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In this study, we demonstrate, for the first time, the existence of a short-wave instability
in a Lamb–Oseen vortex subjected to a triangular strain field generated by three
satellite vortices, which we term the triangular instability. We identify this instability
by numerically integrating the linearised Navier–Stokes equations around a quasi-steady
base flow to capture the most unstable mode and validate it by comparing results
with theoretical predictions. We evaluate this instability by calculating the growth rates
associated with the parametric resonant coupling of two Kelvin waves with the triangular
strain field in the limit of small strain rate and large Reynolds number. Our analysis
reveals that resonance occurs only for combinations of the azimuthal wavenumbers m = 1
and m = −2 (or their symmetric counterparts with opposite signs). We observe several
unstable modes with positive growth rates for a moderate viscous Reynolds number 104

and straining parameter value ε = 0.008, defined as the cube of the ratio of the core size
to the distance from the satellite vortices. The most unstable mode, dominant at typically
high Reynolds numbers, has k ≈ 5.18/a and ω≈ −0.312Ω (where a and Ω denote the
core size and central angular velocity). It exhibits negligible critical layer damping and
remains the most unstable mode over a wide range of Re and ε. At lower Reynolds
numbers, another mode with k ≈ 1.76/a and ω≈ −0.407Ω , despite significant critical
layer damping, becomes the most unstable.

Key words: vortex instability, vortex dynamics, wakes

1. Introduction
Vortices are a common phenomenon in fluid motion, occurring at scales ranging from the
tiny vortices in a cup of coffee to the massive Great Red Spot on Jupiter. The study of
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vortex dynamics has been a central area of research since the 19th century, pioneered by
Helmholtz and Lord Kelvin, and later advanced through the contributions of Saffman and
other researchers in fluid dynamics and applied mathematics. The fundamental concepts
in this field are comprehensively outlined in Saffman’s renowned book Vortex Dynamics
(Saffman 1995). A particularly significant aspect of vortices is their susceptibility to
instabilities, which can arise from interactions with their surroundings or within the
vortices themselves. In recent decades, extensive research has been conducted on vortex
stability, with particular focus on vortex pairs, which are crucial in the context of aircraft
trailing wakes and their amplification. An extensive summary of the general stability study
of vortices can be found in Ash, Khorrami & Green (1995), and the advancements in the
study of vortex pair dynamics and instabilities have been thoroughly reviewed by Leweke,
Le Dizès & Williamson (2016). Such studies have also been essential for understanding
how turbulence arises from instabilities caused by eddy interactions and the dynamics of
coherent structures within turbulent flows (Pullin & Saffman 1998).

Vortex pairs are known to experience two main types of instabilities: long-wave and
short-wave instabilities. These are often referred to as cooperative instabilities, as they
primarily result from the interaction between the vortices within the pair. They are also
three-dimensional (3-D) in nature. Long-wave instability, also known as Crow instability,
occurs at scales much larger than the size of the vortex core. It was discovered by Crow
(1970) for a vortex pair. More studies about long-wave instabilities can be found in Brion,
Sipp & Jacquin (2007), Leweke & Williamson (2011), and similar works. They are often
observed in the sky, affecting the contrails of aircraft flying at high altitudes.

In contrast, short-wave instability occurs at scales comparable to or smaller than the
vortex core. Moore & Saffman (1975) and Tsai & Widnall (1976) were the first to discover
and explain the mechanism of this instability. It is understood to occur because the
streamlines of the vortex undergo elliptic deformation due to the strain induced by the
adjacent vortex, causing two Kelvin waves (small perturbations) with specific azimuthal
wavenumber combinations to resonate with the strain and become unstable. Due to the
elliptic nature of the streamline deformation, this is also referred to as elliptic instability
and is sometimes known as the Moore–Saffman–Tsai–Widnall instability. An extensive
summary on the elliptic instability can be found in Kerswell (2002), and some important
original contributions include Bayly (1986), Pierrehumbert (1986), Leweke & Williamson
(1998), Le Dizès & Laporte (2002), Meunier & Leweke (2005) and Schaeffer & Le Dizès
(2010). The modes with m = 1 and m = −1, also known as stationary helical modes, were
found to be the most unstable.

Tsai & Widnall (1976) analysed the Rankine vortex, while Moore & Saffman (1975)
focused on the Lamb–Oseen vortex. For the Rankine vortex, the eigenvalue problem for
linearised disturbances on the unstrained vortex can be solved analytically, yielding the
eigenmodes and eigenfunctions of the Kelvin waves. These eigenfunctions are expressed
in terms of Bessel functions (Tsai & Widnall 1976; Saffman 1995; Fukumoto 2003).
However, for the Lamb–Oseen and Batchelor vortices, obtaining explicit analytical
expressions for the eigenfunctions is not possible. Nevertheless, their asymptotic forms
can be derived in the limit of large k, as shown by Le Dizès & Lacaze (2005). Using
the Wentzel–Kramers–Brillouin (WKB) approach, they provided approximate analytical
expressions for the dispersion relation and eigenmodes, and discussed the conditions
for the existence of regular neutral core and ring modes. Sipp & Jacquin (2003) and
Fabre, Sipp & Jacquin (2006) solved the problem numerically using a Chebyshev spectral
collocation method. Their findings revealed that many eigenmodes are suppressed due
to critical layer damping, which arises due to the smooth distribution of vorticity.
Additionally, Eloy & Le Dizès (2001) performed a detailed stability analysis of the
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Rankine vortex, identifying resonant combinations beyond the helical modes. Their
analysis was also extended to consider a multipolar straining field.

Another type of short-wave instability was found to occur theoretically in vortex rings by
Hattori & Fukumoto (2003) and Fukumoto & Hattori (2005). It was caused by the inherent
curvature of the vortex rings, and occurred for combinations of azimuthal wavenumbers
differing by one. The authors conducted stability analyses on the Rankine vortex to
deduce the characteristics of curvature instability. Blanco-Rodríguez & Le Dizès (2017)
theoretically computed the growth rates for a Batchelor vortex, and, along with Blanco-
Rodríguez & Le Dizès (2016), demonstrated that curvature also contributes to elliptic
instability. Hattori, Blanco-Rodríguez & Le Dizès (2019) further confirmed curvature
instability in a vortex ring with swirl through numerical stability analysis using direct
numerical simulations (DNS). Recently, Xu et al. (2025) proposed a numerical procedure
to study instabilities in helical vortex systems, and showed that curvature instability is also
present in such systems.

Although elliptic and curvature instabilities have been studied extensively over the past
few decades, much less attention has been given to multipolar instabilities, particularly
triangular instabilities. The only studies on triangular instability have been conducted
for the Rankine vortex (Eloy, Le Gal & Le Dizès 2000, 2003; Eloy & Le Dizès 2001),
and there are no theoretical or numerical studies confirming the existence of triangular
instability for Lamb–Oseen or Batchelor vortices. The existence of triangular instability
in more realistic vortices such as the Lamb–Oseen and Batchelor vortices could have
significant implications and provide valuable insights for engineering applications such
as turbomachines with three blades, e.g. ship or aircraft propellers, wind turbines,
and more. In such cases, the helical vortices that form around the central hub vortex
may induce triangular straining on the hub vortex, potentially triggering instabilities.
Additionally, long-lived non-axisymmetric vortices, such as dipoles, tripoles and higher-
order multipolar structures, have been observed in rotating turbulent flows through
experiments and DNS (Hopfinger & Van Heijst 1993; Carnevale & Kloosterziel 1994;
Rossi, Lingevitch & Bernoff 1997; Dritschel 1998). Kelvin waves have also been identified
on vortex filaments in transitional flows (Arendt, Fritts & Andreassen 1998), with elliptic
and multipolar instabilities potentially explaining the emergence and growth of these
waves.

In this study, we aim to investigate the stability of a Lamb–Oseen vortex under triangular
straining to short-wave instabilities through the parametric resonance of Kelvin waves.
This is achieved by conducting a linear stability analysis using both DNS and theoretical
analysis. Our objectives include computing and comparing the growth rates and structures
of the unstable modes (if present) obtained through linearised DNS and theoretical
analysis. Nonlinear effects are not considered in this work. Although the simulations
that we conduct are linearised DNS, we will refer to them simply as DNS for brevity.
In the DNS approach, we first determine the base flow and then integrate the linearised
Navier–Stokes equations to identify the most unstable mode. In the theoretical analysis,
we derive an approximation for the base flow under the assumption of a weak triangular
straining field, and use this approximation to derive linear perturbation equations for the
strained Lamb–Oseen vortex. These equations are then used to compute the growth rates
of the resonant modes. To identify the resonant modes, we solve the eigenvalue problem
corresponding to the unperturbed vortex. Further details of the methods and analysis are
provided in the subsequent sections.

The paper is structured as follows. In § 2, we formulate the problem and describe
the numerical procedure in detail, for both obtaining the base flow, and performing the
linearised DNS to identify the most unstable mode. In § 3, we derive the base flow using
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Figure 1. Geometry of the hub vortex and the three satellite vortices.

theoretical analysis, and outline the procedure for obtaining its analytical expressions.
We then compare these theoretical results with those from DNS. In § 4, we provide
a comprehensive explanation of the linear stability analysis, including the linearised
perturbation equations and the expressions for the growth rates of the resonant modes.
We then compare the results from DNS and theory. Finally, in § 5, we summarise the key
findings of this work and discuss potential future research directions.

2. Numerical procedure
Before delving into the theoretical analysis, we present an outline and detailed description
of the numerical procedure used to perform the DNS.

2.1. Outline
As an initial state, we consider a central hub Lamb–Oseen vortex surrounded
symmetrically by three satellite Lamb–Oseen vortices in an incompressible, viscous fluid,
where the satellite vortices provide triangular straining to the hub vortex, similar to the
illustration in figure 1. The satellite vortices are positioned at the vertices of an equilateral
triangle, with the hub vortex at its centre. If Γ denotes the circulation of the hub vortex,
then the circulation of each satellite vortex is chosen to be −Γ . This choice ensures that
the velocity induced by the other vortices at the centre of any vortex vanishes. As a result,
the vortices are not expected to move. In this manner, the system composed of hub and
satellite vortices can form a quasi-steady state, the stability of which can be analysed.

2.2. Numerical methods
The numerical analysis will involve two main steps. First, we obtain the quasi-steady base
flow by solving the two-dimensional (2-D) Navier–Stokes equations; then we integrate the
linearised Navier–Stokes equations around this base flow over a sufficiently long duration
to determine the most unstable mode, if it exists, for a linear disturbance with a specified
axial wavenumber, as detailed in the following paragraphs.

The analysis is performed in cylindrical coordinates. The base flow is computed in two
dimensions (r, θ), while the linear stability analysis extends to three dimensions (r, θ, z).
The linearised Navier–Stokes equations for the disturbances u, v, w and p around a given
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2-D base flow (U, V ) can be expressed as

∂u

∂t
= −U

∂u

∂r
− V

r

∂u

∂θ
+ 2V v

r
− u

∂U

∂r
− v

r

∂U

∂θ

− ∂p

∂r
+ 1

Re

[(
∇2 − 1

r2
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]
, (2.1)
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∂t
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∂r
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r2
∂u

∂θ

]
, (2.2)

∂w

∂t
= −U

∂w

∂r
− V

r

∂w

∂θ
− ∂p

∂z
+ 1

Re
∇2w, (2.3)

where ∇2 = ∂2
r + (1/r) ∂r + (1/r2) ∂2

θ + ∂2
z . These equations are discretised and solved

numerically on the same 2-D grid as the base flow. By assuming periodic boundary
conditions in the z-direction, the above equations are separable in the z-direction, which
allows us to consider a single wave of the form

F(t, r, θ, z)= eikz
∑

m

F̂m(t, r) eimθ (2.4)

for u, v, w and p. The 2-D numerical domain spans 0 � r � Lr and 0 � θ � 2π, with
Lr = 1000. For spatial discretisation, we use a sixth-order-accurate compact scheme
(Lele 1992) in r , and a Fourier spectral method in θ , with periodic boundary conditions.
To avoid the singularity at r = 0, we expand the r axis to −Lr � r � Lr , and omit a grid
point at r = 0. The Poisson equation for the pressure is decomposed into a set of ordinary
differential equations for individual Fourier modes, which are also solved with the sixth-
order compact scheme. For temporal discretisation, we apply the Crank–Nicolson scheme
to the viscous terms, and the second-order Adams–Bashforth method to the other terms.
Further details are provided in Appendix A of Hattori et al. (2019).

The base flow is obtained once the vortices have equilibrated in the field of the other
vortices. This rapid relaxation process has been described in the literature for two vortices
(Sipp, Jacquin & Cosssu 2000; Le Dizès & Verga 2002). After equilibrium is reached, the
2-D solution evolves on a slow viscous time scale. This evolution will not be considered
further, as we assume a frozen base flow and linearise the Navier–Stokes equations
around it. The same numerical methods and discretisation used for obtaining the base
flow are applied to integrate the frozen linearised Navier–Stokes equations.

2.3. Initial conditions and simulation parameters
The vortices are initially positioned as shown in figure 1. The hub vortex is located at the
centre of the frame, and the three satellite vortices are placed at distance of R from the
hub vortex centre, with angular separation 2π/3. Initially, all vortices are assumed to have
a Gaussian vorticity profile with core radius ai . After the relaxation process, the core size
of the vortices has slightly increased to a larger value a. This new core size will be used
to non-dimensionalise all spatial variables in the theory. The vortex circulation, however,
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is conserved. Thus the Reynolds number Re defined by

Re = Γ

2πν
, (2.5)

where ν is the kinematic viscosity, does not change. We start the simulation with core
size ai = 0.8 for both hub and satellite vortices, and stop it when the core size of the hub
vortex reaches a = 1, which occurs well after the establishment of a quasi-steady state. The
distance between the hub and the satellite vortices, denoted by R, is set to R = 5. Unlike
the growing core size, this distance remains nearly constant as the base flow reaches a
quasi-steady state. Thus at the quasi-steady state, we have a = 1 and R = 5. The initial
circulation Γ of the hub vortex is set to 2π (−Γ for the satellite vortices). We tracked the
circulation, first-order and second-order moments of the vorticity field of the hub vortex
throughout the simulation, which allowed us to compute its core radius and keep track of
how it changes with time. The details of these calculations are provided in Appendix A.

In the simulations, we select Re = 103 to obtain the base flow, but choose a larger value
Re = 104 for the perturbation analysis. This large value of the Reynolds number for the
perturbation analysis will guarantee the existence of unstable modes. The choice of a
smaller value of the Reynolds number for the base flow is just to reach the quasi-steady
state of core size a = 1 from ai = 0.8 more rapidly. This is justified because the quasi-
steady state is not expected to depend on the Reynolds number (Le Dizès & Verga 2002).
The most unstable mode for a given axial wavenumber k, if it exists, is obtained by DNS
from a random vorticity initial condition. The irrelevant modes decay, and the unstable
modes grow exponentially, from which the growth rate can be obtained. A non-uniform
grid is used where the number of grid points in r is taken to be 695, and the number of
Fourier modes in θ to be 512. Radial grid spacing 0.0475 is used in the region of the hub
vortex and satellite vortices.

3. Base flow: theory and results
In this section, we present the theoretical analysis used to derive the analytical expressions
for the base flow, which are then applied in the linear stability analysis. While the
numerical simulations consider the full system composed of the hub vortex and the three
satellite vortices, the theory focuses on the hub vortex. The objective is to obtain an
approximation for the velocity field of the hub vortex in the presence of satellite vortices.
Such an analysis has already been performed for a vortex pair (Le Dizès & Verga 2002).

The idea is to obtain an asymptotic solution in the limit of small a/R. For this purpose,
we introduce a small parameter ε = (a/R)3, giving us ε = 0.008, for the values of a and
R at the quasi-steady state. The field induced by the satellite vortices on the hub vortex
can then be modelled using a point vortex approximation for the satellite vortices. In the
centre of the hub vortex, this gives an expression for the induced velocity field that reads,
in Cartesian coordinates at leading order, as

Ux = −3ε(x2 − y2), Uy = 6εxy, (3.1)

and upon transformation into 2-D polar coordinates, we get the components in r and θ as

Ur = −3εr2 cos 3θ, Uθ = 3εr2 sin 3θ. (3.2)

Thus (Ur ,Uθ ) does correspond to a triangular straining field.
In Moore & Saffman (1975), Moffatt, Kida & Ohkitani (1994), Jiménez et al. (1996)

and Le Dizès (2000), it was theoretically derived and shown how a Lamb–Oseen vortex
interacts with a quadripolar straining field. The interaction with a triangular straining field
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is similar. We begin by taking a perturbation expansion of the streamfunction ψ(r, θ)
up to O(ε). For the O(ε) term, we assume a normal modes form corresponding to a
triangular azimuthal wavenumber (see § 2 in Le Dizès (2000) for a detailed and more
general derivation). The resulting expression for ψ is substituted in the 2-D inviscid
steady-state vorticity equation given by

∂ζ

∂r

∂ψ

∂θ
− ∂ψ

∂r

∂ζ

∂θ
= 0, (3.3)

where the vorticity field ζ(r, θ) is given by

ζ = −∇2ψ. (3.4)

The approximation of the 2-D velocity field (U , V ) for the triangular-strained Lamb–
Oseen vortex, where U and V denote the radial and azimuthal velocity components,
respectively, can then be obtained from the streamfunction as

U = ε
3 f (r)

r
cos 3θ + O(ε2), (3.5)

V = rΩ0(r)− ε f ′(r) sin 3θ + O(ε2), (3.6)
where

Ω0(r)= 1 − e−r2

r2 (3.7)

is the angular velocity of the Lamb–Oseen vortex, and f (r) is a function governed by the
second-order linear ordinary differential equation

f ′′ + r−1 f ′ −
(

9r−2 + 4r2

1 − er2

)
f = 0, (3.8)

with the boundary conditions

f (r)∼ s0r3 at r → 0, (3.9)

f (r)∼ r3 at r → ∞. (3.10)
The constant s0 ≈ 1.7724 appearing in these equations is a numerical constant derived
from the integration of (3.8). It corresponds to the amplitude of the straining field in the
vortex centre, normalised by the amplitude of the straining field at the same point in the
absence of the vortex. This ratio corresponds to the value at the origin of the function
plotted in figure 2.

The vorticity field of the hub vortex can be written as ζ = ζ0 + εζ1 + O(ε2), with

ζ0 = 2e−r2
, ζ1 = g(r) sin 3θ, (3.11)

and

g(r)= 4r2 f (r)

1 − er2 . (3.12)

We compare the DNS-obtained base flow with that derived theoretically to ensure
consistency before conducting a linear stability analysis of small disturbances on the
base flow. This process involves two steps. First, we verify that a quasi-steady state
is reached in DNS by plotting the vorticity field ζ(r, θ) and streamfunction ψ(r, θ)
scatter points, where the vorticity and the streamfunction are related via the Poisson
equation ζ = −∇2ψ . The absence of dispersed regions confirms a quasi-steady state.

1016 A9-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
40

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10409


A.S.P. Ayapilla, Y. Hattori and S. Le Dizès

f/
r3

r
2

1.0

1.2

1.4

1.6

1.8

4 6 8

Figure 2. Plot of f (r)/r3 as a function of the radial coordinate r . The value at zero is s0 ≈ 1.7724.
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Figure 3. Scatter plot of ζ(r, θ) and Ψ (r, θ) for Re = 1000 and ε = 0.008: (a) during the relaxation process
at t = 2.5; and (b) when the core size reaches a = 1 at t = 87.35, which is well after the establishment of a
quasi-steady state. The absence of dispersed regions in (b) indicates that a quasi-steady state has been reached.
Zoomed-in regions are included to highlight the differences clearly.

Such a verification is shown in figure 3. We also calculate the Euler-residue N given by
N = [〈(u · ∇ω)2〉/〈ω2〉]1/2 × 2πR2/Γ , which compares the inviscid evolution time scale
of the vorticity distribution with the advection time (Sipp et al. 2000). Figure 4 shows the
Euler-residue, indicating that the quasi-steady state is reached well before a = 1 (marked
by the red diamond).

Second, we compare the leading-order and correction terms of the vorticity field
accounting for triangular straining. The correction term is obtained from DNS at the
angular location of a satellite vortex and compared to ζ1(r, θ) by taking θ = π/2 or 7π/6
or 11π/6. This comparison is shown in figure 5 for ε = 0.008 and Re = 1000. Good
agreement is observed that validates the description of the base flow close to the hub
vortex by (3.5) and (3.6). It is important to note that in figure 5(b), the rise in the curve
for the correction term obtained numerically, near r ≈ 3, is due to the presence of the
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Figure 4. Log-scale plot of Euler-residue N versus t , scaled by viscous time. The red diamond indicates the
time when a = 1.
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Figure 5. Comparison of the base flow vorticity field obtained with DNS (solid black line) and theory (red
dashed line) for Re = 1000 and ε = 0.008: (a) leading-order term; (b) correction term due to triangular
straining. The correction term is obtained at the angular location of a satellite vortex.

satellite vortices. Figure 6(a) displays the streamlines of the base flow, illustrating the
triangular straining effect caused by the three satellite vortices. However, the distortion
near the vortex core remains subtle due to the weak strain (ε = 0.008). The streamfunction,
expanded up to first order in ε, is given by

ψ =ψ0 + ε f (r) sin 3θ + O(ε2). (3.13)

The streamlines, to order ε, are expressed as

r = r0 + εrψ(θ), (3.14)

and substituting this into the perturbation expansion for the streamfunction yields

rψ(θ)= f (r0)

r0Ω0(r0)
sin 3θ. (3.15)
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Figure 6. A2-D visualisation of the base flow. (a) Streamlines depicted by solid black lines where the
streamfunction ψ is a constant, plotted from r0 = 1 (innermost contour) to r0 = 2.75 in intervals of 0.25. The
values ofψ starting from r = 1 are 2.05, 1.90, 1.74, 1.59, 1.47, 1.35, 1.24, 1.15. The corresponding unstrained
streamlines are depicted by dashed lines. (b) Contours of εζ1.

Here, r0 represents the streamlines of the unstrained vortex, while ε rψ(θ) quantifies the
distortion induced by triangular straining. Figure 6(b) shows the 2-D representation of the
vorticity field of the base flow, considering only the contribution from the correction term.

4. Linear stability analysis – theory and results

4.1. Perturbation equations of linear disturbances
If one uses expressions (3.5) and (3.6) for the base flow, then the linearised Navier–
Stokes equations for the velocity–pressure field u = (u, v, w, p) of the perturbations can
be written in the form(

L ∂
∂t

+P ∂

∂z
+M− V

Re

)
u = ε

(
e3iθ N + e−3iθ N

)
u, (4.1)

where the matrices L, P , M, V , N are given in Appendix B.

4.2. Triangular instability resonance mechanism
The mechanism for the growth of perturbations in a triangular-strained vortex is the
same as that for the elliptic instability in the quadripolar-strained vortex (Moore &
Saffman 1975; Tsai & Widnall 1976). The only difference is that the triangular strain
field corresponds to an azimuthal wavenumber m = 3 perturbation of the vortex, while
the elliptic strain field corresponds to an m = 2 perturbation.

As for the elliptic instability, it is associated with a phenomenon of resonance of two
quasi-neutral waves of the underlying vortex with the strain field. These waves, also called
Kelvin modes, have an expression of the form

u = ũ(r) ei(mθ+kz−ωt), (4.2)

where m is the azimuthal wavenumber, k is the axial wavenumber, ω is the frequency, and
ũ(r) is the eigenfunction field of the Kelvin mode. They satisfy the perturbation equations

1016 A9-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
40

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10409


Journal of Fluid Mechanics

for the unstrained vortex(
ωL− kP + i M(m)− i

Re
V(m, k)

)
ũ = 0, (4.3)

where M(m) and V(m, k) are obtained by replacing ∂/∂θ with im and ∂/∂z with ik, in
the matrix operators M and V , given in Appendix B.

To get the possible coupling of two Kelvin modes with the strain field, one should find
two neutral Kelvin modes (ωA, kA,m A) and (ωB, kB,m B) satisfying

ωA =ωB, kA = kB, |m A − m B | = 3. (4.4)

Kelvin modes of the Lamb–Oseen vortex have been analysed by Fabre et al. (2006).
In a viscous fluid, Kelvin modes are always damped (Im(ω) < 0). Some of the Kelvin
modes become neutral as the Reynolds number goes to infinity. But others continue to
exhibit a large damping, which is associated with the presence of a critical layer (Sipp &
Jacquin 2003). This feature makes the Lamb–Oseen vortex very different from the Rankine
vortex, for which there is no critical layer damping.

4.2.1. Large-k asymptotic prediction of the Kelvin modes
Le Dizès & Lacaze (2005) have developed an asymptotic theory using WKB analysis to
describe the various types of Kelvin modes that can be obtained in the infinite Reynolds
number and large axial wavenumber limit. For the Lamb–Oseen vortex, they found two
types of neutral modes: regular neutral core modes where no critical point is present, and
singular neutral core modes for which a critical point is present on the real axis but the
critical layer damping is asymptotically small. They showed that the frequency range of
each mode can be obtained by analysing the three functions ω±(r) and ωc(r) defined by

ω±(r)= mΩ0(r)±
√

2Ω0(r)ζ0(r), (4.5)
ωc(r)= mΩ0(r). (4.6)

The functions ω±(r) are known as the epicyclic frequencies. They define the upper and
lower bounds of the frequency range within which regular neutral core modes (blue regions
in figure 7) can exist at a given radial location r . Within this frequency range, the modes
exhibit oscillatory behaviour for radial positions less than r , and decay exponentially
beyond that point. The function ωc(r), referred to as the critical frequency curve, gives the
frequency at which a critical point occurs at r . Regular modes cannot exist at these critical
frequencies. However, the damping caused by the critical layer can become asymptotically
small if the critical point for a given mode lies at a very large value of r , far from the
region where the mode behaves neutrally. Such modes are called singular neutral core
modes (red regions in figure 7). For each azimuthal wavenumber m, one can determine the
corresponding frequency intervals in which these behaviours occur. For a more detailed
explanation, readers are referred to Le Dizès & Lacaze (2005). The condition of resonance
can therefore be analysed by looking at the possible overlap of these frequency intervals
for a couple of azimuthal wavenumbers m and m + 3. This analysis leads to a unique
possibility: only the couple (m A,m B)= (1,−2) (and (m A,m B)= (−1, 2), by symmetry)
exhibits a frequency overlap. It corresponds to the frequency interval −0.387<ω< 0,
where m A = −2 singular core modes and m B = 1 regular core modes both exist, as shown
in figure 7.
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Figure 7. Plots of the epicyclic frequencies ω+, ω− (solid lines) and the critical frequency ωc (dashed line) as
functions of the radial coordinate r , for (a) m = 1, (b) m = −2. In each plot, the blue regions (resp. red regions)
indicate the frequency intervals of regular neutral core modes (resp. singular neutral core modes); the hatched
region indicates the frequency interval where resonance between m = 1 and m = −2 modes is possible.

4.2.2. Numerical determination of the Kelvin modes
The Kelvin modes can also be obtained by numerically solving the eigenvalue problem
(4.3), and we use these numerically computed modes for the remainder of the analysis.
Our numerical solver employs a Chebyshev spectral collocation method, following the
approach of Fabre & Jacquin (2004). The eigenvalue problem defined in the domain
0< r <∞ is extended to −∞< r <∞ and mapped onto a contour in the complex-r
plane. It is then solved in the Chebyshev domain (−1, 1) using 2(N + 1) collocation
points. A resolution N = 200 is found to be sufficient. For the inviscid limit, we adopt
a complex mapping function, similar to the one used by Fabre & Jacquin (2004),
defined as

r = Hξ

1 − ξ2 + i
Aξ√

1 − ξ2
, (4.7)

where the parameter H controls the radial spreading of the collocation points, and the
parameter A determines the inclination of the contour in the complex plane. We also take
advantage of the parity properties of the eigenfunctions. For odd values of m, we express
w̃ and p̃ using odd polynomials, and ũ and ṽ using even polynomials. Conversely, even
values of m, w̃ and p̃ are represented using even polynomials, while ũ and ṽ are expressed
using odd polynomials.

The above procedure has been done for the two azimuthal wavenumbers m A = 1 and
m B = −2, and a wavenumber k varying between 0 and 10 at Re = 104. The result gives
the complex frequency curves that have been plotted in figure 8(a,b). One clearly sees in
these plots the frequency interval where regular and singular core modes were expected
from figure 7.

Figure 8(c) displays the crossing points of m A = 1 and m B = −2 branches. As the
damping rate of the modes shown in this figure is small, each crossing point corresponds
to a (quasi-)resonant configuration. The resonant configurations marked with red circles
exhibited positive growth rates, while the other resonant modes showed no growth or
negligible growth rates due to critical layer damping and volumic viscous damping.
A detailed analysis is provided in the subsequent subsections. We label the branches of
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Figure 8. Dispersion curves of the Kelvin modes, obtained by solving the eigenvalue problem in (4.3) on the
real axis for (a) m A = 1 and (b) m B = −2 at Re = 104. The real part of the frequency, ωr , is plotted against
k, while the damping is represented by the greyscale intensity of −ωi , the imaginary part of the frequency.
(c) Resonant Kelvin modes of the unstrained Lamb–Oseen vortex at Re = 104, identified at the crossing
points of the dispersion curves. Modes with positive growth rates at Re = 104 are circled in red, with their
corresponding branch indices indicated in parentheses.

the dispersion curves as (lA, lB) where lA and lB are the branch labels of m A = 1 and
m B = −2 modes, respectively.

An interesting observation is that the branches of the dispersion curves for m = −2
involved in the resonance correspond to the ‘L branches’ described in Fabre et al. (2006)
(see their figures 19 and 20). In particular, the first branch in figure 8(c) for m = −2
matches the ‘F branch’, also known as the flattening wave. Modes on this branch with axial
wavenumber k < 3.45 are reported to experience significant critical layer damping, while
modes with larger k behave as regular, weakly damped waves. This trend is also evident
here: the first mode, labelled (1, 1), shows stronger critical layer damping compared to the
modes labelled (2, 1) and (3, 1), which are only weakly damped. The F branch also has an
analogue in the Rankine vortex, where it is referred to as the ‘isolated branch’ by Eloy &
Le Dizès (2001) and Fukumoto (2003). The branches below the first one are referred to
as ‘L2 branches’. In our results, the modes labelled (3, 2) and (4, 2) lie in the weakly
damped regions of these L2 branches. Hence among the resonant modes considered, only
(1, 1) exhibits strong critical layer damping (also see table 1).
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(lA, lB) (1, 1) (2, 1) (3, 1) (3, 2) (4, 2)

k(∞)
c 1.76 5.18 7.58 9.64 12.22
ω
(∞)
c −0.407 −0.312 −0.252 −0.35 −0.307

Im(ωB) −0.044 −2.01 × 10−5 −6.59 × 10−7 −2.20 × 10−5 −1.75 × 10−6

Q(∞)
A −0.164 −0.077 −0.054 −0.042 −0.033

Q(∞)
B × 102 2.96 + 1.09i 2.93 − 0.73i 2.14 − 0.33i 1.76 − 0.24i 1.53 − 0.16i

V (∞)
A −5.22 −44.60 −101.37 −148.23 −248.91

V (∞)
B −3.16 − 3.27i −31.38 − 0.03i −65.96 + 0.00i −108.92 − 0.11i −175.36 + 0.00i

C (∞)
AB 10.94 − 6.56i 6.76 + 3.43i −4.38 − 0.81i −0.76 − 11.37i −7.45 + 3.46i

C (∞)
B A 0.95 + 0.91i 2.27 − 2.07i −0.93 + 0.44i 0.34 + 1.77i −1.47 − 0.27i

N (∞) 4.07 + 0.46i 4.78 − 0.65i 2.13 − 0.27i 4.50 − 0.58i 3.48 − 0.44i

Table 1. Values of the parameters of the growth rate equation (4.18) for the resonance of two Kelvin modes
of azimuthal wavenumbers m A = 1 and m B = −2 at the different resonant points. Integration is done in the
complex plane as explained in the text.

4.3. Theoretical expression for the triangular instability growth rate
The method for computing the growth rate associated with the resonant coupling of two
Kelvin modes with the triangular straining field is the same as that used for the elliptic
instability. It is based on an asymptotic analysis in the limit of small ε. For more details,
we refer the reader to Moore & Saffman (1975).

The idea is to consider the perturbation as a combination of two normal modes of
azimuthal wavenumbers m A and m B (related by (4.4)) that corresponds at leading order in
ε to a resonant configuration of Kelvin modes. We then write

u ∼
(

AũA(r)ei(m Aθ) + B ũB(r)ei(m Bθ)
)

ei(kz−ωt), (4.8)

where the (real) axial wavenumber k and the (complex) frequency ω of the two modes
are assumed to be close to a resonant point defined by an axial wavenumber kc and a real
frequency ωc (corresponding to one of the crossing points shown in figure 8c).

Substituting (4.8) in (4.1), we get two equations for the components proportional to
eim Aθ and eim Bθ , respectively:

A

(
ωL− kP + i M(m A)− i

Re
V(m A, k)

)
ũA = iBε N (m B) ũB, (4.9)

B

(
ωL− kP + i M(m B)− i

Re
V(m B, k)

)
ũB = i Aε N (m A) ũA, (4.10)

where N (m B) and N (m A) are obtained by replacing ∂/∂θ with im B and im A,
respectively, in the N and N operators given in Appendix B. These equations show how
the two modes are coupled by the straining field that is responsible for the terms on the
right-hand sides of these equations.

The equation giving the complex frequency ω is obtained from an orthogonality
condition with the adjoint resonant Kelvin modes. The eigenfunctions ũ†

A and ũ†
B of these

two adjoint modes are the solutions of the adjoint equation of (4.3) for (m, k)= (m A, kc)

and (m, k)= (m B, kc), respectively. These adjoint equations are obtained using the scalar
product

〈u1, u2〉 =
∫ ∞

0
u∗

1(r) u2(r)r dr, (4.11)
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where ∗ denotes the complex conjugate. We have two options for applying the
orthogonality condition: either we consider the inviscid expressions (ũ(∞)

A , ũ(∞)
B ) and

(ũ†(∞)
A , ũ†(∞)

B ) of the Kelvin and adjoint modes, or we choose their expression for a given
(large) Reynolds number.

In the first case, upon performing the scalar product of (4.9) with ũ†(∞)
A and of (4.10)

with ũ†(∞)
B , we obtain(

ω−ω
(∞)
A − Q(∞)

A

(
k − k(∞)

c

)
− i

V (∞)
A

Re

)
A = iεC (∞)

AB B, (4.12)

(
ω−ω

(∞)
B − Q(∞)

B

(
k − k(∞)

c

)
− i

V (∞)
B

Re

)
B = iεC (∞)

B A A, (4.13)

where the coefficients Q(∞)
A , Q(∞)

B , V (∞)
A , V (∞)

B , C (∞)
AB , C (∞)

B A are given by

Q(∞)
A =

〈
ũ†(∞)

A ,P ũ(∞)
A

〉
〈
ũ†(∞)

A ,Lũ(∞)
A

〉 , Q(∞)
B =

〈
ũ†(∞)

B ,P ũ(∞)
B

〉
〈
ũ†(∞)

B ,Lũ(∞)
B

〉 , (4.14)

V (∞)
A =

〈
ũ†(∞)

A , V ũ(∞)
A

〉
〈
ũ†(∞)

A ,Lũ(∞)
A

〉 , V (∞)
B =

〈
ũ†(∞)

B , V ũ(∞)
B

〉
〈
ũ†(∞)

B ,Lũ(∞)
B

〉 , (4.15)

C (∞)
AB =

〈
ũ†

A,N (m B) ũ(∞)
B

〉
〈
ũ†(∞)

A ,Lũ(∞)
A

〉 , C (∞)
B A =

〈
ũ†(∞)

B ,N (m A) ũ(∞)
A

〉
〈
ũ†(∞)

B ,Lũ(∞)
B

〉 . (4.16)

The frequencies ω(∞)
A and ω(∞)

B are the inviscid estimates of the frequencies of the
resonant Kelvin modes at k = k(∞)

c . They can be expressed as

ω
(∞)
A =ω(∞)

c + i Im
(
ω
(∞)
A

)
, ω

(∞)
B =ω(∞)

c + i Im
(
ω
(∞)
B

)
, (4.17)

where Im(ω(∞)
A ) and Im(ω(∞)

B ) are the critical layer damping rates of the modes.
For the azimuthal wavenumber couple (m A,m B)= (1,−2), only the Kelvin mode

with azimuthal wavenumber m B = −2 is expected to experience critical layer damping
at resonance. In particular, we have Im(ω(∞)

A )= 0 for m A = 1 at resonance.
Equations (4.12) and ( 4.13) with ( 4.17) give an equation for the complex frequency ω:(
ω−ω(∞)

c − Q(∞)
A

(
k − k(∞)

c

)
− i

V (∞)
A

Re

)
(
ω−ω(∞)

c − i Im
(
ω
(∞)
B

)
− Q(∞)

B

(
k − k(∞)

c

)
− i

V (∞)
B

Re

)
= −ε2

(
N (∞)

)2
, (4.18)

where

N (∞) =
√

C (∞)
AB C (∞)

B A . (4.19)

The growth rate σ is defined as Im(ω) and is computed using the equation above.
Both modes oscillate with a common resonant frequency given by Re(ω). On the left-
hand side of (4.18), we recognise the dispersion relation for the two resonant modes,
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Figure 9. Growth rates σ are plotted against the axial wavenumber k for the resonant modes, based on
theoretical predictions. Solid black lines represent results from (4.18), while solid red lines correspond to (4.20),
both computed for Re = 104. Dashed black lines show results from (4.18) in the inviscid limit (Re = ∞). The
corresponding branch indices are also indicated.

A and B, close to the resonant point. More precisely, the left-hand side can be written
as (ω−ωA(k, Re))(ω−ωB(k, Re)), where ωA(k, Re) and ωB(k, Re) are the complex
frequencies of the two Kelvin modes for a wavenumber k close to kc, and a large Reynolds
number. The right-hand side corresponds to the coupling term that is responsible for the
instability.

The integrals in the inner products that appear in the coefficients of (4.14), (4.15)
and (4.16) are evaluated along a complex path that avoids the critical point associated with
the mode m = −2 from below, since it moves in the lower part of the complex plane, as
explained in Le Dizès (2004). To achieve this, we use the complex mapping given in (4.7)
with parameters H = 4 and A = −0.5. These values of H and A result in the contour
passing slightly below the critical points for all the resonant points corresponding to
m = −2. The integrals corresponding to m = 1 are also computed along this same contour.
Since the m = 1 modes do not have a critical point, the values of the integrals remain
unchanged. In table 1, we provide the values of the parameters appearing in (4.18) for all
the resonant points that have been identified in figure 8 for the two azimuthal wavenumbers
m A = 1 and m B = −2.

An equation for the growth rate can also be obtained using the viscous expression of the
resonant Kelvin modes. In that case, instead of (4.18), we get

(ω−ωc(Re)− i Im(ωA(Re))− Q A(Re)(k − kc(Re)))

× (ω−ωc(Re)− i Im(ωB(Re))− Q B(Re)(k − kc(Re)))= −ε2(N (Re))2, (4.20)

where the coefficients now depend on the Reynolds number. Note that the volumic
viscous damping terms iV (∞)

A /Re and iV (∞)
B /Re in (4.18) are now included in the terms

i Im(ωA(Re)) and i Im(ωB(Re)). This second approach has also been used. For the
Reynolds number Re = 104 that we have considered, the results are similar, as can be
seen in figure 9. This figure shows the five resonant modes for which a positive viscous
growth rate was obtained. In this figure, we have also plotted the growth rate curves
obtained from (4.18) for Re = ∞. We clearly see that the viscous damping of the modes
significantly affects the resonant configurations with the largest wavenumbers.
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Figure 10. Comparison of growth rates σ against the axial wavenumber k for the first four resonant modes
computed using (4.20) (solid black lines) and DNS (circles). Values of the corresponding branch indices are
reported.

k (lA, lB) ωdns ωth σdns σth σ
(∞)
th

1.76 (1, 1) −0.419 −0.406 0.0183 0.0187 0.0174
5.18 (2, 1) −0.312 −0.312 0.0352 0.0345 0.0383
7.58 (3, 1) −0.262 −0.252 0.0100 0.0088 0.0170
9.64 (3, 2) −0.343 −0.350 0.0230 0.0233 0.0360

Table 2. Growth rate σ and real part of the frequency ω of the most unstable mode for different axial
wavenumbers k, obtained by DNS and theory (4.20), for Re = 104 and ε = 0.008. The maximum growth
rates predicted by (4.18) in the inviscid limit, denoted by σ (∞)

th , are given in the last column. The chosen
axial wavenumbers correspond to the resonant values for the Kelvin modes of azimuthal wavenumbers
(m A = 1,m B = −2) and branch labels (lA, lB).

4.4. Numerical results
In this subsection, we first describe how growth rates and frequencies are obtained
numerically, and then compare the results predicted by (4.18) or (4.20) with those obtained
from DNS. The numerical results are obtained for Re = 104. Starting from a random
initial energy distribution, modes associated with different azimuthal wavenumbers grow
exponentially in time if they are unstable. The growth rate is determined as the slope
(divided by 2) of the logarithm of the energy of the unstable modes. The frequency of the
modes is computed by tracking their phase and measuring their rotation rate about the z
axis. The comparison of growth rates is shown in figure 10 for ε = 0.008 and k ranging
from 0.7 to 10. We observe that the first four unstable modes predicted by the theory within
this wavenumber range are also captured in the DNS. The agreement in the growth rates is
almost perfect. The values for the frequency and growth rate, obtained by both theory and
DNS, for the four unstable modes at their resonant wavenumbers are given in table 2.

In figure 11, we analyse the effect of ε on the growth rate curve of the most unstable
mode corresponding to (lA, lB)= (2, 1). As expected, the growth rate decreases when ε is
halved, and the agreement between the growth rate curves is excellent, as illustrated in the
figure.

The structures and the energy ratio of the contributions from various azimuthal
wavenumbers of the unstable modes are displayed in figures 12, 13, 14 and 15. In each
figure, the leftmost panel shows the 2-D contours of the perturbation axial vorticity field
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Figure 11. Growth rate σ versus k for the resonant mode with (lA, lB)= (2, 1) at Re = 104. Circles indicate
DNS; solid black lines indicate theory; with black for ε = 0.008, and blue for ε = 0.004.
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Figure 12. Structure of the resonant combination with k = 1.76 for Re = 104 and ε = 0.008, for mode (1, 1).
(a) Contours of the axial vorticity using DNS. (b) Energy ratio: red circles indicate DNS; blue crosses indicate
theory. (c) Radial structure of the amplitude |u(r)| of radial velocity: coloured lines indicate DNS; black lines
indicate theory.

in the hub vortex, obtained by DNS. The values are divided by eσ ts , where σ is the
corresponding growth rate, and ts is the simulation time of the snapshot used. In the
centre panels, we analyse the azimuthal composition of the unstable mode, by computing
the energy percentage of each azimuthal component. This decomposition is compared to
the theoretical prediction obtained for each resonant configuration. The theoretical energy
ratio for mode A, for instance, can be calculated by

E A

E A + EB
=

∫ |ũA|2 r dr∫ |ũA|2 r dr + (B2/A2)
∫ |ũB |2 r dr

, (4.21)

where |ũA|2 = ũ A(r)2 + ṽA(r)2 + w̃A(r)2, and (B2/A2) can be calculated from (4.12)
or (4.13). We can see that the unstable modes obtained from DNS are primarily composed
of the azimuthal wavenumber pairs m A = 1, m B = −2 and m A = −1, m B = 2, with
negligible contributions from other azimuthal wavenumbers, as resonance is expected only
between these wavenumbers. The energy ratio of the resonant azimuthal wavenumbers
aligns well with theoretical predictions, except for the mode corresponding to the branch
labels (1, 1), which shows a slight discrepancy. It might be useful to note that the
numerically obtained energy percentages of m A = 1 and m B = −2 are respectively the
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Figure 13. Structure of the resonant combination with k = 5.18 for Re = 104 and ε = 0.008, for mode (2, 1).
(a) Contours of the axial vorticity using DNS. (b) Energy ratio: red circles indicate DNS; blue crosses indicate
theory. (c) Radial structure of the amplitude |u(r)| of radial velocity: coloured lines indicate DNS; black lines
indicate theory.
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Figure 14. Structure of the resonant combination with k = 7.58 for Re = 104 and ε = 0.008, for mode (3, 1).
(a) Contours of the axial vorticity using DNS. (b) Energy ratio: red circles indicate DNS; blue crosses indicate
theory. (c) Radial structure of the amplitude |u(r)| of radial velocity: coloured lines indicate DNS; black lines
indicate theory.

same as those of m A = −1 and m B = 2. This is due to a certain symmetry that we
enforce in the initial random vorticity distribution. Without this symmetry condition, these
percentages might differ; however, the mutual energy ratio between the resonant pairs
would still be the same. To further validate that the unstable resonant modes obtained
from DNS share the same structure as those predicted by theory, the radial distributions
of the absolute value of the radial disturbance velocity for both azimuthal wavenumbers
are plotted in the right most panels of figures 12, 13, 14 and 15, comparing DNS results
with theoretical predictions. The radial structures from DNS are extracted by performing
a Fourier decomposition of the disturbance fields into components corresponding to
different azimuthal wavenumbers. This comparison is conducted by normalising the
amplitude of the m A = 1 azimuthal component to one at the origin in both DNS and theory.
Good agreement is also observed here, except for a significant discrepancy in the amplitude
of the mode (1, 1) corresponding to m = −2. We do not have a definitive explanation
for these discrepancies in both the energy ratios and the eigenfunction radial structures
for m = −2. However, we suspect that they arise from an imperfect representation of the
critical layer, particularly strong for (1, 1). Figure 12(c) shows additional oscillations in the
theoretical predictions just beyond r = 2. These oscillations result from the regularisation
of the critical layer by viscous effects, which are absent in the numerical results. Therefore,
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Figure 15. Structure of the resonant combination with k = 9.64 for Re = 104 and ε = 0.008, for mode (3, 2).
(a) Contours of the axial vorticity using DNS. (b) Energy ratio: red circles indicate DNS; blue crosses indicate
theory. (c) Radial structure of the amplitude |u(r)| of radial velocity: coloured lines indicate DNS; black lines
indicate theory.
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Figure 16. Contours of the maximum growth rate in the (ε, Re) parameter space, computed from theory
using (4.18). Grey regions indicate where the mode (1, 1) is the most unstable, while blue regions indicate
where the mode (2, 1) is the most unstable. Black contour lines represent growth rate levels from 0 to 0.045,
in steps of 0.005. The overall marginal stability curve, obtained from (4.22), is shown as a thick dashed black
line and corresponds to the zero-growth-rate contour. The individual marginal stability curves for modes (1, 1)
and (2, 1) are shown as black and blue dotted lines, respectively. Red stars mark the growth rates used in the
main test cases: σ = 0.0153 for ε = 0.004, and σ = 0.0345 for ε = 0.008, at Re = 104.

we believe that the observed discrepancy is due to the inaccurate representation of the
critical layer. From the leftmost and rightmost panels, it is also evident that modes
associated with higher branches exhibit more zeros in the radial distributions of the
disturbance fields.

4.5. Variation of maximum growth rate with Re and ε
The theory allows us to easily analyse the effect of ε and Re on the instability. Using (4.18),
one can compute, for each resonant configuration, the maximum growth rate for any values
of ε and Re. Figure 16 shows the contours of the maximum growth rate in the (ε, Re)
parameter space. For large ranges of ε (0< ε < 0.01) and Re (100< Re< 105), we find
that the most unstable modes correspond to the branch label combinations (lA, lB)= (1, 1)
and (2, 1). Among these, the (2, 1) mode (shown in blue contours) is dominant over most
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of the parameter space, while the (1, 1) mode (shown in grey contours) becomes more
unstable only at lower Reynolds numbers because of its small volumic viscous damping
coefficients, as seen in the figure. The contour σ = 0 represents the marginal stability curve
εs(Re), which separates stable and unstable regions for these resonant modes and thus
marks the onset of triangular instability. Using (4.18), this curve can be approximated as

εs(Re)≈
∣∣∣∣∣∣
√

V (∞)
A V (∞)

B + V (∞)
A Im(ω(∞)

B ) Re

N (∞) Re

∣∣∣∣∣∣ , (4.22)

with the relevant coefficients listed in table 1 for each resonant configuration. The figure
also shows that for realistic values of ε (towards the right-hand side of the plot), triangular
instability can arise at Reynolds numbers as low as Re ∼ 200. Likewise, even under weak
straining conditions (ε < 0.001), instability may still occur at moderate Reynolds numbers
Re ∼ 10 000, albeit with small growth rates.

4.6. Comparison with triangular instability in the Rankine vortex
In this subsection, we briefly compare the characteristics of the triangular instability
observed in the Lamb–Oseen vortex with those reported for the Rankine vortex. The latter
has been studied theoretically by Eloy & Le Dizès (2001), and their results are used here
for comparison.

The most notable difference lies in the absence of a critical layer in the Rankine vortex.
This allows resonances for any pair of azimuthal wavenumbers m and m + 3, even for
asymptotically large m. In contrast, for the Lamb–Oseen vortex, resonance is limited only
between m = 1 and m = −2 (or m = −1 and m = 2), as critical layer damping suppresses
other combinations.

For the Rankine vortex, the maximum growth rate is achieved in the large-m, large-k
limit, with σ (R)max = 49/32ε̃ = 1.53ε̃, where ε̃ is related to our external strain rate parameter
ε by ε̃ = 9/2ε. This gives σ (R)max = 6.89ε. For the Lamb–Oseen vortex, the highest inviscid
growth rate is σ (L)max = 4.78ε for mode (2, 1) (see table 1). Alternatively, if one uses
the strain rate parameter at the vortex centre, which is ε0 = (3/2)ε for the Rankine
vortex, but ε0 = s0ε for the Lamb–Oseen vortex, we get σ (R)max = 4.59ε0 and σ (L)max = 2.70ε0.
In both cases, the values remain below the maximum growth rate reported for the Rankine
vortex. However, focusing only on modes from the m = 1 and m = −2 resonance, Eloy &
Le Dizès (2001) reported σ (R) = 0.95ε̃ = 4.27ε = 2.85ε0 for the first principal mode
(see their Figure 4b). This value is comparable to the maximum inviscid growth rate
found for the Lamb–Oseen vortex, which occurred for the non-principal mode (2, 1). As
shown in this study, the first principal mode is subject to significant critical layer damping
and does not become the most unstable mode in the inviscid limit.

5. Concluding remarks
We have studied the linear instability of a Lamb–Oseen vortex subjected to triangular
straining, and, for the first time, demonstrated the occurrence of triangular instability in
such a vortex, both numerically and theoretically. In our numerical analysis, we modelled
the triangular strain field acting on the Lamb–Oseen vortex as being generated by three
surrounding satellite vortices with opposite circulation. A 2-D quasi-steady solution was
first obtained numerically and then used as the base flow for a 3-D linear stability analysis.
The theoretical analysis involved deriving an asymptotic solution for the base flow in
the limit of small strain rates, which was shown to accurately describe the numerical
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solution in the core of the strained vortex. In this framework, the strain rate parameter
ε was defined as the ratio (a/R)3, where a is the vortex core size, and R is the distance
of satellite vortices from the vortex centre. By interpreting the triangular instability as a
resonance phenomenon similar to that occurring in elliptic instability, we showed that
only Kelvin modes with azimuthal wavenumbers m = 1 and m = −2 (or m = −1 and
m = 2) can resonate with the triangular strain field and drive the instability. This mode
selection has been attributed to critical layer damping affecting many of the Kelvin modes
in the Lamb–Oseen vortex. In particular, the resonant modes belonging to m = −2 exhibit
critical layer damping, whereas the m = 1 modes are regular and do not undergo any
critical layer damping. We derived an explicit expression for the growth rate of the first
few resonant modes – corresponding to the intersections of the branches of the two modes
with the smallest labels – and compared it with the growth rates obtained numerically.
For Re = 104 and ε = 0.008, very good agreement was observed. The structures of the
unstable modes obtained from DNS and those predicted by the theory were compared and
found to be in excellent agreement in all cases, except for the mode with the smallest axial
wavenumber, where the agreement for structures corresponding to m = −2 was not perfect
due to the imperfect representation of the strong critical layer effect in the theoretical
analysis. Using the theory, a complete stability diagram in the (ε, Re) parameter space
was also constructed. We showed that the most unstable mode always corresponds to one
of two resonant configurations: either the mode with branch labels lA = 1 and lB = 1, or
the mode with lA = 2 and lB = 1. The latter becomes the most unstable at higher Reynolds
numbers, while the former dominates at lower Reynolds numbers. The first mode has
axial wavenumber k ≈ 1.76/a and frequency ω≈ −0.407Ω , and the second mode has
k ≈ 5.18/a and ω≈ −0.312Ω , where Ω is the angular velocity at the vortex centre.

In this work, we focused on the strained Lamb–Oseen vortex. In applications where the
vortices are created by lifting surfaces, vortices also possess an axial flow component.
In such cases, a more adequate model would be the Batchelor vortex. As explained in Le
Dizès & Lacaze (2005), the characteristics of the Kelvin modes are strongly impacted by
the addition of axial flow. Therefore, in a Batchelor vortex, the conditions of resonance
are expected to be modified, and other modes with different azimuthal wavenumbers may
be excited, as observed in the case of the elliptic instability (Lacaze, Ryan & Le Dizès
2007).

By choosing satellite vortices of opposite circulation, we exactly cancelled the rotation
of the satellite vortices around the central vortex. If the circulation of the satellite vortices
were different, then the satellite vortices would rotate, causing the induced triangular strain
field to rotate as well. This effect is known to impact the base flow. Specifically, if the
rotation is in the same direction as the vortex’s angular rotation, then a critical layer is
expected to appear, significantly modifying the strain field structure (Le Dizès 2000). The
conditions of resonance would also be modified, potentially suppressing some resonances
and creating new ones.

It is also worth emphasising that our base flow model is 2-D. In wind turbine
applications, if the rotor has three blades, then the tip vortices generate a strain field on
the hub vortex with m = 3 azimuthal symmetry. However, tip vortices are helical, meaning
that induced strain also has helical symmetry and exhibits an axial dependence related to
the pitch of the helical structure. It would be interesting to study the impact of this effect
on the triangular instability.

Furthermore, it is important to note that the hub vortex is not always a straight vortex on
the rotor axis. It may also exhibit a helical structure, depending on the rotor blade design
(Durán Venegas & Le Dizès 2019), which makes it sensitive to other short-wavelength
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instabilities such as elliptic and curvature instabilities (Blanco-Rodríguez & Le Dizès
2016, 2017). The instability of the hub vortex is also expected to compete with the short-
wavelength instabilities that develop in the core of the helical satellite vortices, as well
as with the long-wavelength instabilities affecting the entire system composed of hub and
satellite vortices (Quaranta, Bolnot & Leweke 2015; Durán Venegas & Le Dizès 2019).

Finally, our analysis considered only the linear dynamics associated with the triangular
instability. Whether this instability can lead to the destruction of the vortex structure
remains an open question, requiring further investigation in the nonlinear regime.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Computation of the base flow parameters from numerical simulations
The circulation (Γ ), first-order moments (Mx , My) and second-order moments (Mxx ,
Myy) of vorticity for the hub vortex are tracked over time as the simulation progresses,
and are computed from the vorticity field ζ as

Γ =
∫

D
ζ dx dy, (A1)

Mx =
∫

D
xζ dx dy, My =

∫
D

yζ dx dy, (A2)

Mxx =
∫

D
x2ζ dx dy, Myy =

∫
D

y2ζ dx dy, (A3)

where these integrals are evaluated over the disk D of radius 0.5R around the point where
the vorticity reaches its maximum. The core radius of the hub vortex is then computed as

a2 = Mxx + Myy

Γ
. (A4)

Alternatively, the core radius can be determined by fitting a Gaussian profile to the
axisymmetric component of the vorticity distribution. We have verified that the difference
between the core radius values obtained through these two methods is negligible.

Appendix B. Linear stability analysis – operators and coefficients
The operators appearing in (4.1) are

L=
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ , (B1)

P =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ , (B2)
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M=

⎛
⎜⎜⎜⎜⎜⎝

Ω ∂
∂θ

−2Ω 0 ∂
∂r

2Ω + r dΩ
dr Ω ∂

∂θ
0 1

r
∂
∂θ

0 0 Ω ∂
∂θ

0
∂
∂r + 1

r
1
r
∂
∂θ

0 0

⎞
⎟⎟⎟⎟⎟⎠ , (B3)

V =

⎛
⎜⎜⎜⎜⎝
�− 1

r2 − 2
r2

∂
∂θ

0 0
2
r2

∂
∂θ

�− 1
r2 0 0

0 0 � 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (B4)

where

�= 1
r

∂

∂r
+ ∂2

∂r2 + 1
r2

∂2

∂θ2 + ∂2

∂z2 , (B5)

N = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

3 f
r2 − 3 f ′

r − 3 f
r
∂
∂r − i f ′

r
∂
∂θ

−9i f
r2 + 2i f ′

r 0 0

− i f ′
r − i f ′′ −3 f

r2 + 3 f ′
r − 3 f

r
∂
∂r − i f ′

r
∂
∂θ

0 0

0 0 −3 f
r
∂
∂r − i f ′

r
∂
∂θ

0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(B6)

with N being the complex conjugate of N .
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