ROOTS OF UNITY AND THE CHARACTER VARIETY OF A KNOT COMPLEMENT

D. COOPER and D. D. LONG

(Received 15 April 1992)

Communicated by J. H. Rubinstein

Abstract

Using elementary methods we give a new proof of a result concerning the special form of the character of the bounded peripheral element which arises at an end of a curve component of the character variety of a knot complement.

1991 Mathematics subject classification (Amer. Math. Soc.): 57 M 25, 57 N 10.

1. Introduction

In [3] the following theorem is proved:

THEOREM 1.1. Suppose that ρ_n is a sequence of representations of the fundamental group of a knot which blows up on the boundary torus T, and which converge to a simplicial action on a tree. Suppose that there is an essential simple closed curve C on T whose trace remains bounded. Then $\lim_{m\to\infty} \operatorname{tr}(\rho_m(C)) = \lambda + 1/\lambda$ where $\lambda^n = 1$ whenever there is a component S of a reduced surface associated to the degeneration so that S has n boundary components.

Precise definitions of the terms will be given below, but the rough description is as follows. If one has a curve of characters of representations of a manifold

^{© 1993} Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00 This paper was supported in part by the Alfred P. Sloan and National Science Foundations

with a single torus boundary component, then the method of [5] for producing boundary slopes is to go to some end of the character variety. Two things can happen on the boundary torus when one does this; either all the characters remain bounded and the surface produced from the resulting splitting can be chosen to be closed, or there is a particular simple closed curve whose character remains bounded. We shall focus on this latter behaviour. This simple closed curve gives the boundary slope and a natural question to ask is what the value of the character of the closed curve at the ideal point is. The point of the theorem is that the character has a special form and that some information about this form is carried by the topology of a splitting surface coming from the degeneration.

As an aside, we note that the theorem shows that for a two-bridge knot only the numbers ± 1 can occur, since it is known ([6]) that the essential surfaces in such knot complements have either one or two boundary components. It is also known that other values are possible — the untwisted double of the trefoil contains an ideal point where the bounded character takes on the value $\omega + \omega^{-1}$ where ω is an eleventh root of unity. But other than this, little is known. For example, it still seems to be an open question whether a nontrivial root of unity can arise in this way in the character variety of a hyperbolic knot.

In this paper we shall give a new proof of Theorem 1.1. In fact it is a geometric version of one of the proofs of [3], but the fact that it avoids both algebraic K—theory and algebraic geometry and provides a somewhat new perspective should hopefully yield some new insights.

The point of view of this proof is that the action on a tree produced by the techniques of [5] is approximated in a geometrical sense by the action of the representations ρ_m for m large. This is the idea used in [1] and also [2].

2. Main results

LEMMA 2.1. Given L > 0 and n > 0 there is a constant $K_n > 0$ such that for any set of matrices $A_1, A_2, ..., A_n \in SL_2(\mathbb{C})$ with $|tr(A_iA_j)| < L$, for all $1 \le i, j \le n$ then there is a point $x \in \mathbb{H}^3$ which is moved a distance of at most K_n by A_i for every i.

PROOF. The proof is by induction on n. For n = 1, the result follows from the relationship between trace and translation length. For n = 2, suppose that we are given a pair of matrices A, B in $SL_2(\mathbb{C})$. The proof proceeds by showing that we can simultaneously conjugate A and B so that they are in the compact subset Ω of $SL_2(\mathbb{C})$, where:

$$\Omega = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{C}) : |a|, |b|, |c|, |d| \le 2L + 2 \right\}$$

If A and B have a common fixed point on the sphere at infinity, then we may perform a simultaneous conjugacy on them to put the common fixed point at infinity in the upper half space, then:

$$A = \begin{pmatrix} a & c \\ 0 & 1/a \end{pmatrix}, \qquad B = \begin{pmatrix} b & d \\ 0 & 1/b \end{pmatrix}.$$

Furthermore, by conjugating by a diagonal matrix we may ensure that |c|, $|d| \le 1$. The hypothesis implies that $1/(L+1) < |a|^2$, $|b|^2 < (L+1)$ so that A, B lie in Ω .

If A and B do not have a common fixed point then there is a point z on the sphere at infinity which is fixed by $A^{-1}B$. By means of a conjugacy we can arrange that z=0 and that $Bz=\infty$. Thus $Az=\infty$ also and thus A, B are conjugate to:

$$A = \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} b & c \\ -1/c & 0 \end{pmatrix}.$$

The hypothesis implies that $|a|^2$, $|b|^2 < L + 2$. Observe that tr(AB) = ab - c - (1/c), thus |c + (1/c)| < 2L + 2, and so A and B lie in Ω .

Given a point x in \mathbb{H}^3 the function which assigns to a pair of matrices (A, B) the maximum of the hyperbolic distance of x from Ax and from Bx is continuous, and therefore bounded on $\Omega \times \Omega$. Since the existence of a point x satisfying the conclusion is invariant under conjugacy, the result for n = 2 follows.

Suppose inductively that the result is true for any set of (n-1) matrices with a constant K_{n-1} . Given a set of $n \ge 3$ matrices satisfying the hypothesis, let x_i be a point moved a distance at most K_{n-1} by the matrices $\{A_j \mid 1 \le j \le n, j \ne i\}$. Define C_i to be the convex hull of the finite set $\{x_j \mid j \ne i\}$ and consider the goedesic triangle T with vertices $\{x_1, x_2, x_3\}$. The radius of the largest circle which may be inscribed in a geodesic triangle is $2 \ln[(1 + \sqrt{5})/2]$ thus there is a point y which lies within this distance of each side of T. Each C_i contains at least two vertices of T, and therefore at least one edge of T. Therefore y lies within a distance of $2 \ln[(1 + \sqrt{5})/2]$ of C_i . The vertices of C_i are moved at most a distance of K_{n-1} by the matrix A_i , therefore every point of C_i is moved at most a distance K_{n-1} by A_i . This uses the fact that the distance between a

point and its image under an isometry, is a convex function. Thus the distance of y from A_i y is at most $K_{n-1} + 4 \ln[(1 + \sqrt{5})/2]$.

COROLLARY 2.1. Suppose that G is a finitely generated group and that we are given that $\rho_n: G \longrightarrow \operatorname{SL}_2(\mathbb{C})$ is a sequence of representations which have characters $\chi_n = \operatorname{trace} \circ \rho_n$ which converge weakly to a function χ . Then there is a subsequence ρ_{n_i} and matrices $A_i \in \operatorname{SL}_2(\mathbb{C})$ such that $A_i \cdot \rho_{n_i} \cdot A_i^{-1} \to \rho$ and $\operatorname{trace} \circ \rho = \chi$.

PROOF. Choose a finite set of elements $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ which generate G, then by Lemma 2.1 we have that for n sufficiently large there is x_n in \mathbb{H}^3 which is moved a distance at most K_p by $\rho\alpha_i$ for $i=1,2,\dots,p$. After conjugating each ρ_n , we may arrange that $x_n=x$ for every n. The subset Ω of $SL_2(C)$ consisting of elements which move x a distance of at most K_p is compact. Thus there is a subsequence as claimed.

The set $X(G, \operatorname{SL}_2(\mathbb{C}))$ of characters of representations of a group G into $\operatorname{SL}_2(\mathbb{C})$ is given the weak topology. This coincides with the topology induced by an embedding of $X(G, \operatorname{SL}_2(\mathbb{C}))$ into a finite dimensional Euclidean space given by using the traces of a (large enough) finite set of elements of G. If G is finitely generatated it follows from Corollary 2.1 that $X(G, \operatorname{SL}_2(\mathbb{C}))$ is a closed subset of Euclidean space. (See [5].)

LEMMA 2.2. Suppose that G is a finitely generated group and $\rho_n: G \longrightarrow \operatorname{SL}_2(\mathbb{C})$ is a sequence of representations with the property that for every $\alpha \in G$, $\operatorname{tr}(\rho_n \alpha) \to \pm 2$ as $n \to \infty$. Then after changing each ρ_n by a suitable conjugacy, a subsequence of $\{\rho_n\}$ converges to an abelian representation.

PROOF. By Corollary 2.1, we can conjugate a subsequence of the ρ_n so that this subsequence converges to a representation ρ for which $\text{tr}(\rho\alpha)=\pm 2$ for every α in G. The image of ρ consists entirely of parabolic elements and $\{\pm I\}$. If two of these parabolics have distinct fixed points, then a large power of one times a large power of the other is hyperbolic, which contradict the hypothesis. Thus ρ is reducible, and so can be conjugated to be upper triangular. Now a sequence of conjugacies by suitable diagonal matrices makes ρ converge to a diagonal representation.

We now study degenerations of knot complements. Let M be the complement of a knot and $\rho_n : \pi_1(M) \longrightarrow SL_2(\mathbb{C})$ be a sequence of representations. We

say that this sequence blows up if there is an element $\alpha \in \pi_1(M)$ such that $\operatorname{trace}(\rho_n \alpha) \to \infty$. We assume that the projectivized length functions which they determine converge to some projectivized length function and further, that all these representations lie on a curve in the representation variety. The consequence of this assumption is that the limiting projectivized length function comes from an action of $\pi_1(M)$ on a simplicial tree Γ rather than an **R**-tree.

We shall assume that $\pi_1(M)$ acts on Γ without inversions and that if an edge e in Γ is incident to a vertex v then $\mathrm{stab}(e)$ is contained in but not equal to $\mathrm{stab}(v)$. Let e be an edge of Γ ; we construct a properly embedded surface S in M from e as follows. Let \tilde{M} be the universal cover of M and choose an equivariant map

$$f: \tilde{M} \longrightarrow \Gamma.$$

Make f transverse to the midpoint of e. Then $\tilde{S} = f^{-1}(e)$ is a properly embedded 2-sided surface in \tilde{M} , possibly not connected. After performing compressions on \tilde{S} by equivariantly homotoping f we may assume that all components of \tilde{S} are planes. We assume that the action of $\pi_1(M)$ on Γ has no common fixed point. Let F be a component of S which separates M into two components M_+ and M_- . Then:

$$\pi_1(M) = \pi_1(M_+) *_{\pi_1(F)} \pi_1(M_-).$$

For some choice of F this decomposition is non-trivial. We have that $\pi_1(F)$ is contained in $\operatorname{stab}(e)$ and there are finite collections of vertices v_i^{\pm} of Γ with $\pi_1(M_+)$ contained in the group generated by the union of the $\operatorname{stab}(v_i^+)$, and similarly for the minus sign.

PROPOSITION 2.1. With the above assumptions, each ρ_n may be replaced by a conjugate so that there is a subsequence of $\rho_n|stab(e)$ which converges to an abelian representation.

PROOF. If $\gamma \in \pi_1(M)$ has the property that $\operatorname{trace}(\rho_n(\gamma))$ is bounded as $n \to \infty$, we will say that γ remains bounded. By [4], γ remains bounded if and only if γ stabilizes some vertex of Γ .

We apply Corollary 2.1 to the sequence of representations $\rho_n | \operatorname{stab}(v_+)$ to get a representation ρ_+ of $\operatorname{stab}(v_+)$ and $A_i \in \operatorname{SL}_2(\mathbb{C})$ such that

$$A_i.(\rho_{n_i}|\mathrm{stab}(v_+)).A_i^{-1}\to \rho_+.$$

Apply Corollary 2.1 to the sequence of representations $\rho_{n_i}|\text{stab}(v_-)$ to get a representation ρ_- of $\text{stab}(v_-)$ and $B_i \in \text{SL}_2(\mathbb{C})$ such that

$$B_j.(\rho_{n_{i_j}}|\mathrm{stab}(v_-)).B_j^{-1}\longrightarrow \rho_-.$$

If every element $\gamma \in \operatorname{stab}(e)$ has $\operatorname{tr}(\rho_+\gamma) = \pm 2$ then Lemma 2.2 gives the result. So we may assume there is an element γ in $\operatorname{stab}(e)$ with $\operatorname{trace}(\rho_+\gamma) = c \neq \pm 2$. We claim that there is an element $\alpha_+ \in \operatorname{stab}(v_+) - \operatorname{stab}(e)$ with the property that $\operatorname{trace}(\rho_+\alpha_+) = a \neq \pm 2$. Choose an element $\alpha \in \operatorname{stab}(v_+) - \operatorname{stab}(e)$. Note that $\alpha, \alpha\gamma, \alpha\gamma^{-1} \in \operatorname{stab}(v_+) - \operatorname{stab}(e)$ so that if any of these elements have $\operatorname{trace}(\rho) \neq \pm 2$ we are done. Otherwise set $A = \rho_+\alpha$ and $C = \rho_+\gamma$; then from

$$tr(AC) + tr(AC^{-1}) = tr(A)tr(C)$$

we see that $\pm 2\operatorname{tr}(C) = \pm 2 \pm 2$, but $\operatorname{tr}(C) = c \neq \pm 2$ hence $\operatorname{tr}(C) = 0$. Now

$$tr(A^2C) + tr(C) = tr(A)tr(AC),$$

thus $tr(A^2C) = \pm 4$. If $\alpha^2 \gamma$ is not in stab(e) we are done. Otherwise we can replace γ in the above argument by $\alpha^2 \gamma$ to conclude that $\alpha^3 \gamma$ will do.

Similarly, we can assume there is $\alpha_{-} \in \operatorname{stab}(v_{+}) - \operatorname{stab}(e)$ with $\operatorname{tr}(\rho_{-}\alpha_{-}) \neq \pm 2$.

Consider the action of α_+ and α_- on the tree Γ . These elements stabilize different vertices of Γ and do not stabilize the edge between them, so the element $\alpha_+.\alpha_-$ acts as a non-trivial hyperbolic translation on Γ (see [4]). Thus $\operatorname{tr}(\rho_n(\alpha_+.\alpha_-)) \to \infty$ as $n \to \infty$. It follows that the non-parabolic elements $\rho_n(\alpha_+)$ and $\rho_n(\alpha_-)$ have axes which are moving away from each other in \mathbf{H}^3 . By a sequence of conjugacies, we may arrange that $\operatorname{Fix}(\rho_n(\alpha_+))$ is converging to 0 and $\operatorname{Fix}(\rho_n(\alpha_-))$ is converging to ∞ .

Now consider any element $\beta \in \operatorname{stab}(e)$. Then $\beta \alpha_{\pm} \beta^{-1} \in \operatorname{stab}(v_{\pm})$ since $\operatorname{stab}(e) \subset \operatorname{stab}(v_{\pm})$. This implies that the axes of $\rho_n(\beta \alpha_+ \beta^{-1})$ and $\rho_n(\alpha_+)$ remain within a bounded distance of each other, since they are elements with trace bounded away from ± 2 and their product is in $\operatorname{stab}(v_+)$ and so has bounded trace. Similarly for the minus sign. It follows that for n large, $\rho_n(\beta)$ moves 0 and ∞ by a very small amount. Thus $\rho_n(\beta)$ converges to a diagonal matrix as $n \to \infty$.

Suppose that M is a connected 3-manifold and F is a surface properly embedded, but possibly not connected, in M. We do not assume that either M or

F is orientable; we do not assume that F is incompressible. We show how to construct an action of $\pi_1(M)$ on a tree from this data.

Let F_1, F_2, \dots, F_n be the components of F and M_1, M_2, \dots, M_m be components of M - F. Let $\pi : \tilde{M} \longrightarrow M$ be the universal cover of M. We construct a graph Γ by assigning one vertex to each component of $\pi^{-1}(M - F)$ and one edge to each component of $\pi^{-1}(F)$. The edge corresponding to the component \tilde{F}_i of $\pi^{-1}(F_i)$ is incident to the vertex corresponding to the component \tilde{M}_j of $\pi^{-1}(M_j)$ if the closure of \tilde{M}_j contains \tilde{F}_i . We must show that every edge is incident to precisely 2 vertices. To see this, note that there are either one or two components of M - F adjacent to F_i . If there are two components, the result is clear. If there is only one component of M - F adjacent to F_i , say M_j , then there is a loop in $M_j \cup F_i$ which meets F_i once transversely. Thus this loop is essential, and hence in \tilde{M} there are two distinct components of $\pi^{-1}(M_j)$ whose closure contains \tilde{F}_i . It is clear that the action of $\pi_1(M)$ on \tilde{M} by covering transformations induces a simplicial action on Γ .

Next we show that Γ is a tree. There is an embedding $i:\Gamma \longrightarrow \tilde{M}$ such that the image of each vertex of Γ lies in the component of $\pi^{-1}(M-F)$ to which it corresponds, and so that the image of each edge of Γ intersects once transversely $\pi^{-1}F$ in the component to which it corresponds. Observe that there is a neighborhood of \tilde{F}_i in \tilde{M} which is a product $I \times \tilde{F}_i$. This is because \tilde{F}_i is properly embedded in \tilde{M} , and if \tilde{F}_i is one-sided in \tilde{M} then there is a loop in \tilde{M} which meets \tilde{F}_i once transversely, which implies that this loop is non-zero in $H_1(\tilde{M}; \mathbb{Z}_2)$. However \tilde{M} is simply connected, giving a contradiction. Therefore \tilde{F}_i is 2-sided in \tilde{M} . There is a retraction $r: \tilde{M} \longrightarrow i(\Gamma)$ defined by sending a product neighborhood $I \times \tilde{F}_i$ of \tilde{F}_i onto the edge to which it corresponds by projection onto the I factor, and sending a component of $\pi^{-1}(M-F)$ with these product neighborhoods removed to the vertex of $i(\Gamma)$ to which it corresponds. Since \tilde{M} is simply connected, it follows that $i(\Gamma)$ is simply connected.

Now suppose that the boundary of M contains an incompressible torus T and that some component S of F meets T in an essential loop α . We now assume that F is incompressible and contains no boundary parallel disc. The incompressibility of F means that every component of $S \cap T$ is essential in T, and therefore parallel to α . Let \tilde{T} be a component of $\pi^{-1}T$. This implies that each $\pi_1(M_i)$ injects into $\pi_1(M)$, and thus \tilde{M}_i is simply connected. It follows that \tilde{M}_i meets \tilde{T} in a connected, but possibly empty, set.

We choose a base point $\tilde{x} \in \tilde{T}$ and set $x = \pi(\tilde{x})$ in order to identify $\pi_1(M, x)$ with the covering transformations of \tilde{M} ; then \tilde{T} is stabilized by $\pi_1(T, x)$. Let C_1, C_2, \dots, C_n be the components of $T \cap S$ which are all parallel to α , labelled

in the order they go round T. The components of $\pi^{-1}(C_1 \cup \cdots \cup C_n)$ are parallel lines on \tilde{T} . It follows that each component of $\tilde{T} - \pi^{-1}(C_1 \cup \cdots \cup C_n)$ meets a distinct component \tilde{M}_j of $\tilde{M} - \tilde{F}$ and thus corresponds to a distinct vertex in Γ . Thus the image of \tilde{T} under r is a line ℓ in Γ , and $r: \tilde{T} \longrightarrow \ell$ can be chosen to be a submersion.

We now assume that S can be transversely oriented, that is, S is 2-sided in M. Choose two arcs, one in S and the other in T-S, from C_i to C_{i+1} with the same end points. The union of these two arcs is a loop γ_i . Push γ_i off S using the transverse orientation. We now assume that $[S] = 0 \in H_2(M, \partial M; \mathbb{Z}_2)$. From this it follows that when the loop γ_i is pushed off S it must intersect S an even number of times. This implies that if C_i is isotoped along T to C_{i+1} then the transverse orientations of S along C_i and C_{i+1} are opposite.

Each line \tilde{C}_i in $\tilde{T} \cap \pi^{-1}S$ lies in a component of $\pi^{-1}(S)$, thus the edges of Γ corresponding to the family of lines $\tilde{T} \cap \pi^{-1}S$ are in the same orbit under $\pi_1(M,x)$. Given a pair of adjacent lines \tilde{C}_i , \tilde{C}_{i+1} in $\tilde{T} \cap \pi^{-1}(C_i \cup C_{i+1})$, let e_i, e_{i+1} be the corresponding edges in Γ . Orient ℓ and use this to orient each edge on ℓ . Let $\tau : \pi_1(M,x) \longrightarrow \operatorname{Aut}(\Gamma)$ be the action of $\pi_1(M,x)$ on Γ . We will write τ_{γ} for $\tau(\gamma)$. Then for some $\delta_i \in \pi_1(M,x)$,

$$\tau_{\delta_i}(e_i) = -e_{i+1},$$

where the minus sign means with orientation reversed. This follows from the discussion of transverse orientations of surfaces above because an orientation of an edge e_i corresponds to a transverse orientation of the corresponding surface \tilde{S} . We remark for later use that δ_i is in the free homotopy class of the loop γ_i constructed above.

Now suppose that

$$\tau':\pi_1(M,x)\longrightarrow \operatorname{Aut}(\Gamma')$$

is a simplicial action without inversions on a simplicial tree Γ' . Then there is an equivariant map

$$f: \tilde{M} \longrightarrow \Gamma'$$

which is transverse to the midpoints of all edges of Γ' , and this map may be chosen so that every component of the pre-image under f of the midpoints of the edges of Γ' is an incompressible 2-sided surface \tilde{F} in \tilde{M} . This surface \tilde{F} in \tilde{M} projects to a 2-sided incompressible surface F in M. (The condition that the action is without edge inversions is equivalent to F being 2-sided.) We may

apply the construction above to F to get an action

$$\tau:\pi_1(M,x)\longrightarrow \operatorname{Aut}(\Gamma)$$

on a tree Γ . Clearly the map f factors as $f = \overline{f} \circ r$, where $\overline{f} : \Gamma \longrightarrow \Gamma'$ is an equivariant map.

Suppose now that $\pi_1(T, x)$ stabilizes no vertex of Γ' . There is a line ℓ' in Γ' which is stabilized by $\pi_1(T, x)$. We claim that f may be chosen so that $\overline{f}|\ell$ is injective. \widetilde{T} is a plane on which $\pi_1(T, x)$ acts freely with quotient the torus T. $f|\widetilde{T}$ covers a map $T \longrightarrow \ell'/\pi_1(T, x) = S^1$, which is homotopic to a submersion. Lifting this homotopy gives a $\pi_1(T, x)$ -equivariant homotopy of $f|\widetilde{T}$. This can be used to give a homotopy of f on all of \widetilde{M} by using a small collar neighborhood of \widetilde{T} . This homotopy may then be done equivariantly to each component of $\pi^{-1}(T)$.

Let $e_i' = f(e_i)$ and $e_{i+1}' = f(e_{i+1})$, then since $f | \ell \longrightarrow \ell'$ is an an equivariant simplicial homeomorphism it follows from equation (1) that

(2)
$$\tau'_{\delta_{i}}(e'_{i}) = -e'_{i+1}.$$

Let S be a component surface of F which we assume is oriented. Use this orientation to orient the boundary components C_1, C_2, \dots, C_n of S. The base point x is chosen on C_1 , and let c_1, c_2, \dots, c_n be elements of $\pi_1(S, x)$ which correspond to the oriented boundary components of S. Thus $c_1.c_2.\dots.c_n$ is a commutator in $\pi_1(S, x)$. Since C_i and C_{i+1}^{-1} are isotopic on T, the elements c_i and c_{i+1}^{-1} are conjugate so there is an element $\delta_i \in \pi_1(M, x)$ with $\delta_i.c_i.\delta_i^{-1} = c_{i+1}^{-1}$. Clearly the covering transformation of \tilde{M} corresponding to δ_i sends \tilde{S}_i to \tilde{S}_{i+1} and thus δ_i satisfies (1) and hence (2).

DEFINITION. Suppose that $\pi_1(M)$ acts on a tree, then a surface F in M is called a *reduced surface associated to the action* if it is associated to the action and has the minimal number of boundary components.

We can now give a proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Let S be a component of a reduced surface associated to the limiting action on a tree. We continue to use the notation c_1, c_2, \dots, c_n used above for elements of $\pi_1(S, x)$ corresponding to the boundary components of S. Thus $\pi_1(S, x)$ is a subgroup of stab(e) for some edge e of Γ . Let λ be a limiting eigenvalue of $\rho_n(C)$.

If the surface S does not separate, then S must be a Seifert surface for the knot and have a single boundary component. The last sentence of this proof

gives the result in this case. Thus we may assume that S separates, and thus has an even number of boundary components. By Proposition 2.1 we may assume that $\rho_m|\mathrm{stab}(e)$ converges to a diagonal representation ρ so:

$$\rho(c_i) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}^{\epsilon_i} \quad \text{for all } i$$

where $\epsilon_i = \pm 1$. If $\lambda = \pm 1$ there is nothing to prove. Otherwise for m large $\rho_m(c_i)$ has trace bounded away from ± 2 and therefore the endpoints of the axis of $\rho_m(c_i)$ are converging to $0, \infty$. Now there is $\delta_i \in \pi_1(M)$ with $\delta_i.c_i.\delta_i^{-1} = c_{i+1}^{-1}$, and δ_i satisfies (2), hence $\rho_m(\delta_i)$ almost switches 0 and ∞ . It follows that $\rho_m(c_i)$ and $\rho_m(c_{i+1})$ are almost equal, and hence that all the ϵ_i are equal.

The homotopy class $\gamma = c_1.c_2.\cdots.c_n$ is a commutator; therefore by Proposition 2.1, $\rho(\gamma) = I$, hence $\lambda^n = 1$.

References

- [1] M. Bestvina, 'Degenerations of the hyperbolic space', Duke J. Math. 56 (1988), 142-161.
- [2] D. Cooper, 'Degenerations of representations in SL(2,C)', preprint.
- [3] M. Culler, D. Cooper, H. Gillett, D. D. Long and P. B. Shalen, 'Plane curves associated to character varieties of knot complements', preprint.
- [4] M. Culler and J. Morgan, 'Group actions on R-trees', Proc. London Math. Soc. 55 (1987), 571-604.
- [5] M. Culler and P. B. Shalen, 'Varieties of group representations and splittings of 3-manifolds', Ann. of Math. 117 (1983), 109-145.
- [6] A. Hatcher and W. P. Thurston, 'Incompressible surfaces in two bridge knot complements', Invent. Math. 79 (1985), 225-246.

Department of Mathematics University of California Santa Barbara, Ca. 93106 USA Department of Mathematics University of California Santa Barbara, Ca. 93106 USA