requests, the data is queried per postcode and for all threeAPIs subsequently. To instantiate
all postcodes for a particular local authority, an initial request must be sent to the agent. New postcodes are
only instantiated if the local authority is not already present in TWA. All instantiated postcodes get linked
to correspondingONS IRIs using theowl:sameAs relationship. A detailedUMLdiagram is provided in
Supplementary Material SI.1, with key agent logic described below:

The agent requires an available SPARQL endpoint to retrieve instantiated OntoCityGML buildings,
since EPC data is only assimilated for properties with available geospatial representation. Initially, all
instantiated postcodes are queried from TWA, and the latest EPC data for all instantiated postcodes are
retrieved from the respective API endpoint. Returned EPC data with a corresponding UPRN instantiated
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in OntoCityGML gets instantiated according to the OntoBuiltEnv ontology: either as standalone building
or as property belonging to a parent building if the associated OntoCityGML building contains multiple
UPRNs. Only outdated EPC data is instantiated, while already instantiated data are skipped. The agent
determines information for parent buildings by aggregating data of contained child properties: by
summing up actual values (e.g., number of rooms and floor area), using the most common value (e.g.,
EPC rating code, property type), or concatenating distinct values of child properties (e.g., property usage,
description of construction components). After ingesting new information and to ensure that updated
information is detectable by the DIF, the IRIs of all (potential) pure inputs managed by the EPC Agent
(i.e., Property, PostalCode, and FloorArea instances) are retrieved and associated timestamps
are added or updated.

To enable visualization using TWA’s unified visualization interface, the geospatial representation of all
buildings (i.e., their 2D footprints and elevations) must be uploaded to PostGIS. The agent provides all
necessary functionality to do so; however, corresponding building instances in OntoBuiltEnv and
OntoCityGML need to be matched beforehand using the Building Matching Agent.

3.3.8. Building Matching Agent
The Building Matching Agent links buildings instantiated according to OntoBuiltEnv with their Onto-
CityGML equivalents. While OntoBuiltEnv provides the overall semantic description of properties,
OntoCityGML is solely used for the geospatial representation of buildings. Linking corresponding
instances allows the combination of both of these complementary perspectives. Matching is conducted
using UPRNs as unique identifiers and realized by instantiating one additional relationship between
matched IRIs, namely hasOntoCityGMLRepresentation. For details please refer to
Supplementary Material SI.1.

3.3.9. Property Sales Agent
TheProperty Sales Agent is an input agent which queries HMLand Registry Open Data and instantiates it
according to the OntoBuiltEnv ontology. More precisely, it queries latest property sales transactions and
price index data from the Price Paid (HM Land Registry, 2022b) and the UK House Price Index Linked
Data (HM Land Registry, 2022d), respectively, via the publicly available SPARQL endpoint (HM Land
Registry, 2022c). After instantiating new property sales data, the agent also instantiates the relevant
derivation markups to allow for the automatic assessment of the AveragePricePerSqm per Post-
alCode as well as the PropertyValueEstimation of individual buildings. A detailed UML
diagram is provided in Supplementary Material SI.1, with key agent logic described below:

Initially, all instantiated properties are retrieved from TWA, including their full address information.
Subsequently, for each postcode latest transaction records (i.e., latest transaction date and price paid) are
retrieved for all unique addresses from Land Registry’s SPARQL endpoint. Since the PPD does not
contain UPRN information, sales transactions are assimilated based on address matching. To attach a
previous sales record to an instantiated property, both postcode and property type (i.e., building or flat)
must match. However, to account for minor discrepancies between instantiated address information
(i.e., based on EPC data) and addresses from HM Land Registry, fuzzy matching of the concatenated
string of street name, street number, building name, and unit name is used. If the fuzzy match exceeds a
minimum confidence score (i.e., 95) both addresses are considered equivalent and the retrieved Trans-
actionRecord is instantiated for the respective property. The Python library Fuzzywuzzy (Cohen
2020) is used and twomatching algorithms have been compared, that is, the Levenshtein distance and the
Damerau-Levenshtein algorithm. Additionally, the performance of multiple scoring methods (i.e., simple
ratio, partial ratio, token sort ratio, and token set ratio) has been investigated. The token set ratio calculates
the similarity score based on the ratio of the length of the longest common sub-string to the total length of
the two strings being compared after breaking them into individual words and accounting for differences
in word order and word frequency. Manual comparisons of the matching results suggest that the
Levenshtein distance with the token set ratio performs best. While the scoring method has a significant
influence, the difference between both scoring algorithms is very minor.
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Having assimilated all property sales transaction information, the PropertyPriceIndex (i.e., the
UKHPI) is instantiated and/or updated for all instantiated administrative districts (i.e., local authorities, as
they are the most granular regions for which the UKHPI is published). Finally, the agent also updates the
timestamps of amended pure derivation inputs (i.e., TransactionRecord and PropertyPri-
ceIndex instances) and instantiates/updates the required markups for both the AveragePrice-
PerSqm and the PropertyValueEstimation derivation. Both of these derivations are initialized
as synchronous derivations to compute and instantiate an initial evaluation immediately. As theProper-
tyValueEstimation depends on the AveragePricePerSqm, the latter one is marked up first to
ensure availability of the required derivation input. Both markup methods are part of the Property Sales
Agent and described in more detail in the following two paragraphs.

Average Square Meter Price Derivation Markup: This method creates the semantic markup required
by the DIF to enable the automatic assessment of the AveragePricePerSqm for each instantiated
PostalCode: for each instantiated PostalCode an OntoDerivation instance is initialized to be
handled by the Average Square Meter Price Agent and connecting all input instances via an isDerived-
From relationship. Themethod also handles postcodes without previous sales transaction records. In such
cases, simply no transaction record instances get connected to the derivation instance as inputs, which
ensures that the Average Square Meter Price Agent in turn queries data from nearby postcodes from the
Land Registry SPARQL endpoint. A detailed UML diagram of the markup method is provided in
Supplementary Material SI.1, with the key logic described below:

Initially, all unique PostalCodes are queried from TWA, followed by the retrieval of all associated
TransactionRecords and the representative PropertyPriceIndex. If already instantiated
(i.e., due to previous derivation computation), also the AveragePricePerSqm instance for the
postcode is retrieved. If no AveragePricePerSqm instance exists yet, a synchronous derivation for
new information is initialized to connect all TransactionRecords of that PostalCode as well as
the associated PropertyPriceIndex with a newly instantiated derivation instance and get an initial
assessment computed immediately by the Average Square Meter Price Agent. Additionally, not yet
instantiated timestamps are added to all input instances. Otherwise, TransactionRecord instances
not yet connected with the existing AveragePricePerSqm instance of the respective postcode
(i.e., transaction record has been instantiated after previous average price assessment) are retrieved and
added to the existing derivation instance. Finally, a derivation update is requested to ensure the
instantiated AveragePricePerSqm is up-to-date.

Property Value Estimation Derivation Markup: Similar to the Average Square Meter Price Deriv-
ationMarkupmethod, thismethodmaintains the required derivationmarkup for the automatic assessment
of the PropertyValueEstimation of instantiated buildings. A detailed UML diagram is provided
in Supplementary Material SI.1, with the key logic described below:

Initially, all instantiated properties are retrieved, together with their associated sales Transaction-
Record and FloorArea as well as representative PropertyPriceIndex and AveragePrice-
PerSqm (if available). If already instantiated (i.e., due to previous derivation computation), also the
current PropertyValueEstimation instance is queried. If no market value estimate exists yet for a
building, a synchronous derivation for new information is initialized based on all available inputs for that
building and requested for immediate initial assessment by the Property Value Estimation Agent. As the
AveragePricePerSqm derivation is marked up first, its value should already be instantiated when
conducting the property value estimation markup. In the unlikely event that this is not the case, the
derivation can also be initialized with the AveragePricePerSqm derivation instance as input. In case
a property already has an instantiatedPropertyValueEstimation, the need for a potential update is
evaluated: In case the instantiated property value isDerivedFrom the representative AveragePri-
cePerSqm and the FloorArea, but a sales TransactionRecord is actually instantiated for the
property (i.e., a new sales transaction has been made available in HMLand Registry after the last time the
property value has been estimated), the respective TransactionRecord is added as additional input
to the existing derivation and an update is requested to re-assess the current market value. Furthermore,
not yet instantiated timestamps are added to all input instances.
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3.3.10. Average Square Meter Price Agent
The Average Square Meter Price Agent is a derivation agent to estimate the average square meter price of
properties on a postcode level. The required input data comprises total FloorArea and latest sales
TransactionRecord for properties as well as the representative PropertyPriceIndex. A
detailed UMLdiagram is provided in SupplementaryMaterial SI.1, with key agent logic described below:

Upon invocation, the agent verifies whether received input instances are suitable to assess the
AveragePricePerSqm, that is, both a PostalCode and PropertyPriceIndex are available
(i.e., have been marked up properly). Subsequently, the number of TransactionRecords associated
with the derivation instance (i.e., available for current postcode) is derived. The agent requires aminimum
threshold of transaction instances to compute a meaningful average (e.g., minimum of five transactions).
If less (or even no) transactions are available, data from nearby postcodes are included: the agent retrieves
all postcodes within the same Super Output Area from ONS public SPARQL endpoint (Office for
National Statistics, 2022), queries the instantiated number of transactions for each of them from TWA
and orders the postcodes by increasing euclidean distance from current one. Lastly, the nearest postcodes
required to fulfill the minimum number of transactions are extracted and all associated Transaction-
Records are used in the assessment.

Having retrieved a sufficient set of TransactionRecords, each sales price is normalized with the
total FloorArea of the property and scaled using the PropertyPriceIndex to derive today’s
equivalent value for each historical transaction. Finally, the arithmetic mean is computed and instantiated
as current AveragePricePerSqm for the respective PostalCode.

3.3.11. Property Value Estimation Agent
TheProperty Value Estimation Agent is a derivation agent to calculate the currentmarket value estimate of
properties instantiated in TWA. The estimated market value of any property can be determined by either
(1) re-calibrating the latest available historical transaction price to today’s market conditions or
(2) multiplying the total floor area of the property with a representative average square meter price. A
detailed UMLdiagram is provided in SupplementaryMaterial SI.1, with key agent logic described below:

Initially, the agent verifies that sufficient inputs are provided (i.e., have been marked up properly),
meaning that either a historical TransactionRecord and PropertyPriceIndex or total
FloorArea and AveragePricePerSqm instances are available. The first combination is prioritized
as actual previous sales transactions for a certain property are considered better proxies for the current
market value compared to the more general approach using an average square meter price. Hence, the
latter set of inputs shall only be used as fall-back for properties without any previous sales information.
After computing the PropertyValueEstimation based on available inputs, it is instantiated in
TWA as derivation output according to OntoBuiltEnv.

Although significantly more elaborate methods exist to estimate property prices, that is, considering
numerous influential factors, such as micro-location, building characteristics, usage classification, and so
on, this simplified evaluation approach suffices for an initial proof-of-concept. Kept intentionally
simplistic for this phase of our research, it will likely be subject to further refinement in future iterations.

3.3.12. Flood Warnings Agent
The FloodWarnings Agent is an input agent which queries flood alert and warning data from the EA Real
Time flood-monitoring API (Environment Agency, 2021b) and instantiates it according to the OntoFlood
ontology. For readability, both alerts and warnings are referred to as flood warnings in the following. A
detailed UML diagram is provided in Figure 13, with the key agent logic described below:

Initially, all instantiated FloodAlertOrWarnings are queried from TWA and matched against
available, and hence currently active, ones from the API: (1) Whenever new flood warnings are issued by
the API, the agent initially verifies whether the affected FloodArea has already been instantiated
(i.e., as flood areas are frequently re-used by EA). If the FloodArea is already instantiated, the
corresponding instance is retrieved. Otherwise, a new instance is created, including all meta information
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about geospatial extent, attached water body, and so forth. Subsequently, a new FloodAlertOrWarn-
ing is instantiated, containing all relevant details about severity, warning message as well as the
relationship to the applicable FloodArea. (2) Existing but outdated FloodAlertOrWarnings
get updatedwith latest API information on severity andmessage details; however, some information, such
as the relations to associated FloodArea and Flood event IRI, are kept unaltered. (3) Any previously
instantiated warnings that are no longer available from the API are archived. Archiving shall create a log

Figure 13. Flood Warnings Agent. The Flood Warnings Agent recurringly (i.e., every hour) queries the
EA Real Time flood-monitoring API (Environment Agency, 2021b) and instantiates current flood alerts
and warnings. Newly raised alerts/warnings are instantiated (including the instantiation of associated
flood area(s)) and already existing ones are updated. Ceased alerts/warnings are deleted from the KG,
while associated areas are kept for future reference. Each instantiated alert or warning receives a derived

information markup to connect its derivation instance with all relevant inputs for a flood impact
assessment. This markup is either newly instantiated or updated (details in Figure 14). Exemplary

pseudocode and SPARQL queries for the sections highlighted in red are provided in
Supplementary Materials SI.2 and SI.3.
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of the flood warnings history for a particular FloodArea to allow for elaborate flood risk analyses;
however, this feature is not yet fully implemented and obsolete FloodAlertOrWarning instances
simply get deleted from TWA, together with all relationships, derivation markup, associated timestamps,
and derivation outputs. However, derivation inputs and associated flood areas are not affected, as they
may be associated with or re-used by other flood warnings.

After assimilating latest flood warnings, the agent also instantiates the relevant derivation markup and
adds or updates associated input timestamps to allow for automatic impact (re-)assessment by the Flood
Assessment Agent (details in paragraph below).

Flood Assessment DerivationMarkup: This method is part of the Flood Warnings Agent and handles
the required derivation markup for the automatic assessment of potential impacts associated with
individual flood warnings. It creates and maintains an OntoDerivation instance for each FloodAler-
tOrWarning, adds all necessary information about the responsible derivation agent, and connects it

Figure 14. Flood Assessment Derivation Markup. The Flood Assessment Derivation Markup is a method
of the FloodWarnings Agent to connect instantiated flood alert/warning information with corresponding
flood assessment derivations. Furthermore, all potentially affected buildings (i.e., buildings located

within the flood area polygon) are determined and attached to the derivation instance. Those relation-
ships are required to specify the input instances for each flood assessment and allow the FloodAssessment
Agent (see Figure 15) to automatically detect any outdated information and trigger a re-evalution of

potential impacts when they are accessed.
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with all actual input instances via an isDerivedFrom relationship. A detailed UML diagram of the
markup method is provided in Figure 14, with the key logic described below:

For newly instantiated FloodAlertOrWarnings, the agent retrieves a list of all Buildings
within the flood area by using geospatial querying to assess which building footprints fall within the
ArealExtentPolygon of the flood. Subsequently, for each of these buildings, the agent retrieves the
instantiated PropertyValueEstimation instance if available. If not, it retrieves the corresponding
derivation instance. Finally, an asynchronous derivation is instantiated to connect the flood assessment
derivation instancewith all potentially affectedBuilding IRIs, theirPropertyValueEstimation
IRIs, and the respective FloodAlertOrWarning instance. Any potentially not yet instantiated
timestamps for pure inputs are added, and an initial assessment is requested, which will be executed
the next time the Flood Assessment Agent monitors the triple store.

For already instantiated but updated FloodAlertOrWarnings, the timestamp of the flood
warning instance is updated and a derivation update for the existing derivation IRI is requested. As
ceased flood warnings are deleted from TWA, including their derivation markup, no handling is required
for lifted warnings.

3.3.13. Flood Assessment Agent
The Flood Assessment Agent is a derivation agent to estimate the number of people and buildings at risk of
flooding aswell as the totalmonetary value of the potentially affected building stock.The required input data
for each flood assessment comprises a collection of Building and PropertyValueEstimation

Figure 15. Flood Assessment Agent. The Flood Assessment Agent uses the DIF to assess potential
impacts of (anticipated) floods with regards to (1) number of people at risk, (2) number of buildings at
risk, and (3) estimated building stock value at risk. The agent is implemented as asynchronous derivation
agent which monitors the instantiated information within a specified triple store namespace at predefined
frequency. Pure input instances required to evaluate the impacts of a flood warning are marked up as part
of the instantiation of new flood alerts and warnings (see Figure 13). A more detailed pseudocode

example for the section highlighted in red is provided in Supplementary Material SI.2.
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instances and the respective FloodAlertOrWarning instance itself. A detailed UML diagram is
provided in Figure 15, with key agent logic described below:

Initially, the agent verifies whether the marked-up input instances are suitable to perform a flood
impact assessment, that is, that exactly one FloodAlertOrWarning instance is provided and the set
of PropertyValueEstimation instances does not exceed the number of related Building
instances. Missing property value estimations for some buildings as well as completely absent building
and value estimation inputs are allowed (i.e., however, would result in an impact assessment of zero).

Subsequently, the Severity of the FloodAlertOrWarning is retrieved. For inactive flood
warnings, all potential impacts are set to zero. Otherwise, the impacts are assessed: (1) The number of
people affected is determined by conducting a geospatial count over the population density raster data
within the boundary of theArealExtentPolygon associatedwith theFloodAlertOrWarning of
interest. (2) The number of buildings at risk is assessed by summing up all Building IRIs that are marked
up as potentially affected derivation inputs. And (3) the total monetary value at risk is estimated by
retrieving and summing up the property market values from marked-up PropertyValueEstima-
tion IRIs. Finally, all potential flood impacts are instantiated according to OntoFlood as derivation
outputs. While this assessment logic is intentionally simplistic for this proof-of-concept and concentrates
solely on tangible property loss when evaluating economic impact, it showcases the framework’s general
capabilities for automated impact assessments; however, the technological capability behind the assess-
ment is highly adaptable and supports future refinements as necessary.

3.4. Derived information cascade

The automated flood impact assessment is based on the interplay of three autonomous derivation agents,
namely the Flood Assessment Agent, the Property Value Estimation Agent, and the Average SquareMeter
Price Agent. In reverse order, these agents compute outputs which in turn act as input to the previously
listed agent(s), resulting in a sequence of agent interactions to assess the potential impacts of a flood alert
or warning.

The AveragePricePerSqm is assessed on the postal code level and depends on the following
inputs: (1) the PostalCode for which to assess the average price, (2) a list of previous property sales
TransactionRecords in the applicable area, and (3) the representative PropertyPriceIndex
for that postal code. The PropertyValueEstimation is assessed for each individual building and
can either be derived based on (1) the latest TransactionRecord for that property (if available), and
(2) again the representative PropertyPriceIndex or (3) the FloorArea of the given property, and
(4) the representative AveragePricePerSqm for its location. As depicted in Figure 16, this chains
together both the Property Value Estimation Agent and the Average Square Meter Price Agent to estimate
the current market value of any given property.

The relevant real-world input data is assimilated on a monthly basis by both the EPC Agent and
Property Sales Agent.While the initial derivation markup for both derivations is conducted as part of the
latter one (see Figure SI.3 in the Supplementary Material), both agents ensure to update attached
timestamps whenever they update an instantiated piece of information. There are two options to initially
mark up the chained derivations: either (1) solely instantiate the derivation markup or (2) instantiate the
derivation markup and request an immediate instantiation of newly derived information. In the first case,
the initial derivation assessment will only be conducted once the required outputs are requested by a user
or agent (i.e., at the next scheduled execution of the asynchronous derivation agent or upon HTTP
request). Until then, themarkup looks like depicted in Figure 16a). The latter case (depicted in Figure 16b)
immediately triggers an initial derivation assessment and instantiates the respective outputs in the KG
(including re-connecting the derivation markup). This scenario also reflects situations where derived
information is found outdated and re-evaluated based on updated pure inputs.

As both the average price per squaremeter and the propertymarket value assessments are relatively fast
and computationally inexpensive, both derivations are instantiated subsequently as synchronous deriv-
ations for new information to immediately compute and instantiate the newly derived information
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Figure 16.Derivation markup for PropertyValueEstimation. The estimated market value of any
property depends on (i.e., isDerivedFrom) the FloorArea and latest available Transaction-
Record of the property as well as the AveragePricePerSqm and the PropertyPriceIndex of

the associated postal code and administrative district, respectively (details in Figure SI.6 in the
Supplementary Material). As the AveragePricePerSqm is a derived quantity itself, there are two

potential scenarios as detailed in (a,b).
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(i.e., case 2). Hence, the AveragePricePerSqm shall already be instantiated when creating the
PropertyValueEstimation markup, making the depicted case in Figure 16b the default scenario.
Since all required inputs can be assumed to be instantiated, this also eases the further markup for the
overall flood impact assessment (depicted in Figure 17).

The flood impacts assessment is evaluated for each instantiated FloodAlertOrWarning and
depends on (1) theFloodAlertOrWarning itself as well as (2) a collection ofBuilding instances
and (3) associated PropertyValueEstimation. One single flood warning/alert can stretch across
multiple postal codes with thousands of buildings. Hence, the potential impact assessment is expected
to take some time and is thus marked up as asynchronous derivation. The Flood Assessment Agent
monitors the status of instantiated derivations with a predefined frequency to detect potentially outdated
inputs which could affect the impact of a flood over the lifetime of the warning. Those inputs include
both the Severity and ArealExtent of the alert/warning as well as newly instantiated or updated
property information, such as FloorArea or sales TransactionRecords, for potentially affected
buildings or the PropertyPriceIndex for impacted administrative districts. When an update is
requested, the Flood Assessment Agent uses a sequence of calls to the Average Square Meter Price
Agent and Property Value Estimation Agent to update relevant derived information and generate a
current flood impact estimate.

Figure 17. Flood assessment markup (instantiated). The potential impacts of a flood alert or warning
(i.e., number of people, buildings, and total property value at risk) isDerivedFrom the Flood-

AlertOrWarning instance itself as well as all Buildings and respective PropertyValueEs-
timations within the associated flood area. Depending on the status of the property value estimation
derivation, a new flood assessment can trigger a cascade of up to three derivation agents in sequence:
Flood Assessment Agent requiring input instances to be updated by the Property Value Estimation Agent,

which in turn relies on outputs of the Average Square Meter Price Agent.
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4. Implementation and deployment

The overall implementation follows a containerized approach offering a flexible, scalable, and platform-
independent way to deploy and manage individual agents. Each agent is implemented as an individual
Docker container and deployed to an overarching Docker stack enabling inter-container communication.
All Docker images are published on GitHub’s package repository to ease deployment and reproducibility.
The design supports both (remote) server and local deployment to facilitate a truly distributed knowledge
graph with decentralized hosting of data and computational capabilities. To ensure reliable service
availability, the entire stack for this proof-of-concept is deployed remotely in the cloud.

Within each stack, all agents have access to the same triple store (i.e., Blazegraph) as well as an instance
of PostGIS, GeoServer, and Ontop to overcome limitations in triple-store native handling of geospatial
information (see Sections 2.6 and 3.2.1). The proposed approach stores geospatial information in PostGIS
(i.e., using standard libraries such as GDAL to perform data ingestion), while providing a corresponding
OBDA mapping to allow access to the data according to the corresponding ontology using regular
SPARQL syntax. Furthermore, PostGIS can be directly linked to GeoServer to support streaming as well
as (dynamic) styling of relevant geospatial information to the World Avatar Visualization Framework
(VF). Moreover, PostGIS is used as relational database by the TimeSeriesClient to store actual time
series data.

Once deployed, the developed agent framework continuously integrates sensor data (i.e., weather,
river levels, air quality) and flood warning information for the entire UK, along with building charac-
teristics and property market data specific to the vicinity of King’s Lynn. It is noteworthy that not all data
available from the previously referenced APIs gets instantiated; rather, only the pertinent aspects captured
by the developed ontologies and relevant to the discussed use case are considered. After several months of
uptime, the instantiated dataset comprises approximately 10.5 million triples, accompanied by around
13,000 time series tables as well as 12,000 geospatial entities (i.e., building footprints and flood areas) in
PostGIS. To date, we have not encountered any storage issues, and the system operates seamlessly on a
standard Digital Ocean machine.

The VF is used as uniform visualization interface for all instantiated data. It is implemented in
TypeScript and compiled into a single minified JS file (accompanied by a single minified CSS file).
New visualizations can be created as new Docker containers by providing a few configuration files to
import the remotely hosted VF library (along with other dependencies) as well as including further data
and HTML elements as required. The used mapping provider Mapbox supports the visualization of 2D
data (with the option to extrude 2D polygons into basic 3D polyhedrons) from local files or from WMS
endpoints (e.g., served via GeoServer). Both meta and time series data for features of interest are queried
directly from TWA and displayed on the side panel on the fly upon request.

4.1. Agent deployment

The overall agent deployment consists of two phases: (1) a rather manual pre-processing of geospatial
building data together with the initial building instantiation, followed by (2) the ongoing autonomous
assimilation of further building data as well as additional dynamic data feeds.

During the initial building instantiation, several OS datasets need to be downloaded, namely, the BHA
containing high-resolution building footprints and building height information, the OpenMap Local with
coarser building footprints data, the Code-Point with Polygon containing postcode polygons, and the
Digital Terrain Model DTM5 with detailed terrain raster data in 5 m resolution. These datasets are
processed using QGIS (QGIS Development Team, 2021) to create a single consolidated shapefile
containing all relevant building data: Both the BHA and OpenMap Local building footprints are merged
to maximize building coverage as some buildings are only available in either of the datasets. In case of
overlaps, the BHA data is used. Additionally, corresponding postcodes and building elevations are
extracted from Code-Point polygons and DTM5, respectively, and added to each building node.
Subsequently, FME (Safe Software Inc., 2022) is used to convert the consolidated shapefile into
CityGML format as required by the Building Importer Agent. This includes assigning the postcodes as
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Generic Attributes and extruding each building based on its height information. Finally, the created
CityGML file is provided to the Building Importer Agent to be instantiated according to OntoCityGML.
The TSD Agent is then called to identify and instantiate both thematic surfaces and LoD0 building
footprints before the UPRN Agent attaches UPRN information from the OS Feature API to all buildings
based on their LoD0 footprints. This marks the end of the manual building data instantiation and the entire
workflow is schematically outlined in Figure 18.

After the initial geospatial building instantiation, all remaining agents are deployed to the Docker
stack. The EPC Agent, which initializes non-OntoCityGML building representations, needs to be
deployed first, before any additional building data can be instantiated. While all OntoEMS instantiation
agents can populate individual triple store namespaces, all EPC, property sales, and flood warnings data
need to get instantiated into the same namespace to enable the derivation agents to monitor and detect
relevant updates. Start-up of theMet Office, Air Quality, and River Level Agents automatically registers a
recurring background task to assimilate latest data once per day. Similarly, the EPC and Property Sales
Agent ingest latest building-related data on a monthly basis, while current flood warnings are assimilated
hourly by the Flood Warnings Agent.

4.2. Consolidated visualization

Based on ontologies to represent both data and inherent knowledge, TWA provides a semantic ecosystem
to interact with a variety of data from previously isolated sources in an aligned format. TWA creates a rich

Figure 18. Building instantiation workflow. The instantiation currently still requires some manual steps,
that is, geospatial processing using QGIS and FME. After instantiating the buildings using the Building
Importer Agent, also the Thematic Surface Discovery and UPRN agents need to be invoked manually to
ensure that geospatially represented buildings haveUPRNs attached (if available). Further building data
instantiation (i.e., EPC Agent, Property Sales Agent) happens automatically once the respective agents

are deployed.
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knowledge representation by combining both rather static (i.e., buildings) and dynamic
(i.e., environmental measurements and flood warnings) data in one single system, enriching individual
pieces of information with meaning and providing additional context.

The World Avatar Visualization Framework provides a web-based interface to visualize data from
TWA. Figure 19 shows an example visualization of the current use case in the smart city context,
combining consolidated building information with environmental measurements and forecasts from
various data providers. It offers a mutual and aligned visualization of previously isolated weather, air
quality, and river level data, including information about associated measuring stations as well as
corresponding time series data. This empowers citizens to see related information (e.g., river level
readings as well as current and projected rainfall data or air pollutant concentration measurements and
projected wind conditions) in one single system, as compared to various independent locations or
websites. The available building data provides detailed information about key construction characteris-
tics, energy performance, usage types, previous and current market value estimates, and so forth, and is
maintained by a set of continuously running input agents to keep it current in time. The integrated map-
based visualization enables both geospatial and time series analyses, for example, to understand building
usages in a certain area.

4.3. Cross-domain flood impact assessment

The Flood Assessment Agent continuously monitors a predefined triple store at a specified frequency and
automatically re-evaluates any outdated flood impact derivation instances. Figure 20 illustrates this
intrinsic dynamism by showing an initial flood impact assessment as well as an updated one after an
increase in property prices side by side:

Initially, the FloodWarnings Instantiation Agent ingests a new flood alert into TWA andmarks it up as
an asynchronous derivation. The next time the derivation agent processes all requested derivations, it
estimates the potential flood impacts of the raised alert. This initial flood impact assessment indicates that
the issued alert may affect 3475 people living in the associated flood area, with 920 buildings at risk,

Figure 19. Consolidated visualization. A built-in Visualization Framework provides a uniform interface
to retrieve and visualize data from TWA. It creates an aligned visualization of previously isolated data

sources side by side to foster fact-based decision-making and enable insights across domains.
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Figure 20. Automated flood assessment. The automated re-evaluation of potential flood impacts is
depicted for two subsequent assessments of the same flood alert with a simulated property price index hike

of +20% in between. (a) Depicts the initial assessment of properties at risk. During a subsequent
evaluation by the Flood Assessment Agent, the updated PropertyPriceIndex is identified by the
framework, triggering an update of all PropertyValueEstimations before computing the impact
estimate. Corresponding changes to the overall property value at risk are shown in (b). Property market
value changes can be seen from updated colors of individual buildings (very mildly though) or easier from

the side panel in aggregated form.
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valued at £328.9 m (Figure 20a). The building colors in the figure represent property market value
estimates, with red indicating high and blue indicating low property prices.

After the initial assessment, a 20% increase in the property price index is instantiated to simulate a rise
in the value of residential properties. This update results in all property value estimations becoming
outdated and, accordingly, also affects the dependent flood assessment derivation instance. The Flood
Assessment Agent automatically detects and updates the affected flood assessment derivation instance the
next time it monitors the triple store. The new evaluation still shows that 3475 people and 920 buildings
are at risk; however, the total property value has increased to £394.2 m (Figure 20b). While this simulated
index hike is for illustrative purposes only, it demonstrates the system’s dynamic capabilities., for
example, to automatically reflect adjustments in the monthly UKHPI in any subsequent flood assessment.
Similarly, updated flood alert/warning data (i.e., change in severity, warning message details), newly
instantiated buildings, or outdated property value instances would result in an automatic re-assessment.
Whenever a flood alert ismarked as inactive at the flood-monitoringAPI, potential impacts are assessed as
zero and all assessment triples are ultimately deleted from TWA once the flood alert vanishes from the
API. This dynamism ensures that TWA is inherently evolving with time to provide up to date insights into
current flood situations. To further illustrate this aspect, additional screenshots of an actual flood warning
situation and its evolution throughout a day are provided in Supplementary Material SI.4.

The proposed framework is well suited to provide actionable insights during disaster situations. The
performance for various scales of flooding events has been tested on a virtual machine (4 Intel Xeon Gold
6248 CPUswith 2.50 GHz and 32GBDIMMRAM) hosted on Digital Ocean. Tests have been conducted
for three flood warnings, involving around 400, 900, and 5100 buildings, respectively. Processing times
have been measured from the moment the framework picks up the derivation for flood impact (re-)
assessment to the timestamp when all information is up-to-date. Each test has been repeated at least three
times to obtain meaningful results. As expected, the evaluation time scales linearly with the number of
affected buildings, with the current implementation processing approximately 3–10 buildings per second
(i.e., 10 buildings per second if all underlying information is still up to date and 3 buildings per second if
all underlying information requires updating). It should be noted, however, that the actual processing time
is contingent upon the specific use case and is likely to evolve with more sophisticated impact estimation
methods. Moreover, the framework is designed to be scalable and multiple Flood Assessment Agents
could be deployed simultaneously to enhance performance as required.

Limitations: Despite providing this proof-of-concept for a semantic software agent-based automated
flood assessment, several limitations of the work shall be emphasized: Firstly, the assessment does not
include all buildings, but only considers the actually instantiated share. As the building instantiation
workflow is based on EPC data, only buildings with available EPC information are part of the analysis;
however, it has been observed, that EPC data is only available for slightly above 50% of the buildings in the
vicinity of King’s Lynn (Hofmeister et al., 2023), which results in an expected underprediction of monetary
impact from flood warnings. Secondly, the current approach of estimating property market values is
intentionally simplistic. While this is sufficient for a proof-of-concept, it overlooks several crucial factors
which can significantly affect property prices, such as usage classification (i.e., domestic vs. non-domestic),
retrofitting, and micro-location, just to name a few. Hence, the results shall only be interpreted as rough
estimates and the evaluation approach shall be refined in the future to allow for amore elaborate assessment.
Thirdly, the current impact assessment is limited to the vulnerable share of population as well as the number
and value of potentially affected buildings, while other aspect of the built environment (e.g., roads or further
network assets) are currently neglected. Lastly, it should be noted that the process of enriching instantiated
buildings with corresponding sales transactions relies on fuzzy address matching between EPC and HM
Land Registry data, as UPRNs are not provided in Land Registry’s transaction record data. Unfortunately,
free text address information are not always provided in an aligned fashion. For instance, mismatches in
address lines, the use of building names instead of numbers, and differences in granularity with regards to
building (sub-)numbers have been observed. Such discrepancies can result in erroneous instantiations of
previous sales transactions, either by attaching a transaction record to the wrong building instance
(i.e., another building with higher confidence score of fuzzy match) or not instantiating a transaction record
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for a building instance at all (i.e., required confidence score of fuzzy match not reached). However, it needs
to be noted that various scoring methods and confidence scores have been screened to minimize this
problem.

5. Conclusions

This work proposes a collection of agents that is able to synthesize multiple previously isolated data feeds
into an automated impact assessment for imminent flood hazards. Three connected ontologies are
developed to dynamically instantiate a semantically rich representation of buildings, various environ-
mental observations, and flooding-related information. An ecosystem of autonomous input agents has
been developed and deployed to continuously assimilate multiple data feeds from disconnected sources,
including both rather static and near real-time data, to ensure that the World Avatar remains current in
time. The capabilities to provide cross-domain insights and decision support for smart city and disaster
management are demonstrated by bringing together live data about potential flood events with informa-
tion about buildings as well as further environmental observations in their vicinity. A unified visualization
interface is provided to interact with and analyze the instantiated data. Beyond the visualization, this work
provides access to all incorporated publicly available data sources via one single SPARQL endpoint,
using aligned knowledge models based on the developed ontologies.

Furthermore, the agent-based autonomous cascading of information enabled by the derived informa-
tion framework is demonstrated: a re-assessment of potential flood impacts is triggered and automatically
executedwhenever a new flood alert or warning is instantiated or instantiated information for any relevant
input is updated. The impact of potential flooding events is assessed with regards to the number of likely
affected people as well as the number and estimated market value of buildings at risk. Together with the
ecosystem of continuously running input agents, this ensures that up-to-date insights into potential
flooding situations and their consequences are available at all times. While the currently implemented
assessment logic is intentionally simplistic and concentrates solely on tangible property loss for this proof-
of-concept, it showcases the framework’s general effectiveness for automated impact assessments. The
primary contribution of this work is the technological capability behind the assessment, with the
underlying evaluation methodology being adaptable for refinement as necessary and the demonstrated
information cascading infrastructure providing a promising approach to fully automate smart city
workflows and foster interoperability. In disaster management, this is expected to improve timely
decision-making and initiate proactive measures to mitigate adverse effects of imminent flood hazards,
ultimately contributing to the safety and well-being of vulnerable population and infrastructure. The
proposed system is easily deployable to any other city in the UK, and this work is currently ongoing.

Nomenclature

ABox Assertional Component (of an ontology)
API Application Programming Interface
BHA Building Height Attribute (OS Premium dataset)
CEA City Energy Analyst
DIF Derived Information Framework
EA Environment Agency
ENVO Environmental Ontology
EPC Energy performance certificate
GEMET General Multilingual Environmental Thesaurus
GeoSPARQL Geographic Query Language for RDF Data
IRI Internationalized Resource Identifier
KG Knowledge Graph
LoD Level of Detail
MEMOn Modular Environmental Monitoring (ontology)
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OBDA Ontology-Based Data Access
OGC Open Geospatial Consortium
ONS Office for National Statistics
OS Ordnance Survey
OWL Web Ontology Language
PPD (HM Land Registry’s) Price Paid Data
RDF Resource Description Framework
SAREF Smart Appliances REFerence (ontology)
SOSA Sensor, Observation, Sample, and Actuator (ontology)
SPARQL SPARQL Protocol and RDF Query Language
SSN Semantic Sensor Network (ontology)
SWEET Semantic Web for Earth and Environmental Terminology
TBox Terminological Component (of an ontology)
TWA The World Avatar
UK-AIR UK Air Information Resource
UKHPI UK House Price Index
UML Unified Modeling Language
UPRN Unique Property Reference Number
VF Visualization Framework
W3C World Wide Web Consortium
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A. Appendix

A.1. Namespaces
: <https://w3id.org/bot#>.

: <http://www.purl.org/oema/infrastructure/>.

: <http://bimerr.iot.linkeddata.es/def/building#>.

: <http://www.google.com/digitalbuildings/0.0.1/facilities#>.

: <https://www.theworldavatar.com/kg/ontoderivation/>.

: <http://purl.obolibrary.org/obo/>.

: <http://www.opengis.net/ont/geosparql#>.

: <http://www.bigdata.com/rdf/geospatial/literals/v1#>.

: <http://ontology.eil.utoronto.ca/icity/Building/>.

: <https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL#>.

: <http://ontology.eil.utoronto.ca/icontact.owl#>.

: <http://landregistry.data.gov.uk/def/ppi/>.

3: <http://purl.org/iot/vocab/m3-lite#>.

: <http://www.ontology-of-units-of-measure.org/resource/om-2/>.

: <http://www.theworldavatar.com/ontology/ontocitygml/citieskg/OntoCityGML.owl#>.

: <https://www.theworldavatar.com/kg/ontobuiltenv/>.

: <https://www.theworldavatar.com/kg/ontoems/>.

: <https://www.theworldavatar.com/kg/ontoflood/>.

: <https://www.theworldavatar.com/kg/ontouom/>.

: <http://www.w3.org/2002/07/owl#>.

: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

: <http://www.w3.org/2000/01/rdf-schema#>.

: <http://environment.data.gov.uk/flood-monitoring/def/core/>.

: <http://semanticscience.org/resource/>.

: <http://www.w3.org/2004/02/skos/core#>.

: <http://sweetontology.net/phen/>.

: <http://sweetontology.net/phenHydro/>.

: <http://www.w3.org/2006/time#>.
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: <https://www.theworldavatar.com/kg/ontotimeseries/>.

: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl#>.

: <http://www.w3.org/2001/XMLSchema#>.
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