THE KERNEL OF $C(N) \rightarrow C(N(\sqrt{-1}))$ AND THE 4-RANK OF $K_2(O)$

RUTH I. BERGER

ABSTRACT. An upper bound is given for the order of the kernel of the map on Sideal class groups that is induced by $A \cdot O_N \mapsto A \cdot O_{N(\sqrt{-1})}$. For some special types of number fields F the connection between the size of the above kernel for $N = F(\sqrt{-\sigma})$ and the units and norms in $F(\sqrt{\sigma})$ are examined. Let $K_2(O)$ denote the Milnor K-group of the ring of integers of a number field. In some cases a formula by Conner, Hurrelbrink and Kolster is extended to show how closely the 4-rank of $K_2(O_{F(\sqrt{-\sigma})})$ is related to the 4-rank of the S-ideal class group of $F(\sqrt{\sigma})$.

1. Notation. Let N be a number field with ring of integers O_N . Let C(N) denote the *S-ideal class group* of N, where S is the set consisting of all infinite and dyadic primes of N. We examine the kernel of $C(N) \rightarrow C(N(\sqrt{-1}))$, the map induced by $A \cdot O_N \rightarrow A \cdot O_{N(\sqrt{-1})}$. For the most part, this paper will deal only with quadratic extensions of a special type of number field. The following property is a natural generalization of properties of \mathbb{Q} . It is also a special case of the *regular fields* examined in [4] and [5].

(1.1) DEFINITION. A number field is said to have *property* (*) if it is totally real, contains exactly one dyadic prime, has odd S-class number and contains S-units with independent signs; where S is the set of all its infinite and dyadic primes.

For a number field N, let $r_1(N)$ denote the number of its real embeddings, $r_2(N)$ the number of its pairs of complex embeddings and $g_2(N)$ the number of its dyadic primes. Let U_N denote the group of S-units of N, where S is as above. If N has (*) the kernel of $U_N/(U_N)^2 \rightarrow (\mathbb{Z}/2)^{r_1(N)}$ has order 2; *i.e.* there exists exactly one non-trivial totally positive square class of S-units. This square class, or any representative, will be denoted by τ_N . Throughout this paper F, E and L will denote very specific types of number fields, see below, while N will stand for an arbitrary number field.

(1.2) NOTATION. F is a number field with property (*), D_F is the dyadic prime of F and $\sigma \in F^*/(F^*)^2$ is a non-trivial totally positive square class. $E = F(\sqrt{\sigma})$, $L = F(\sqrt{-\sigma})$, and *M* is their common quadratic extension. $I_*: C(E) \to C(M)$ and $i_*: C(L) \to C(M)$, are the maps on S-class groups induced by $A \mapsto A \cdot O_M$. The respective norm maps are denoted by $N_{M|E}, N_{M|L}, N_{E|F}$. The cohomology group $H^0(\text{Gal}(E|F), U_E)$ will be used frequently and if no confusion is possible it will be abbreviated by H^0 . Its quotient with the subgroup generated by the class of τ_F will be denoted by H^0/τ .

Received by the editors August 9, 1990.

AMS subject classification: 11R19.

[©] Canadian Mathematical Society 1992.

One of the main tools used throughout this paper will be the exact hexagon from [2], applied to the rings of S-integers of quadratic extensions of number fields. Here is an overview of this material as it pertains to this paper:

Let M|N be a quadratic extension of number fields and let $C_2 = \text{Gal}(M|N)$. When broken up, the exact hexagon yields the following exact sequence:

$$H^{0}(C_{2}, U_{M}) \xrightarrow{i_{0}} R^{0}(M|N) \xrightarrow{j_{1}} H^{1}(C_{2}, C(M)) \longrightarrow H^{1}(C_{2}, U_{M}) \xrightarrow{i_{1}} R^{1}(M|N) \longrightarrow H^{0}(C_{2}, C(M))$$

All six groups in the hexagon are elementary abelian 2-groups.

(1.3) FACTS. a) $H^0(\text{Gal}(M|N), C(M)) \cong H^1(\text{Gal}(M|N), C(M))$; since C(M) is finite abelian.

- b) The group $R^0(M|N)$ is defined as a quotient of cohomology groups. It injects into $H^0(C_2, M^*)$; the composition of this injection with i_0 commutes with the inclusion of $H^0(C_2, U_M)$ into $H^0(C_2, E^*)$.
- c) In Section 6 of [2] the 2-ranks of R^0 and R^1 are computed. Let *s* be the number of dyadic primes of N that are inert in M, then

$$2 \operatorname{rk} R^{0}(M|N) = \begin{cases} 0 & \text{if } M|N \text{ is unramified and } s = 0\\ s - 1 + \#(primes \text{ of } N \text{ that ramify in } M) & \text{otherwise} \end{cases}$$
$$2 \operatorname{rk} R^{1}(M|N) = \begin{cases} 1 & \text{if } M|N \text{ is unramified and } s = 0\\ \#(odd \text{ finite primes of } N \text{ that ramify in } M) & \text{otherwise} \end{cases}$$

d) An S-version of [2] (7.1) gives an injection of Ker(C(N)→C(M)) into H¹(C₂, U_M). Furthermore, if M|N is unramified or if M|N is ramified but no finite prime of F outside S is ramified in E then H¹(C₂, U_M) ≅ Ker(C(N)→C(M)).

2. The Kernel of $C(N) \rightarrow C(N(\sqrt{-1}))$. The kernel of $C(N) \rightarrow C(N(\sqrt{-1}))$ is an elementary abelian 2-group, see (1.3.d). The following generalizes the bound from [6] (2.4).

(2.1) THEOREM. Let N be a number field and $M = N(\sqrt{-1})$. Then

 $2 \operatorname{rk} \operatorname{Ker}(C(N) \to C(M)) \leq r_2(N) + g_2(M) - g_2(N).$

PROOF. If $\sqrt{-1} \in N$ the statement is trivially true. Else: Let *n* be the largest integer such that N contains $Q(\zeta_{2^n})^+ = Q(\zeta_{2^n} + \overline{\zeta}_{2^n})$, where ζ_{2^n} denotes a primitive $(2^n)^{th}$ root of 1. The element $2 + \zeta_{2^n} + \overline{\zeta}_{2^n} \in U_N$ is the norm of $1 + \zeta_{2^n} \in U_M$. By choice of *n* this element is not a square in N, hence its square class is a non-trivial element in the kernel of $U_N/U_N^2 \to H^0(C_2, U_M)$. By Dirichlet's S-unit theorem the 2-rank of U_N/U_N^2 is given by $r_1(N) + r_2(N) + g_2(N)$. This yields an upper bound on the 2-rank of $H^0(C_2, U_M)$:

$$2 \operatorname{rk} H^0(C_2, U_M) \le r_1(N) + r_2(N) + g_2(N) - 1.$$

296

If M|N is unramified and all dyadic primes of N split in M then $2 \operatorname{rk} R^0(M|N) = 0$ and $2 \operatorname{rk} R^1(M|N) = 1$ and of course $r_1(N) = 0$. If M|N is ramified or if there exists a dyadic prime of N that is inert in M then $2 \operatorname{rk} R^0(M|N) = 2 \cdot g_2(N) - g_2(M) + r_1(N) - 1$ and $2 \operatorname{rk} R^1(M|N) = 0$. In either case, taking the alternating sum of 2-ranks in the exact hexagon associated to the quadratic extension M|N yields the desired bound.

Now consider the maps I_* and i_* defined in (1.2). By (2.1) the kernel of I_* is either trivial or $\mathbb{Z}/2$. In fact, it can only be non-trivial if $g_2(M) - g_2(E) = 1$, which is the case exactly if $-\sigma$ is a local square at D_F . The kernel of i_* can be much bigger, as (2.3) below shows. Recall the explicit formula for the 2-rank of Ker i_* from [1] (4.1 and 4.3):

(2.2) If σ is not a local square at D_F then Ker $i_* \cong \text{Ker } I_* \times \text{Coker } i_0(M|E)$. Furthermore, if $-\sigma$ is not a local square either, then Coker $i_0(M|E) \cong H^0/\tau$; else Coker $i_0(M|E) \cong H/\tau$, where H is a subgroup of index 2 of $H^0 = H^0(\text{Gal}(E|F), U_E)$.

(2.3) EXAMPLE. Number fields of arbitrarily large degree for which the 2-rank of the kernel of i_* achieves the upper bound from (2.1). Let F be any number field with (*) and $r := r_1(F)$. Let u_1, \ldots, u_{r+1} be a basis of the $\mathbb{Z}/2$ vector space U_F/U_F^2 . By class field theory there exist finite non-dyadic primes P_j , $1 \le j \le r+1$, such that P_j is inert in $F(\sqrt{u_j})|F$ and P_j splits in $F(\sqrt{u_i})|F$ for all $i \ne j$. By the Approximation theorem there exists $\sigma \in F^*$ such that σ is totally positive, $ord_{P_j}(\sigma) \equiv 1 \mod 2$ for all j and $ord_{D_F}(\sigma) \equiv 1 \mod 2$. For this choice, neither σ nor $-\sigma$ is a local square at D_F . For $E = F(\sqrt{\sigma})$ the only S-units of F that are norms from E are squares, hence $U_F/U_F^2 = U_F/N_{E|F}(U_E)$, and this has a 2-rank of r + 1. By (2.2) for $L = F(\sqrt{-\sigma})$ the 2-rank of the kernel of i_* equals the 2-rank of H^0/τ , hence 2 rk Ker $i_* = r_1(F) = r_2(L)$. This is the upper bound in this case. What does the kernel of i_* look like if σ is a local square at D_F ?

(2.4) THEOREM. Let F be a number field with property (*) and $\sigma \in F^*/(F^*)^2$ a nontrivial totally positive square class such that σ is a local square at D_F . Let $E = F(\sqrt{\sigma})$, $L = F(\sqrt{-\sigma})$ and $M = E(\sqrt{-1})$. Then

Ker $i_*(C(L) \rightarrow C(M)) \cong \mathbb{Z}/2 \times H^0(\text{Gal}(E|F), U_E)/\tau$

PROOF. From the exactness of the exact S-hexagon associated to M|E one obtains:

$$H^{1}(\text{Gal}(M|E), C(M)) \cong H^{1}(\text{Gal}(M|E), U_{M}) \times \text{Coker } i_{0}(M|E) \cong \text{Coker } i_{0}(M|E),$$

where $H^1(\text{Gal}(M|E), U_M)$ is trivial by the bound in (2.1). On the other hand, since $h(F\sqrt{-1})$ is odd, $H^1(\text{Gal}(M|E), C(M)) \cong H^0(\text{Gal}(M|L), C(M))$, which is isomorpic to $H^1(\text{Gal}(M|L), C(M))$. Other groups in the exact S-hexagon associated to M|L are: $H^1(\text{Gal}(M|L), U_M) \cong \text{Ker } i_*$ and $R^0(M|L) \cong 1$ and $R^1(M|L) \cong \mathbb{Z}/2$. From the hexagon, one obtains an exact sequence:

$$1 \to \operatorname{Coker} i_0(M|E) \to \operatorname{Ker} i_* \stackrel{\iota_1}{\to} \mathbb{Z}/2.$$

RUTH I. BERGER

Hence, Ker $i_* \cong \mathbb{Z}/2 \times \text{Coker } i_0(M|E)$ if i_1 is surjective, and Ker $i_* \cong \text{Coker } i_0(M|E)$ if i_1 is trivial. The cokernel of $i_0(M|E)$ is determined as in [1] (4.3): If there exists a totally positive S-unit in E that is not a norm from M then Coker $i_0(M|E) \cong H^0/\tau$. If all totally positive S-units of E are norms from M then Coker $i_0(M|E) \cong \mathbb{Z}/2 \times H^0/\tau$. The conclusion follows from the next theorem.

(2.5) THEOREM. Let F be a number field with property (*) and $\sigma \in F^*/(F^*)^2$ a nontrivial totally positive square class such that σ is a local square at D_F , let $E = F(\sqrt{\sigma})$ and $L = F(\sqrt{-\sigma})$ and $M = E(\sqrt{-1})$. There exists a totally positive S-unit in E that is not a norm from M if and only if i_1 : Ker $i_* \to \mathbb{Z}/2$ is non-trivial.

REMARK. The map i_1 from the exact S-hexagon associated to the extension M|L takes $H^1(\text{Gal}(M|L), U_M) \cong \text{Ker } i_*$ to $R^1(M|L) \cong \mathbb{Z}/2$. If σ is a local square at D_F , i_1 can also be interpreted as the Artin reciprocity law map ω , on the S-ideal class group of L, restricted to Ker i_* ; see [2] (7.2).

PROOF. $R^1(M|L) \cong \mathbb{Z}/2$ is generated by the class of any non-dyadic prime $P_0 \subset O_L$ that is inert in M|L. To check if any such generator comes from Ker i_* , we use the exactness of the S-hexagon and check where it maps to in $H^0(\text{Gal}(M|L), C(M))$.

Let R_L denote the ring of S-integers of L. Let $P_0 \,\subset R_L$ be a prime ideal which is inert in M|L, and for which $p_0 = P_0 \cap R_F$ is not ramified in L. If p_0 were inert in L|Fthen $cl(P_0^h) = 1 \in C(L)$, where h is the odd h(F). This is not possible since the Artin reciprocity law map takes $cl(P_0^h) \in C(L)$ to a generator of Gal(M|L). It follows that p_0 splits in L|F, hence $-\sigma$ is a local square at p_0 . But -1 is not a local square, hence σ is not a local square at p_0 . Therefore, p_0 is inert in E|F, and $p_0 \cdot R_E$ splits in M|E.

Since F contains S-units with independent signs, there exists a totally positive $x \in F^*$ such that $x \cdot R_F = p_0^h \cdot R_F$. Let $\mathcal{P}_0 = P_0 \cdot R_M$ and $\operatorname{Gal}(M|E) = \langle T_1 \rangle$. In R_M the ideal generated by x is: $(\mathcal{P}_0 \cdot T_1 \mathcal{P}_0)^h \cdot R_M$. Therefore $\langle x^{-1}, \mathcal{P}_0^h \cdot R_M \rangle$ is an element of $R^0(M|E)$ and under $j_1(M|E)$ it maps to $cl(\mathcal{P}_0^h)$ in $H^1(\operatorname{Gal}(M|E), C(M))$.

Now, $i_1(M|L)$ is surjective iff $cl(\mathcal{P}_0) = 1 \in H^0(\text{Gal}(M|L), C(M))$ for any, and hence all, $\mathcal{P}_0 = P_0 \cdot R_M$, where P_0 is inert in M|L. Since $F(\sqrt{-1})$ has odd S-class number: $H^0(\text{Gal}(M|L), C(M)) \cong H^1(\text{Gal}(M|E), C(M))$ and therefore: $i_1(M|L)$ is surjective iff $cl(\mathcal{P}_0) = 1 \in H^1(\text{Gal}(M|E), C(M))$. The same holds for $cl(\mathcal{P}_0^h)$.

From the exactness of the S-hexagon associated to M|E this is equivalent to: an inverse image under $j_1(M|E)$ of $cl(\mathcal{P}_0^h)$ lies in $Im i_0(M|E) \subset \mathbb{R}^0(M|E)$ for any \mathcal{P}_0 as above. That is, $\langle x^{-1}, \mathcal{P}_0^h \cdot \mathcal{R}_M \rangle$ lies in the image of $i_0(M|E)$ for all totally positive x as above. From the isomorphism of $\mathbb{R}^0(M|E)$ with $(\mathbb{Z}/2)^{r_1(E)+1}$, it follows that this is equivalent to: there exists a totally positive S-unit in E that is not a norm from M.

The following example shows that both cases from (2.5) can occur. Using the notation from [2]: a prime $l \in \mathbb{Z}$, $l \equiv 1 \mod 8$, is said to be in $A(2)^-$ if the class number of $\mathbb{Q}(\sqrt{2}, \sqrt{l})$ is odd (example: l = 17); and $l \in A(2)^+$ otherwise (example: l = 41).

(2.6) EXAMPLE. Let $E = \mathbb{Q}(\sqrt{l})$ and $M = \mathbb{Q}(\sqrt{l}, \sqrt{-1})$ for a prime $l \equiv 1 \mod 8$. If $l \in A(2)^-$ there exists a totally positive S-unit in E that is not a norm from M.

298

If $l \in A(2)^+$ all totally positive S-units of E are norms from M.

PROOF. Consider $L = \mathbb{Q}(\sqrt{-l})$. The 2-primary subgroup of its ideal class group is cyclic, of order at least 4. By [2] (24.1), the exact 2 power dividing the ideal class group is 4 iff $l \in A(2)^-$. Since L has exactly one dyadic prime and it is not principal, it follows that for the S-ideal class group we have: if $l \in A(2)^-$ then 2||h(L) but if $l \in A(2)^+$ then 4|h(L). The kernel of i_* is a non-trivial elementary abelian subgroup of the cyclic 2-primary subgroup of C(L), hence Ker $i_* \cong \mathbb{Z}/2$. Now consider the surjective Artin reciprocity law map $\omega: C(L) \to \text{Gal}(M|L)$. If 2||h(L) then $C(L) = \mathbb{Z}/2 = \text{Ker } i_*$, hence the restriction of ω to Ker i_* is surjective. If 4|h(L) then Ker $i_* \subseteq (C(L))^2$, hence the restriction of ω to Ker i_* is trivial.

3. The 4-rank of $K_2(O)$. Let N be a number field and let $K_2(O_N)$ denote the Milnor K-group of its ring of integers. We are interested in the structure of the 2-primary subgroup of this finite abelian group. It follows from [7] that its rank can be determined as follows:

(3.1) Tate's 2-rank formula: $2 \operatorname{rk} K_2(O_N) = r_1(N) + g_2(N) - 1 + 2 \operatorname{rk} C(N)$

The same source yields p^n rank formulas for $K_2(O_N)$, but only if the p^n -th roots of unity are in N. In particular: If $\sqrt{-1} \in N$ then $4 \operatorname{rk} K_2(O_N) = g_2(N) - 1 + 4 \operatorname{rk} C(N)$.

Kolster [6] (3.1), Conner and Hurrelbrink [3] (1.5) give a 4-rank formula in the complementary case: If $\sqrt{-1} \notin N$, let $M = N(\sqrt{-1})$ then

(3.2)
$$4 \operatorname{rk} K_2(O_N) = g_2(M) - g_2(N) + 2 \operatorname{rk} \left(\operatorname{Ker} N_{M|N} / 2 \operatorname{Im}(C(N) \to C(M)) \right).$$

where $_2Im(.)$ indicates an elementary abelian 2-group of the same rank as Im(.).

For an imaginary quadratic extension L of a number field with (*) this 4-rank formula can be used to show how the 4-rank of $K_2(O_L)$ is bounded by the 4-rank of C(E), where E is the corresponding real field, see (1.2).

(3.3) THEOREM. Let F be a number field with property (*) and $\sigma \in F^*/(F^*)^2$ a nontrivial totally positive square class. Let $E = F(\sqrt{\sigma})$, $L = F(\sqrt{-\sigma})$, $M = L(\sqrt{-1})$ and $\alpha = 2 \operatorname{rk}(H^0/\tau) - 2 \operatorname{rk}(H^0/\langle t, \operatorname{Ker} i_0 \rangle)$, where $\langle t, \operatorname{Ker} i_0 \rangle$ is the subgroup of $H^0(\operatorname{Gal}(E|F), U_E)$ generated by τ and $\operatorname{Ker} i_0(E|F)$.

a) If $-\sigma$ is not a local square at D_F then:

$$4 \operatorname{rk} C(E) \leq 4 \operatorname{rk} K_2(O_L) + (-1 \frac{\operatorname{if} \sigma \operatorname{is} a \operatorname{loc.}}{\operatorname{square at } D})$$

$$\leq \min\{4 \operatorname{rk} C(E) + \alpha, 2 \operatorname{rk} C(E)\}$$

b) If $-\sigma$ is a local square at D_F then:

$$4 \operatorname{rk} C(E) - 2 \operatorname{rk} \operatorname{Ker} I_* \leq 4 \operatorname{rk} K_2(O_L)$$

$$\leq \min\{4 \operatorname{rk} C(E) + 2 \operatorname{rk} \operatorname{Ker} I_* + \alpha, 2 \operatorname{rk} C(E)\}$$

RUTH I. BERGER

PROOF. By [1] (2.3) the 2-primary subgroup of Ker $N_{M|L}$ is isomorphic to the 2-primary subgroup of $ImI_* \cong C(E)/$ Ker I_* , substituting this into (3.2) yields:

$$4 \operatorname{rk} K_2(O_L) - (g_2(M) - g_2(L)) = 2 \operatorname{rk} (C(E) / \operatorname{Ker} I_* / 2 \operatorname{Im} i_*)$$

It follows:

$$4 \operatorname{rk} C(E) - 2 \operatorname{rk} \operatorname{Ker} I_* \leq 4 \operatorname{rk} K_2(O_L) - (g_2(M) - g_2(L)) \leq 2 \operatorname{rk} C(E)$$

with 2 rk Ker $I_* = 0$ if $-\sigma$ is not a local square at D_F and 0 or 1 otherwise. Furthermore, $g_2(M)-g_2(L) = 1$ if σ is a local square at D_F and 0 otherwise. The upper bound involving 4 rk C(E) is obtained by using the bound for 2 rk C(E) in (3.4) when examining 2 rk $(C(E)/\text{Ker }I_*/2\text{Im }i_*)$.

(3.4) PROPOSITION. 2 rk $C(E) \le 2$ rk $Im i_* + 2$ rk Ker $I_* + \alpha$

PROOF. By [1] (3.1 and 3.2) $2 \operatorname{rk} C(L)$ can be expressed in terms of $2 \operatorname{rk} C(E)$:

$$2 \operatorname{rk} C(L) = 2 \operatorname{rk} C(E) + 2 \operatorname{rk}(H^0 / \langle t, \operatorname{Ker} i_0 \rangle) + \begin{cases} +1 & \text{if } \sigma \text{ is a local square at } D_F \\ -1 & \text{if } -\sigma \text{ is a local square at } D_F \end{cases}$$

By (2.2), (2.4): 2 rk Ker $i_* = 2$ rk Ker $I_* + 2$ rk $(H^0/\tau) + \begin{cases} +1 & \text{if } \sigma \text{ is a loc. sq. at } D_F \\ -1 & \text{if } -\sigma \text{ is a loc. sq at } D_F \end{cases}$ Substituting this for 2 rk C(L) and 2 rk Ker i_* into 2 rk $C(L) \leq 2$ rk $Im i_* + 2$ rk Ker i_* yields the result.

(3.5) COROLLARY. If Ker $i_0(E|F) \subseteq \{1,\tau\}$ and if neither of $\pm \sigma$ is a local square at D_F then $4 \operatorname{rk} K_2(O_L) = 4 \operatorname{rk} C(E)$. This occurs, for example, if E contains S-units with independent signs.

(3.6) COROLLARY. If C(E) is elementary abelian and if Ker $i_0(E|F) \subseteq \{1, \tau\}$ then

 $4 \operatorname{rk} K_2(O_L) = \begin{cases} 1 & \text{if } \sigma \text{ is a local square at } D_F \\ 0 & \text{if neither of } \pm \sigma \text{ is a local square at } D_F. \\ 0 \text{ or } 1 & \text{if } -\sigma \text{ is a local square at } D_F \end{cases}$

By Dirichlet's S-unit theorem: $\#U_F/U_F^2 = 2^{r_1(F)+1}$, hence $\alpha \le 2 \operatorname{rk}(H^0/\tau) \le r_1(F)$. It follows that the upper bound in (3.3) is quite good if $r_1(F)$ is small.

(3.7) COROLLARY. Let σ be a squarefree positive integer, $E = \mathbb{Q}(\sqrt{\sigma})$ and $L = \mathbb{Q}(\sqrt{-\sigma})$.

a) If $\sigma \not\equiv 1,7 \mod 8$ then $4 \operatorname{rk} C(E) \leq 4 \operatorname{rk} K_2(O_L) \leq 4 \operatorname{rk} C(E) + 1$.

b) If $\sigma \equiv 1 \mod 8$ then $4 \operatorname{rk} C(E) + 1 \leq 4 \operatorname{rk} K_2(O_L) \leq 4 \operatorname{rk} C(E) + 2$.

c) If
$$\sigma \equiv 7 \mod 8$$
 then $4 \operatorname{rk} C(E) - 1 \leq 4 \operatorname{rk} K_2(O_L) \leq 4 \operatorname{rk} C(E) + 2$.

Unfortunately, trying to bound the 4-rank of $K_2(O_E)$ by the 4-rank of C(L) does not seem to work quite as well. The crucial point here is to get an equivalent of [1] (2.3).

300

(3.8) THEOREM. Let *F* be a number field with (*) and let σ be a non-trivial totally positive square class that is not a local square at D_F . Let $E = F(\sqrt{\sigma})$ and $L = F(\sqrt{-\sigma})$. Then 2 prim(Ker $N_{M|E})/2$ prim($Im i_*$) \cong Coker $i_0(M|E)$

PROOF. By [2] (5.7) there exists a natural homomorphism from Ker $N_{M|E}$ to $H^1(\text{Gal}(M|E), C(M))$ whose image agrees with the image of j_1 . From the exactness of the S-hexagon: $Im j_1(M|E) \cong \text{Coker } i_0(M|E)$, hence

$$(\operatorname{Ker} N_{M|E})/\{B \mid j_1(B)=1 \in H^1(\operatorname{Gal}(M|E), C(M))\} \cong \operatorname{Coker} i_0(M|E).$$

Let T_1 and T_2 denote the generators of the Galois groups of M|E and M|L, respectively. For $B \in C(M) : B \in H^1(\text{Gal}(M|E), C(M))$ iff there exists $C \in C(M)$ with $B = C \cdot T_1(C)^{-1}$. Recall that $h(F((\sqrt{-1})))$ is odd, hence if B is in the 2-primary subgroup of C(M), the above is equivalent to: there exists $C \in C(M)$ with $B = C \cdot T_2(C)$. Since $R^1(M|L) = 1$, an argument like in [1] (2.2.1) shows that there exists a C as above iff $B \in Im i_*$.

In particular, when is 2-prim Ker $N_{M|E}$ isomorphic to 2-prim $Im i_*$? If neither of $\pm \sigma$ is a local square at D_F then Coker $i_0(M|E) = 1$ iff E contains S-units with independent signs. If $-\sigma$ is a local square at D_F then Coker $i_0(M|E) = 1$ iff E contains S-units with almost independent signs; see [1] (4.3).

(3.9) PROPOSITION. Let F be a number field with property (*) and σ a non-trivial totally positive square class that is not a local square at D_F .

a) If $-\sigma$ is not a local square at D_F either, then

 $4 \operatorname{rk} C(L) - 2 \operatorname{rk} \operatorname{Coker} i_0(M|E) \le 4 \operatorname{rk} K_2(O_E) \le 2 \operatorname{rk} C(L) + 2 \operatorname{rk} \operatorname{Coker} i_0(M|E).$

b) If $-\sigma$ is a local square at D_F then,

 $4 \operatorname{rk} C(L) - 2 \operatorname{rk} \operatorname{Coker} i_0(M|E) - 2 \operatorname{rk} \operatorname{Ker} I_* \leq 4 \operatorname{rk} K_2(O_E) - 1$ $\leq 2 \operatorname{rk} C(L) + 2 \operatorname{rk} \operatorname{Coker} i_0(M|E).$

PROOF. By (3.2), consider $2 \operatorname{rk}(\operatorname{Ker} N_{M|E}/2ImI_*)$. This is bounded from above by $2 \operatorname{rk} \operatorname{Ker} N_{M|E}$ and from below by $4 \operatorname{rk} \operatorname{Ker} N_{M|E}$. By (3.8): $2 \operatorname{rk} \operatorname{Ker} N_{M|E} \leq 2 \operatorname{rk} \operatorname{Im} i_* + 2 \operatorname{rk} \operatorname{Coker} i_0(M|E)$, and $4 \operatorname{rk} \operatorname{Ker} N_{M|E} \geq 4 \operatorname{rk} \operatorname{Im} i_* \geq 4 \operatorname{rk} C(L) - 2 \operatorname{rk} \operatorname{Ker} i_*$. By (2.2) Ker $i_* \cong \operatorname{Ker} I_* \times \operatorname{Coker} i_0(M|E)$.

(3.10) PROPOSITION. If neither of $\pm \sigma$ is a local square at D_F and if Coker $i_0(M|E) = 1$ then $4 \operatorname{rk} K_2(O_E) = 4 \operatorname{rk} C(L)$.

PROOF. In this case 2 prim Ker $N_{M|E} \cong Im i_*$ and Ker $I_* = 1 =$ Ker i_* . By the proof of (3.4): 2 rk C(E) = 2 rk C(L), hence

$$4 \operatorname{rk} K_2(O_E) = 2 \operatorname{rk}(\operatorname{Ker} N_{M|E}/_2 \operatorname{Im} I_*) = 2 \operatorname{rk}(\operatorname{Im} C(L)/_2 C(L)) = 4 \operatorname{rk} C(L).$$

ACKNOWLEDGMENT. The author thanks P. E. Conner whose conversations and correspondence helped develop this paper.

RUTH I. BERGER

REFERENCES

1. Berger, R.I., Quadratic extensions with elementary abelian K₂(O), J. Algebra 142(1991), 394–404.

2. Conner, P.E. and Hurrelbrink, J., *Class number parity*, Pure Math. Series 8, World Scientific Publishing Co., Singapore, 1988.

3. _____, *The 4-Rank of K*₂(*O*), Can. J. of Math., Vol XLI, No. 5 (1989), 932-960.

4. Gras, G., Remarks on K₂ of number fields, J. Number Th. 23 (1986), No. 3, 322-335.

5. Gras, G. and Jaulent, J.F., Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343-365.

6. Kolster, M., *The structure of the 2-Sylow-subgroup of* $K_2(O)$ I, Comm. Math. Helv. **61** (1986), 376-388.

7. Tate, J., Relations between K₂ and Galois cohomology, Invent. math. 36 (1976), 257-274.

Department of Mathematical Sciences Memphis State University Memphis, Tennessee 38152 U. S. A.