THE KERNEL OF $C(N) \rightarrow C(N(\sqrt{-1}))$
 AND THE 4-RANK OF $K_{2}(O)$

RUTH I. BERGER

Abstract

An upper bound is given for the order of the kernel of the map on Sideal class groups that is induced by $A \cdot O_{N} \mapsto A \cdot O_{N(\sqrt{-1})}$. For some special types of number fields F the connection between the size of the above kernel for $N=F(\sqrt{-\sigma})$ and the units and norms in $F(\sqrt{\sigma})$ are examined. Let $K_{2}(O)$ denote the Milnor K-group of the ring of integers of a number field. In some cases a formula by Conner, Hurrelbrink and Kolster is extended to show how closely the 4-rank of $K_{2}\left(O_{F(\sqrt{-\sigma})}\right)$ is related to the 4-rank of the S-ideal class group of $F(\sqrt{\sigma})$.

1. Notation. Let N be a number field with ring of integers O_{N}. Let $C(N)$ denote the S-ideal class group of N , where S is the set consisting of all infinite and dyadic primes of N . We examine the kernel of $C(N) \rightarrow C\left(N(\sqrt{-1})\right.$, the map induced by $A \cdot O_{N} \mapsto A$. $O_{N(\sqrt{-1})}$. For the most part, this paper will deal only with quadratic extensions of a special type of number field. The following property is a natural generalization of properties of Q. It is also a special case of the regular fields examined in [4] and [5].
(1.1) Definition. A number field is said to have property (*) if it is totally real, contains exactly one dyadic prime, has odd S-class number and contains S-units with independent signs; where S is the set of all its infinite and dyadic primes.

For a number field N , let $r_{1}(N)$ denote the number of its real embeddings, $r_{2}(N)$ the number of its pairs of complex embeddings and $g_{2}(N)$ the number of its dyadic primes. Let U_{N} denote the group of S-units of N , where S is as above. If N has $(*)$ the kernel of $U_{N} /\left(U_{N}\right)^{2} \rightarrow(\mathbb{Z} / 2)^{r_{1}(N)}$ has order 2; i.e. there exists exactly one non-trivial totally positive square class of S-units. This square class, or any representative, will be denoted by τ_{N}. Throughout this paper F, E and L will denote very specific types of number fields, see below, while N will stand for an arbitrary number field.
(1.2) Notation. F is a number field with property $(*), D_{F}$ is the dyadic prime of F and $\sigma \in F^{*} /\left(F^{*}\right)^{2}$ is a non-trivial totally positive square class. $E=F(\sqrt{\sigma}), L=$ $F(\sqrt{-\sigma})$, and M is their common quadratic extension. $I_{*}: C(E) \rightarrow C(M)$ and $i_{*}: C(L) \rightarrow$ $C(M)$, are the maps on S-class groups induced by $A \mapsto A \cdot O_{M}$. The respective norm maps are denoted by $N_{M \mid E}, N_{M \mid L}, N_{E \mid F}$. The cohomology group $H^{0}\left(\operatorname{Gal}(E \mid F), U_{E}\right)$ will be used frequently and if no confusion is possible it will be abbreviated by H^{0}. Its quotient with the subgroup generated by the class of τ_{F} will be denoted by H^{0} / τ.

One of the main tools used throughout this paper will be the exact hexagon from [2], applied to the rings of S -integers of quadratic extensions of number fields. Here is an overview of this material as it pertains to this paper:

Let $M \mid N$ be a quadratic extension of number fields and let $C_{2}=\operatorname{Gal}(M \mid N)$. When broken up, the exact hexagon yields the following exact sequence:

$$
H^{0}\left(C_{2}, U_{M}\right) \xrightarrow{i_{0}} R^{0}(M \mid N) \xrightarrow{j_{1}} H^{1}\left(C_{2}, C(M)\right) \rightarrow H^{1}\left(C_{2}, U_{M}\right) \xrightarrow{i_{1}} R^{1}(M \mid N) \rightarrow H^{0}\left(C_{2}, C(M)\right)
$$

All six groups in the hexagon are elementary abelian 2-groups.
(1.3) FACTS. a) $H^{0}(\operatorname{Gal}(M \mid N), C(M)) \cong H^{1}(\operatorname{Gal}(M \mid N), C(M))$; since $C(M)$ is finite abelian.
b) The group $R^{0}(M \mid N)$ is defined as a quotient of cohomology groups. It injects into $H^{0}\left(C_{2}, M^{*}\right)$; the composition of this injection with i_{0} commutes with the inclusion of $H^{0}\left(C_{2}, U_{M}\right)$ into $H^{0}\left(C_{2}, E^{*}\right)$.
c) In Section 6 of [2] the 2 -ranks of R^{0} and R^{1} are computed. Let s be the number of dyadic primes of N that are inert in M , then

$$
\begin{aligned}
& 2 \operatorname{rk} R^{0}(M \mid N)= \begin{cases}0 & \text { if } M \mid N \text { is unramified and } s=0 \\
s-1+\#(\text { primes of } N \text { that ramify in } M) & \text { otherwise }\end{cases} \\
& 2 \mathrm{rk} R^{1}(M \mid N)= \begin{cases}1 & \text { if } M \mid N \text { is unramified and } s=0 \\
\#(\text { odd fnite primes of } N \text { that ramify in } M) & \text { otherwise }\end{cases}
\end{aligned}
$$

d) An S-version of [2] (7.1) gives an injection of $\operatorname{Ker}\left(C(N) \rightarrow C(M)\right.$ into $H^{1}\left(C_{2}, U_{M}\right)$. Furthermore, if $M \mid N$ is unramified or if $M \mid N$ is ramified but no finite prime of F outside S is ramified in E then $H^{1}\left(C_{2}, U_{M}\right) \cong \operatorname{Ker}(C(N) \rightarrow C(M))$.
2. The Kernel of $\mathbf{C}(\mathbf{N}) \rightarrow \mathbf{C}(\mathbf{N}(\sqrt{-1}))$. The kernel of $C(N) \rightarrow C(N(\sqrt{-1}))$ is an elementary abelian 2-group, see (1.3.d). The following generalizes the bound from [6] (2.4).
(2.1) Theorem. Let N be a number field and $M=N(\sqrt{-1})$. Then

$$
2 \mathrm{rk} \operatorname{Ker}(c(N) \rightarrow C(M)) \leq r_{2}(N)+g_{2}(M)-g_{2}(N) .
$$

Proof. If $\sqrt{-1} \in N$ the statement is trivially true. Else: Let n be the largest integer such that N contains $\mathbb{Q}\left(\zeta_{2^{n}}\right)^{+}=\mathbb{Q}\left(\zeta_{2^{n}}+\bar{\zeta}_{2^{n}}\right)$, where $\zeta_{2^{n}}$ denotes a primitive $\left(2^{n}\right)^{t h}$ root of 1 . The element $2+\zeta_{2^{n}}+\bar{\zeta}_{2^{n}} \in U_{N}$ is the norm of $1+\zeta_{2^{n}} \in U_{M}$. By choice of n this element is not a square in N , hence its square class is a non-trivial element in the kernel of $U_{N} / U_{N}^{2} \rightarrow H^{0}\left(C_{2}, U_{M}\right)$. By Dirichlet's S-unit theorem the 2 -rank of U_{N} / U_{N}^{2} is given by $r_{1}(N)+r_{2}(N)+g_{2}(N)$. This yields an upper bound on the 2-rank of $H^{0}\left(C_{2}, U_{M}\right)$:

$$
2 \operatorname{rk} H^{0}\left(C_{2}, U_{M}\right) \leq r_{1}(N)+r_{2}(N)+g_{2}(N)-1 .
$$

If $M \mid N$ is unramified and all dyadic primes of N split in M then $2 \mathrm{rk} R^{0}(M \mid N)=0$ and $2 \mathrm{rk} R^{1}(M \mid N)=1$ and of course $r_{1}(N)=0$. If $M \mid N$ is ramified or if there exists a dyadic prime of N that is inert in M then $2 \mathrm{rk} R^{0}(M \mid N)=2 \cdot g_{2}(N)-g_{2}(M)+r_{1}(N)-1$ and $2 \mathrm{rk} R^{1}(M \mid N)=0$. In either case, taking the alternating sum of 2-ranks in the exact hexagon associated to the quadratic extension $M \mid N$ yields the desired bound.

Now consider the maps I_{*} and i_{*} defined in (1.2). By (2.1) the kernel of I_{*} is either trivial or $\mathbb{Z} / 2$. In fact, it can only be non-trivial if $g_{2}(M)-g_{2}(E)=1$, which is the case exactly if $-\sigma$ is a local square at D_{F}. The kernel of i_{*} can be much bigger, as (2.3) below shows. Recall the explicit formula for the 2-rank of $\operatorname{Ker} i_{*}$ from [1] (4.1 and 4.3):
(2.2) If σ is not a local square at D_{F} then $\operatorname{Ker} i_{*} \cong \operatorname{Ker} I_{*} \times \operatorname{Coker} i_{0}(M \mid E)$. Furthermore, if $-\sigma$ is not a local square either, then Coker $i_{0}(M \mid E) \cong H^{0} / \tau$; else Coker $i_{0}(M \mid E) \cong H / \tau$, where H is a subgroup of index 2 of $H^{0}=H^{0}\left(\operatorname{Gal}(E \mid F), U_{E}\right)$.
(2.3) Example. Number fields of arbitrarily large degree for which the 2-rank of the kernel of i_{*} achieves the upper bound from (2.1). Let F be any number field with (*) and $r:=r_{1}(F)$. Let u_{1}, \ldots, u_{r+1} be a basis of the $\mathbb{Z} / 2$ vector space U_{F} / U_{F}^{2}. By class field theory there exist finite non-dyadic primes $P_{j}, 1 \leq j \leq r+1$, such that P_{j} is inert in $F\left(\sqrt{u_{j}}\right) \mid F$ and P_{j} splits in $F\left(\sqrt{u_{i}}\right) \mid F$ for all $i \neq j$. By the Approximation theorem there exists $\sigma \in F^{*}$ such that σ is totally positive, $\operatorname{ord}_{P_{j}}(\sigma) \equiv 1 \bmod 2$ for all j and $\operatorname{ord}_{D_{F}}(\sigma) \equiv 1$ $\bmod 2$. For this choice, neither σ nor $-\sigma$ is a local square at D_{F}. For $E=F(\sqrt{\sigma})$ the only S-units of F that are norms from E are squares, hence $U_{F} / U_{F}^{2}=U_{F} / N_{E \mid F}\left(U_{E}\right)$, and this has a 2 -rank of $r+1$. By (2.2) for $L=F(\sqrt{-\sigma})$ the 2-rank of the kernel of i_{*} equals the 2-rank of H^{0} / τ, hence $2 \mathrm{rk} \mathrm{Ker} i_{*}=r_{1}(F)=r_{2}(L)$. This is the upper bound in this case. What does the kernel of i_{*} look like if σ is a local square at D_{F} ?
(2.4) THEOREM. Let F be a number field with property (*) and $\sigma \in F^{*} /\left(F^{*}\right)^{2}$ a nontrivial totally positive square class such that σ is a local square at D_{F}. Let $E=F(\sqrt{\sigma})$, $L=F(\sqrt{-\sigma})$ and $M=E(\sqrt{-1})$. Then

$$
\operatorname{Ker} i_{*}(C(L) \rightarrow C(M)) \cong \mathbb{Z} / 2 \times H^{0}\left(\operatorname{Gal}(E \mid F), U_{E}\right) / \tau
$$

Proof. From the exactness of the exact S-hexagon associated to $M \mid E$ one obtains:

$$
H^{1}(\operatorname{Gal}(M \mid E), C(M)) \cong H^{1}\left(\operatorname{Gal}(M \mid E), U_{M}\right) \times \operatorname{Coker} i_{0}(M \mid E) \cong \operatorname{Coker} i_{0}(M \mid E)
$$

where $H^{1}\left(\operatorname{Gal}(M \mid E), U_{M}\right)$ is trivial by the bound in (2.1). On the other hand, since $h(F \sqrt{-1})$ is odd, $H^{1}(\operatorname{Gal}(M \mid E), C(M)) \cong H^{0}(\operatorname{Gal}(M \mid L), C(M))$, which is isomorpic to $H^{1}(\operatorname{Gal}(M \mid L), C(M))$. Other groups in the exact S-hexagon associated to $M \mid L$ are: $H^{1}\left(\operatorname{Gal}(M \mid L), U_{M}\right) \cong \operatorname{Ker} i_{*}$ and $R^{0}(M \mid L) \cong 1$ and $R^{1}(M \mid L) \cong \mathbb{Z} / 2$. From the hexagon, one obtains an exact sequence:

$$
1 \rightarrow \text { Coker } i_{0}(M \mid E) \rightarrow \operatorname{Ker} i_{*} \xrightarrow{i_{1}} \mathbb{Z} / 2
$$

Hence, $\operatorname{Ker} i_{*} \cong \mathbb{Z} / 2 \times$ Coker $i_{0}(M \mid E)$ if i_{1} is surjective, and Ker $i_{*} \cong$ Coker $i_{0}(M \mid E)$ if i_{1} is trivial. The cokernel of $i_{0}(M \mid E)$ is determined as in [1] (4.3): If there exists a totally positive S-unit in E that is not a norm from M then Coker $i_{0}(M \mid E) \cong H^{0} / \tau$. If all totally positive S-units of E are norms from M then Coker $i_{0}(M \mid E) \cong \mathbb{Z} / 2 \times H^{0} / \tau$. The conclusion follows from the next theorem.
(2.5) THEOREM. Let F be a number field with property (*) and $\sigma \in F^{*} /\left(F^{*}\right)^{2}$ a nontrivial totally positive square class such that σ is a local square at D_{F}, let $E=F(\sqrt{\sigma})$ and $L=F(\sqrt{-\sigma})$ and $M=E(\sqrt{-1})$. There exists a totally positive S-unit in E that is not a norm from M if and only if $i_{1}: \operatorname{Ker} i_{*} \rightarrow \mathbb{Z} / 2$ is non-trivial.

Remark. The map i_{1} from the exact S-hexagon associated to the extension $M \mid L$ takes $H^{1}\left(\operatorname{Gal}(M \mid L), U_{M}\right) \cong \operatorname{Ker} i_{*}$ to $R^{1}(M \mid L) \cong \mathbb{Z} / 2$. If σ is a local square at D_{F}, i_{1} can also be interpreted as the Artin reciprocity law map ω, on the S-ideal class group of L , restricted to Ker i_{*}; see [2] (7.2).

Proof. $\quad R^{1}(M \mid L) \cong \mathbb{Z} / 2$ is generated by the class of any non-dyadic prime $P_{0} \subset$ O_{L} that is inert in $M \mid L$. To check if any such generator comes from Ker i_{*}, we use the exactness of the S-hexagon and check where it maps to in $H^{0}(\operatorname{Gal}(M \mid L), C(M))$.

Let R_{L} denote the ring of S-integers of L. Let $P_{0} \subset R_{L}$ be a prime ideal which is inert in $M \mid L$, and for which $p_{0}=P_{0} \cap R_{F}$ is not ramified in L. If p_{0} were inert in $L \mid F$ then $c l\left(P_{0}^{h}\right)=1 \in C(L)$, where h is the odd $h(F)$. This is not possible since the Artin reciprocity law map takes $c l\left(P_{0}^{h}\right) \in C(L)$ to a generator of $\operatorname{Gal}(M \mid L)$. It follows that p_{0} splits in $L \mid F$, hence $-\sigma$ is a local square at p_{0}. But -1 is not a local square, hence σ is not a local square at p_{0}. Therefore, p_{0} is inert in $E \mid F$, and $p_{0} \cdot R_{E}$ splits in $M \mid E$.

Since F contains S -units with independent signs, there exists a totally positive $x \in F^{*}$ such that $x \cdot R_{F}=p_{0}^{h} \cdot R_{F}$. Let $\mathcal{P}_{0}=P_{0} \cdot R_{M}$ and $\operatorname{Gal}(M \mid E)=\left\langle T_{1}\right\rangle$. In R_{M} the ideal generated by x is: $\left(\mathcal{P}_{0} \cdot T_{1} \mathcal{P}_{0}\right)^{h} \cdot R_{M}$. Therefore $\left\langle x^{-1}, \mathscr{P}_{0}^{h} \cdot R_{M}\right\rangle$ is an element of $R^{0}(M \mid E)$ and under $j_{1}(M \mid E)$ it maps to $c l\left(\mathcal{P}_{0}^{h}\right)$ in $H^{1}(\operatorname{Gal}(M \mid E), C(M))$.

Now, $i_{1}(M \mid L)$ is surjective iff $c l\left(P_{0}\right)=1 \in H^{0}(\operatorname{Gal}(M \mid L), C(M))$ for any, and hence all, $\mathcal{P}_{0}=P_{0} \cdot R_{M}$, where P_{0} is inert in $M \mid L$. Since $F(\sqrt{-1})$ has odd S-class number: $H^{0}(\operatorname{Gal}(M \mid L), C(M)) \cong H^{1}(\operatorname{Gal}(M \mid E), C(M))$ and therefore: $i_{1}(M \mid L)$ is surjective iff $c l\left(\mathcal{P}_{0}\right)=1 \in H^{1}(\operatorname{Gal}(M \mid E), C(M))$. The same holds for $c l\left(\mathcal{P}_{0}^{h}\right)$.

From the exactness of the S -hexagon associated to $M \mid E$ this is equivalent to: an inverse image under $j_{1}(M \mid E)$ of $\operatorname{cl}\left(\mathscr{P}_{0}^{h}\right)$ lies in $\operatorname{Im} i_{0}(M \mid E) \subset R^{0}(M \mid E)$ for any \mathscr{P}_{0} as above. That is, $\left\langle x^{-1}, P_{0}^{h} \cdot R_{M}\right\rangle$ lies in the image of $i_{0}(M \mid E)$ for all totally positive x as above. From the isomorphism of $R^{0}(M \mid E)$ with $(\mathbb{Z} / 2)^{r_{1}(E)+1}$, it follows that this is equivalent to: there exists a totally positive S-unit in E that is not a norm from M .

The following example shows that both cases from (2.5) can occur. Using the notation from [2]: a prime $l \in \mathbb{Z}, l \equiv 1 \bmod 8$, is said to be in $A(2)^{-}$if the class number of $\mathbb{Q}(\sqrt{2}, \sqrt{l})$ is odd (example: $l=17$); and $l \in A(2)^{+}$otherwise (example: $l=41$).
(2.6) EXAMPLE. Let $E=\mathbb{Q}(\sqrt{l})$ and $M=\mathbb{Q}(\sqrt{l}, \sqrt{-1})$ for a prime $l \equiv 1 \bmod 8$.

If $l \in A(2)^{-}$there exists a totally positive S -unit in E that is not a norm from M .

If $l \in A(2)^{+}$all totally positive S-units of E are norms from M .
Proof. Consider $L=\mathbb{Q}(\sqrt{-l})$. The 2-primary subgroup of its ideal class group is cyclic, of order at least 4 . By [2] (24.1), the exact 2 power dividing the ideal class group is 4 iff $l \in A(2)^{-}$. Since L has exactly one dyadic prime and it is not principal, it follows that for the S-ideal class group we have: if $l \in A(2)^{-}$then $2 \| h(L)$ but if $l \in A(2)^{+}$ then $4 \mid h(L)$. The kernel of i_{*} is a non-trivial elementary abelian subgroup of the cyclic 2-primary subgroup of $C(L)$, hence $\operatorname{Ker} i_{*} \cong \mathbb{Z} / 2$. Now consider the surjective Artin reciprocity law map $\omega: C(L) \rightarrow \operatorname{Gal}(M \mid L)$. If $2 \| h(L)$ then $C(L)=\mathbb{Z} / 2=\operatorname{Ker} i_{*}$, hence the restriction of ω to $\operatorname{Ker} i_{*}$ is surjective. If $4 \mid h(L)$ then $\operatorname{Ker} i_{*} \subseteq(C(L))^{2}$, hence the restriction of ω to $\operatorname{Ker} i_{*}$ is trivial.
3. The 4-rank of $\mathbf{K}_{2}(\mathbf{O})$. Let N be a number field and let $K_{2}\left(O_{N}\right)$ denote the Milnor K-group of its ring of integers. We are interested in the structure of the 2-primary subgroup of this finite abelian group. It follows from [7] that its rank can be determined as follows:

$$
\text { Tate's 2-rank formula: } \quad 2 \operatorname{rk} K_{2}\left(O_{N}\right)=r_{1}(N)+g_{2}(N)-1+2 \operatorname{rk} C(N)
$$

The same source yields p^{n} rank formulas for $K_{2}\left(O_{N}\right)$, but only if the p^{n}-th roots of unity are in N. In particular: If $\sqrt{-1} \in N$ then $4 \mathrm{rk} K_{2}\left(O_{N}\right)=g_{2}(N)-1+4 \mathrm{rk} C(N)$.

Kolster [6] (3.1), Conner and Hurrelbrink [3] (1.5) give a 4-rank formula in the complementary case: If $\sqrt{-1} \notin N$, let $M=N(\sqrt{-1})$ then

$$
\begin{equation*}
4 \mathrm{rk} K_{2}\left(O_{N}\right)=g_{2}(M)-g_{2}(N)+2 \mathrm{rk}\left(\operatorname{Ker} N_{M \mid N} / 2 \operatorname{Im}(C(N) \rightarrow C(M))\right) . \tag{3.2}
\end{equation*}
$$

where ${ }_{2} \operatorname{Im}($.$) indicates an elementary abelian 2-group of the same rank as \operatorname{Im}($.$) .$
For an imaginary quadratic extension L of a number field with $(*)$ this 4-rank formula can be used to show how the 4-rank of $K_{2}\left(O_{L}\right)$ is bounded by the 4-rank of $C(E)$, where E is the corresponding real field, see (1.2).
(3.3) THEOREM. Let F be a number field with property $(*)$ and $\sigma \in F^{*} /\left(F^{*}\right)^{2}$ a nontrivial totally positive square class. Let $E=F(\sqrt{\sigma}), L=F(\sqrt{-\sigma}), M=L(\sqrt{-1})$ and $\alpha=2 \operatorname{rk}\left(H^{0} / \tau\right)-2 \operatorname{rk}\left(H^{0} /\left\langle t, \operatorname{Ker} i_{0}\right\rangle\right)$, where $\left\langle t, \operatorname{Ker} i_{0}\right\rangle$ is the subgroup of $H^{0}\left(\operatorname{Gal}(E \mid F), U_{E}\right)$ generated by τ and $\operatorname{Ker} i_{0}(E \mid F)$.
a) If $-\sigma$ is not a local square at D_{F} then:

$$
\begin{aligned}
4 \mathrm{rk} C(E) & \leq 4 \mathrm{rk} K_{2}\left(O_{L}\right)+\left(-1_{\text {square at } \mathrm{D}}^{\text {if } \sigma \text { is i loc. }}\right) \\
& \leq \min \{4 \mathrm{rk} C(E)+\alpha, 2 \operatorname{rk} C(E)\}
\end{aligned}
$$

b) If $-\sigma$ is a local square at D_{F} then:

$$
\begin{aligned}
4 \mathrm{rk} C(E)-2 \mathrm{rk} \operatorname{Ker} I_{*} & \leq 4 \mathrm{rk} K_{2}\left(O_{L}\right) \\
& \leq \min \left\{4 \mathrm{rk} C(E)+2 \mathrm{rk} \operatorname{Ker} I_{*}+\alpha, 2 \mathrm{rk} C(E)\right\}
\end{aligned}
$$

Proof. By [1] (2.3) the 2-primary subgroup of $\operatorname{Ker} N_{M \mid L}$ is isomorphic to the 2primary subgroup of $\operatorname{Im} I_{*} \cong C(E) / \operatorname{Ker} I_{*}$, substituting this into (3.2) yields:

$$
4 \mathrm{rk} K_{2}\left(O_{L}\right)-\left(g_{2}(M)-g_{2}(L)\right)=2 \mathrm{rk}\left(C(E) / \operatorname{Ker}^{2} I_{*} / 2 \operatorname{Im} i_{*}\right)
$$

It follows:

$$
4 \mathrm{rk} C(E)-2 \mathrm{rk} \operatorname{Ker} I_{*} \leq 4 \mathrm{rk} K_{2}\left(O_{L}\right)-\left(g_{2}(M)-g_{2}(L)\right) \leq 2 \mathrm{rk} C(E)
$$

with $2 \mathrm{rk} \operatorname{Ker} I_{*}=0$ if $-\sigma$ is not a local square at D_{F} and 0 or 1 otherwise. Furthermore, $g_{2}(M)-g_{2}(L)=1$ if σ is a local square at D_{F} and 0 otherwise. The upper bound involving $4 \mathrm{rk} C(E)$ is obtained by using the bound for $2 \mathrm{rk} C(E)$ in (3.4) when examining $2 \mathrm{rk}\left(C(E) / \operatorname{Ker} I_{*} / 2 \operatorname{Im} i_{*}\right)$.
(3.4) Proposition. $2 \mathrm{rk} C(E) \leq 2 \mathrm{rk} \operatorname{Im} i_{*}+2 \mathrm{rk} \operatorname{Ker} I_{*}+\alpha$

Proof. By [1] (3.1 and 3.2) $2 \mathrm{rk} C(L)$ can be expressed in terms of $2 \mathrm{rk} C(E)$:
$2 \operatorname{rk} C(L)=2 \operatorname{rk} C(E)+2 \operatorname{rk}\left(H^{0} /\left\langle t, \operatorname{Ker} i_{0}\right\rangle\right)+ \begin{cases}+1 & \text { if } \sigma \text { is a local square at } D_{F} \\ -1 & \text { if }-\sigma \text { is a local square at } D_{F}\end{cases}$
By (2.2), (2.4): $2 \mathrm{rk} \operatorname{Ker} i_{*}=2 \mathrm{rk} \operatorname{Ker} I_{*}+2 \operatorname{rk}\left(H^{0} / \tau\right)+ \begin{cases}+1 & \text { if } \sigma \text { is a loc. sq. at } D_{F} \\ -1 & \text { if }-\sigma \text { is a loc. sq at } D_{F}\end{cases}$
Substituting this for $2 \mathrm{rk} C(L)$ and $2 \mathrm{rk} \operatorname{Ker} i_{*}$ into $2 \mathrm{rk} C(L) \leq 2 \mathrm{rk} \operatorname{Im} i_{*}+2$ rk $\operatorname{Ker} i_{*}$ yields the result.
(3.5) Corollary. If $\operatorname{Ker} i_{0}(E \mid F) \subseteq\{1, \tau\}$ and if neither of $\pm \sigma$ is a local square at D_{F} then $4 \mathrm{rk} K_{2}\left(O_{L}\right)=4 \mathrm{rk} C(E)$. This occurs, for example, if E contains S-units with independent signs.
(3.6) Corollary. If $C(E)$ is elementary abelian and if $\operatorname{Ker} i_{0}(E \mid F) \subseteq\{1, \tau\}$ then

$$
4 \mathrm{rk} K_{2}\left(O_{L}\right)=\left\{\begin{array}{cl}
1 & \text { if } \sigma \text { is a local square at } D_{F} \\
0 & \text { if neither of } \pm \sigma \text { is a local square at } D_{F} . \\
0 \text { or } 1 & \text { if }-\sigma \text { is a local square at } D_{F}
\end{array}\right.
$$

By Dirichlet's S-unit theorem: \# $U_{F} / U_{F}^{2}=2^{r_{1}(F)+1}$, hence $\alpha \leq 2 \mathrm{rk}\left(H^{0} / \tau\right) \leq r_{1}(F)$. It follows that the upper bound in (3.3) is quite good if $r_{1}(F)$ is small.
(3.7) Corollary. Let σ be a squarefree positive integer, $E=\mathbb{Q}(\sqrt{\sigma})$ and $L=$ $\mathbb{Q}(\sqrt{-\sigma})$.
a) If $\sigma \not \equiv 1,7 \bmod 8$ then $4 \mathrm{rk} C(E) \leq 4 \mathrm{rk} K_{2}\left(O_{L}\right) \leq 4 \mathrm{rk} C(E)+1$.
b) If $\sigma \equiv 1 \bmod 8$ then $4 \mathrm{rk} C(E)+1 \leq 4 \mathrm{rk} K_{2}\left(O_{L}\right) \leq 4 \mathrm{rk} C(E)+2$.
c) If $\sigma \equiv 7 \bmod 8$ then $4 \mathrm{rk} C(E)-1 \leq 4 \mathrm{rk} K_{2}\left(O_{L}\right) \leq 4 \mathrm{rk} C(E)+2$.

Unfortunately, trying to bound the 4-rank of $K_{2}\left(O_{E}\right)$ by the 4-rank of $C(L)$ does not seem to work quite as well. The crucial point here is to get an equivalent of [1] (2.3).
(3.8) ThEOREM. Let F be a number field with $(*)$ and let σ be a non-trivial totally positive square class that is not a local square at D_{F}. Let $E=F(\sqrt{\sigma})$ and $L=F(\sqrt{-\sigma})$. Then $2 \operatorname{prim}\left(\operatorname{Ker} N_{M \mid E}\right) / 2 \operatorname{prim}\left(\operatorname{Im} i_{*}\right) \cong \operatorname{Coker} i_{0}(M \mid E)$

Proof. By [2] (5.7) there exists a natural homomorphism from $\operatorname{Ker} N_{M \mid E}$ to $H^{1}(\operatorname{Gal}(M \mid E), C(M))$ whose image agrees with the image of j_{1}. From the exactness of the S-hexagon: $\operatorname{Imj}_{1}(M \mid E) \cong$ Coker $i_{0}(M \mid E)$, hence

$$
\left(\operatorname{Ker} N_{M \mid E}\right) /\left\{B \mid j_{1}(B)=1 \in H^{\prime}(\operatorname{Gal}(M \mid E), C(M))\right\} \cong \operatorname{Coker} i_{0}(M \mid E)
$$

Let T_{1} and T_{2} denote the generators of the Galois groups of $M \mid E$ and $M \mid L$, respectively. For $B \in C(M): B \in H^{1}(\operatorname{Gal}(M \mid E), C(M))$ iff there exists $C \in C(M)$ with $B=C \cdot T_{1}(C)^{-1}$. Recall that $h(F((\sqrt{-1}))$ is odd, hence if B is in the 2-primary subgroup of $C(M)$, the above is equivalent to: there exists $C \in C(M)$ with $B=C \cdot T_{2}(C)$. Since $R^{1}(M \mid L)=1$, an argument like in [1] (2.2.1) shows that there exists a C as above iff $B \in \operatorname{Im} i_{*}$.

In particular, when is 2-prim $\operatorname{Ker} N_{M \mid E}$ isomorphic to 2-prim $\operatorname{Im} i_{*}$? If neither of $\pm \sigma$ is a local square at D_{F} then Coker $i_{0}(M \mid E)=1$ iff E contains S-units with independent signs. If $-\sigma$ is a local square at D_{F} then Coker $i_{0}(M \mid E)=1$ iff E contains S-units with almost independent signs; see [1] (4.3).
(3.9) Proposition. Let F be a number field with property (*) and σ a non-trivial totally positive square class that is not a local square at D_{F}.
a) If $-\sigma$ is not a local square at D_{F} either, then

$$
4 \text { rk } C(L)-2 \text { rk Coker } i_{0}(M \mid E) \leq 4 \text { rk } K_{2}\left(O_{E}\right) \leq 2 \operatorname{rk} C(L)+2 \text { rk Coker } i_{0}(M \mid E) .
$$

b) If $-\sigma$ is a local square at D_{F} then,

$$
\begin{aligned}
4 \mathrm{rk} C(L)-2 \mathrm{rk} \text { Coker } i_{0}(M \mid E)-2 \mathrm{rk} \operatorname{Ker} I_{*} & \leq 4 \mathrm{rk} K_{2}\left(O_{E}\right)-1 \\
& \leq 2 \mathrm{rk} C(L)+2 \mathrm{rk} \text { Coker } i_{0}(M \mid E) .
\end{aligned}
$$

Proof. By (3.2), consider $2 \mathrm{rk}\left(\operatorname{Ker} N_{M \mid E} /{ }_{2} \operatorname{ImI} I_{*}\right)$. This is bounded from above by $2 \mathrm{rk} \operatorname{Ker} N_{M \mid E}$ and from below by $4 \mathrm{rk} \operatorname{Ker} N_{M \mid E}$. By (3.8): $2 \mathrm{rk} \operatorname{Ker} N_{M \mid E} \leq 2 \mathrm{rk} \operatorname{Im} i_{*}+$ 2 rk Coker $i_{0}(M \mid E)$, and $4 \mathrm{rk} \operatorname{Ker} N_{M \mid E} \geq 4 \mathrm{rkIm} i_{*} \geq 4 \mathrm{rk} C(L)-2 \mathrm{rkKer} i_{*}$. By (2.2) Ker $i_{*} \cong \operatorname{Ker} I_{*} \times$ Coker $i_{0}(M \mid E)$.
(3.10) Proposition. If neither of $\pm \sigma$ is a local square at D_{F} and if Coker $i_{0}(M \mid E)=$ 1 then $4 \mathrm{rk} K_{2}\left(O_{E}\right)=4 \mathrm{rk} C(L)$.

Proof. In this case $2 \operatorname{prim} \operatorname{Ker} N_{M \mid E} \cong \operatorname{Im} i_{*}$ and $\operatorname{Ker} I_{*}=1=\operatorname{Ker} i_{*}$.
By the proof of (3.4): $2 \mathrm{rk} C(E)=2 \mathrm{rk} C(L)$, hence

$$
4 \mathrm{rk} K_{2}\left(O_{E}\right)=2 \mathrm{rk}\left(\operatorname{Ker} N_{M \mid E} /{ }_{2} \operatorname{Im} I_{*}\right)=2 \mathrm{rk}\left(\operatorname{Im} C(L) /{ }_{2} C(L)\right)=4 \mathrm{rk} C(L) .
$$

Acknowledgment. The author thanks P. E. Conner whose conversations and correspondence helped develop this paper.

References

1. Berger, R.I., Quadratic extensions with elementary abelian $K_{2}(O)$, J. Algebra 142(1991), 394-404.
2. Conner, P.E. and Hurrelbrink, J., Class number parity, Pure Math. Series 8, World Scientific Publishing Co., Singapore, 1988.
3. The 4-Rank of $K_{2}(O)$, Can. J. of Math., Vol XLI, No. 5 (1989), 932-960.
4. Gras, G., Remarks on K_{2} of number fields, J. Number Th. 23 (1986), No. 3, 322-335
5. Gras, G. and Jaulent, J.F., Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343-365.
6. Kolster, M., The structure of the 2-Sylow-subgroup of $K_{2}(O)$ I, Comm. Math. Helv. 61 (1986), 376-388.
7. Tate, J., Relations between K_{2} and Galois cohomology, Invent. math. 36 (1976), 257-274.
[^0]
[^0]: Department of Mathematical Sciences
 Memphis State University
 Memphis, Tennessee 38152
 U. S. A.

