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Abstract. The purpose of this paper is to compare the notion of a Grzegorczyk point
introduced in [19] (and thoroughly investigated in [3, 14, 16, 18]) to the standard notions
of a filter in Boolean algebras and round filter in Boolean contact algebras. In particular, we
compare Grzegorczyk points to filters and ultrafilters of atomic and atomless algebras. We also
prove how a certain extra axiom influences topological spaces for Grzegorczyk contact algebras.
Last but not least, we do not refrain from a philosophical interpretation of the results from the
paper.

§1. Introduction. In [16, 18] we carried out an extensive analysis of one of the
first systems of point-free topology by Grzegorczyk [19], based on the notion of
separation (the dual notion of contact). The two papers witnessed the formulation of
representation and duality theorems for a subclass of so-called Grzegorczyk structures.
In particular, we established an object duality between a class of Grzegorczyk structures
that satisfy the countable chain condition and the concentric spaces (a subclass
of the class of regular spaces), which satisfy the topological version of the same
condition.

A particular idiosyncrasy of Grzegorczyk’s approach to point-free topology is his
definition of a point, which is a formal reflection of the geometrical intuition of a
point as a system of “shrinking” regions of space. We have devoted much attention
to elucidating the idea in [14–16, 18], so we refer the reader to these works if
they want to familiarize themselves with an informal (yet precise) analysis of the
notion.

One of the problems that occupied us in the aforementioned works was the relation
of Grzegorczyk points to other classical point-like constructions, such as ultrafilters
and maximal round filters. We have only scratched the surface of the problem, yet we
demonstrated that the following two second-order sentences:

(a) Every Grzegorczyk point is an ultrafilter, and
(b) Every ultrafilter is a Grzegorczyk point

correspond to the following first-order and second-order sentences, respectively:

(a′) Each region is separated from its complement. (cf. Theorem 8.4)
(b′) The structure is finite. (cf. Theorem 9.1)
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We proved as well that every Grzegorczyk point is a maximal round filter. For the sake
of completeness of the presentation, some of these results are contained in this paper.

Here, we aim to examine how Grzegorczyk points behave and relate to filters and
ultrafilters in atomless and atomic Boolean contact algebras, which in a very natural
way relate to Grzegorczyk structures from the earlier works. To be more precise,
previously we worked with mereological fields, which are structures that always lack
the zero element and might lack the unity. In all other respects, they bear a very
strong resemblance to Boolean algebras, thanks to the classical theorems to which we
refer in Sections 6 and 7 of [16]. Thanks to these theorems, all results obtained in the
earlier works are easily translatable into analogous results in the framework of Boolean
algebras. We have also replaced the primitive binary relation of separation with its dual,
the contact relation. The main reason to do so was the fact that since more or less the
beginning of the twenty-first century and the seminal works of Stell [23], Düntsch
& Winter [10, 11] and Dimov & Vakarelov [8, 9], Boolean contact algebras have
been the standard framework for doing region-based topology. Thus, with technical
results in focus and philosophical considerations aside, contact algebras are the most
natural choice for the presentation of advances in the study of Grzegorczyk point-free
topology.

§2. Motivations. There are various reasons for doing region-based theories of
space. Probably the main one is to describe spatial relations in terms of concepts
that can be rooted in the sensory experience. Such were motivations for both Region
Connection Calculus of Cohn et al. [5] and Boolean contact algebras. From the
purely mathematical point of view, algebraic parts of these theories focused on finding
suitable topological representations and duality theorems, most notably via the spaces
of clusters as, among others, in the works of Düntsch & Winter [11] and Dimov &
Vakarelov [8]. In closely related De Vries algebras from [7] maximal round filters play
a crucial role in algebraization of the topological notion of compactness.

The approach taken by Grzegorczyk [19] seems to have yet another motivation—to
find spatially satisfactory construction of points in terms of regions and separation
(equivalently: contact) relation. Grzegorczyk points are, in a way, generalizations of
Tarski’s points as sets of concentric balls from his geometry of solids [25], and they
embody the idea of a point as a system of shrinking regions of space.

From both philosophical and technical points of view, it is interesting (at least for
us, as the authors of the paper) how second-order conditions expressing dependencies
between various constructions of points relate to either first- or second-order properties
of Boolean contact algebras. This line of research was initiated by Biacino & Gerla [3]
with finding sufficient conditions for Grzegorczyk points and Whitehead points from
[26] to coincide. We believe that further investigation of dependencies between various
constructions of points can bring interesting results in region-based theories of space,
even more so because it is very little examined fragment of such theories.

As pointed to in the introduction, in our previous works we showed certain
correspondences between statements about points of contact algebras and their
properties. In particular, we found it interesting how Grzegorczyk points relate to
the standard filter constructions of Boolean contact algebras. Among these, the
Fréchet filter plays a distinguished role in the class of atomic Boolean algebras, and,
interestingly, its relation to Grzegorczyk points is independent from the axioms of
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Grzegorczyk contact algebras. We venture to say that this may be interpreted as the
fact that the notion of Fréchet filter is independent from the spatial intuitions behind
the definition of Grzegorczyk points. Investigating consequences of the statement
“Fréchet filter is a Grzegorczyk point” may be interpreted philosophically as answering
the question what are consequences of forcing our spatial intuitions about points into the
notion of Fréchet filter? To us as the authors, logicians with a strong predilection toward
philosophical aspects of mathematical theories, it seemed a very stimulating question
which is faced and solved in the paper.

It is hard to say now what, if any, fruits bears the theory of correspondences between
statements about points of Boolean contact algebras and their familiar properties.
However, in our opinion, it is a path that is worth studying as it may lead to new
perspectives on various—both mathematical and philosophical—aspects of region-
based theories of space.

§3. Boolean quasi-contact algebras. This section is a refresher of the standard
notions, axioms and elementary properties of contact algebras that are essential for
the key results of the paper.

A Boolean quasi-contact algebra (BQCA for short) is any pair R = 〈B,C〉, where
B = 〈R,�,�, –, 0, 1〉 is a non-degenerate Boolean algebra1 (BA for short) and C is a
binary contact relation on R which meets the following four axioms:2

∀x∈R 0 C/ x, (C0)

∀x,y∈R(x C y =⇒ y C x), (C1)

∀x∈R+ x C x, (C2)

∀x,y∈R
(
x ≤ y =⇒ ∀z∈R(z C x ⇒ z C y)

)
, (C3)

where C/ is the complement of C, R+ := R \ {0} and ≤ is the standard partial order
defined by:

x ≤ y :⇐⇒ x � y = x ⇐⇒ x � y = y. (df≤)

Furthermore, we will use the standard strict partial order defined by:

x � y :⇐⇒ x ≤ y ∧ x �= y ⇐⇒ x ≤ y ∧ y � x. (df�)

All elements of the domain R will be called regions; the region 0 will be called empty;
and all regions fromR+ will be called non-empty. In the case x C y (resp. x C/ y; x ≤ y;
x � y) we will say that x is in contact with y (resp. x is separated from y; x is part of y;
x is a proper part of y). Axioms (C0)–(C3) say, respectively: 0 is separated from any
region; C is symmetric and reflexive on R+; and if one region is part of another, then
each region in contact with the first is also in contact with the other. In BAs condition
(C3) is equivalent to

∀x,y,z∈R(z C x ∨ z C y =⇒ z C x � y). (3.1)

1 We use [22] as the standard reference for concepts related to and results about Boolean
algebras.

2 What we call quasi-contact is the weak contact in the sense of [12]. Our axioms coincide with
those chosen by the authors of the aforementioned paper.
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From (C3) and the reflexivity of ≤ we obtain that in place of (C2) we can assume that
C includes ≤ limited to non-empty regions:

∀x,y∈R+(x ≤ y =⇒ x C y). (≤ |R+⊆ C)

So every non-empty region is in contact with 1:

∀x∈R+ x C 1. (3.2)

We will also use two auxiliary binary relations on R: � and ⊥. We define the first by:

x � y :⇐⇒ x � y �= 0 ⇐⇒ ∃z∈R+(z ≤ x ∧ z ≤ y), (df�)

and we let the second be the complement of �. In the case x � y (resp. x⊥y) we will
say that x overlaps y (resp. x is disjoint from y). From (C3), (C1) and (≤ |R+⊆C) we
have:

∀x,y∈R
(
x C – y ⇐⇒ ∃z∈R(x C z ∧ z⊥y)

)
, (3.3)

∀x,y∈R(x C/ – y =⇒ x ≤ y), (3.4)

∀x,y∈R(x � y =⇒ x C y). (� ⊆ C)

Yet another auxiliary standard relation of non-tangential inclusion is defined by:

x� y :⇐⇒ xC/ – y. (df�)

In the case x� y we say that x is a non-tangential part of y. From (3.3) it follows that:

x� y ⇐⇒ ∀z∈R(z C x ⇒ z � y). (df ′�)

From (C0), (C1), (≤ |R+⊆C), (df ′�) we obtain that every region is a non-tangential
part of 1 and each non-tangential part of a given region is its (ordinary) part:

∀x∈R x� 1, (3.5)

∀x,y∈R(x� y =⇒ x ≤ y). (� ⊆≤)

From (df ′�), (df �) and the transitivity of ≤ we have:

∀x,y,u,v∈R(u ≤ x ∧ v� y ∧ u C v =⇒ x � y). (3.6)

Furthermore, we have the following property of � :

∀x,y,z,u∈R(x ≤ u ∧ u� y ∧ y ≤ z ⇒ x� z). (3.7)

It—together with (� ⊆≤) and the reflexivity of ≤—gives the transitivity of � :

∀x,y,z∈R(x� y ∧ y� z =⇒ x� z). (t�)

We will use three families of filters in BAs. The first one will be the family Ult of all
ultrafilters, i.e., proper maximal filters. The second one will be the family of principal
filters of the form ↑x := {u ∈ R | x ≤ u} for an x ∈ R (the set ↑x is called a principal
filter generated by x). Let PF and PFAt be families of all principal filters and of principal
filters generated by atoms, respectively. The third family will be the family of free filters
which satisfy the following condition: there is no x ∈ R such that for any y ∈ F we
have x ≤ y. Every ultrafilter is free or belongs to PFAt.
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Moreover, two families of filters in BQCAs will play special roles in the sequel. The
first one will be the family Rnd of so-called round (or contracting) filters which are
proper filters satisfying:

• for any x ∈ F there is a y ∈ F such that y� x.

From (� ⊆C), (df ′�) and (� ⊆≤) we obtain:

Lemma 3.1. For any round filter F we have: ∀x∈R(∀z∈F z C x ⇐⇒ ∀z∈F z � x).

The second one is the family M.Rnd of all proper maximal filters in the family Rnd.3

Lemma 3.2 [18, lemma 10.6]. If a round filter F satisfies the condition∀x,y∈R
(
(∀z∈F z C

x ∧ x� y) =⇒ y ∈ F
)
, then F belongs to M.Rnd.

It is easy to check that the structures 〈B,�〉 and 〈B, R+ ×R+〉 are BQCAs. We will
call them trivial BQCAs. The relation � is the smallest contact relation on B (cf. [10,
proposition 2.2(1)]. From (df ′�), (� ⊆C) and (C2) we obtain:

C = � ⇐⇒ � = ≤ ⇐⇒ � is reflexive. (3.8)

Hence all filters in 〈B,�〉 are round; and so Ult = M.Rnd.

§4. Boolean contact algebras. After [10], we will call a Boolean contact algebra
(BCA for short) any BQCA satisfying

∀x,y,z∈R(z C x � y =⇒ z C x ∨ z C y), (C4)

∀x∈R\{1}∃y∈R+ x C/ y. (C5)

From (3.1) and (C4) we have:

∀x,y,z∈R(z C x � y ⇐⇒ z C x ∨ z C y). (4.1)

By means of (3.5), (df�), (C3), (� ⊆≤), (≤ |R+⊆C), (C1), (3.2) and the antisymmetry
of ≤, we can prove:

Lemma 4.1. In BQCAs condition (C5) is equivalent to each of the following:

∀x∈R+∃y∈R+ y� x, (∃�)

∀x,y∈R
(
∀z∈R(z C x ⇒ z C y) =⇒ x ≤ y

)
, (C3c)

∀x,y∈R
(
x ≤ y ⇐⇒ ∀z∈R(z C x ⇒ z C y)

)
, (ext≤)

∀x,y∈R
(
∀z∈R(z C x ⇔ z C y) =⇒ x = y

)
. (extC)

Remark 4.2. Dimov & Vakarelov [8, p. 213] analyzed contact algebras as structures
of the form 〈B,C〉 satisfying (C0)–(C2) and (4.1). The algebras that additionally satisfy
(extC) are named by them as extensional contact algebras (p. 215). In Lemma 2.2 of [8]
the authors demonstrate that conditions (extC), (C5), (∃�) and (C3c) are equivalent
in any contact algebra. But, as the above lemma shows, BQCAs are enough for this,
i.e., the condition (C4) can be omitted in the proofs.

3 Generally, Rnd ∩ Ult ⊆ M.Rnd ⊆ Rnd. But there are BCAs in which M.Rnd � Rnd ∩ Ult.
In Section 6 we will introduce the sixth family of filters, so-called Grzegorczyk points.
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Düntsch & Winter [11] treated Boolean contact algebras as structures of the form
〈B,C〉 satisfying (C0)–(C4) and (C3c). They showed that these conditions entail (C5)
and (3.1) (Lemma 3.2).

It is easy to check that trivial BQCAs of the form 〈B,�〉 (see p. 21) are BCAs. In
the sequel we will use ‘BCA�’ as a general name for all BCAs with C = �. The BQCAs
of the form 〈B, R+ ×R+〉 are BCAs iff R+ = {1} iff � = ≤ iff R+ ×R+ = �. So all
trivial examples of BCAs are BCA�s.

Let At be the set of atoms of a given BA. Directly from (∃�) and (� ⊆≤) we have:

∀a∈At a� a. (4.2)

Hence, using (� ⊆C), (df ′�) and (3.7), we obtain:

∀a∈At∀x∈R
(
a C x ⇐⇒ a � x ⇐⇒ a ≤ x ⇐⇒ a� x

)
. (4.3)

From this and (df ′�), (C1), and (4.1), we get a generalization of (4.2):

∀a1,...,an∈At a1 � ··· � an� a1 � ··· � an. (4.4)

For any x ∈ R we put: Atx := {a ∈ At | a ≤ x} and At⊥x := {a ∈ At | a⊥x}. It is
clear that the atomicity of a given BA implies that x = sup Atx . A BQCA is atomic iff
it is based on an atomic BA. The following fact will be used in the proof of Theorem
7.8.

Lemma 4.3. In any atomic BCA we have:

∀x,y∈R
(
x C y ∧ x⊥y =⇒ both Atx and Aty are infinite

)
.

Proof. Assume for a contradiction that x C y, x⊥y and Atx is finite. Then for
some atoms a1, ..., an we have x = a1 � ··· � an. So, by (C1), (4.1) and (4.3), we
have: x C y iff a1 C y or ... or an C y iff a1 ≤ y or ... or an ≤ y. Therefore x � y, a
contradiction.

We say that a BA is finite–cofinite iff for anyx ∈ R eitherx ∈ {0, 1} or there are n > 0
and a1, ... , an ∈ At such that either x = a1 � ··· � an or x =– (a1 � ··· � an). Clearly,
all finite BAs are finite–cofinite. Düntsch & Winter [10] showed that the only BCAs
that can be obtained from finite–cofinite BAs are the trivial BCAs�.

Proposition 4.4 [10, proposition 2.2(2)]. If B is finite–cofinite, then 〈B,�〉 is the
only BCA based on B.

Notice that every non-empty region which is not an atom has at least two non-
tangential non-empty proper parts which are separated from each other:

∀x∈R+\At∃u,v∈R+(u� x ∧ v� x ∧ u C/ v ∧ u �= x �= v). (4.5)

Indeed, assume that x ∈ R+ \ At. Then there are y, z ∈ R+ such that y⊥z and x =
y � z. Hence, by (∃�), there are u, v ∈ R+ such that u� y � x and v� z � x. So,
by (3.6) and (� ⊆≤), we have u C/ v. Moreover, by (3.7), we have u� x, v� x and
u �= x �= v.

A BQCA is atomless iff it is based on an atomless BA.

Remark 4.5. (i) Dimov & Vakarelov [8, definition 3.3] define another type of filters.
Namely, a filter F is an end iff F is a round filter satisfying the following condition:

∀x,y∈R(x C/ y =⇒ – x ∈ F ∨ – y ∈ F ).
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They show (Lemma 3.2(viii)) that all end filters belong to M.Rnd. Moreover, they prove
(Proposition 3.1(iii)) that in any BCA satisfying the so-called interpolation axiom

∀x,y∈R(x� y =⇒ ∃z∈R x� z� y), (IA)

every filter from M.Rnd is an end.
(ii) Gruszczyński [14] proves that in any BCA satisfying (IA), a filter F belongs to

M.Rnd if and only if F satisfies the following condition:

∀x,y∈R
(
∀z∈F (x C z ∧ y C z) =⇒ x C y

)
. (%)

The following lemma will be used to obtain Proposition 4.8.

Lemma 4.6. In any atomless BCA, any filter F satisfying the following condition is
free:

∀x,y∈R+
(
∀z∈F (x ≤ z ∧ y ≤ z) =⇒ x C y

)
.

Proposition 4.7. In any atomless BCA, if F ∈ Ult ∪ M.Rnd then F satisfies the
following condition:

∀x,y∈R+
(
∀z∈F (x ≤ z ∧ y ≤ z) =⇒ x � y

)
.

Proof. Suppose that in an atomless BCA for a filter F there are x, y ∈ R+ such that
(a) x⊥y and (b) for any z ∈ F : x ≤ z and y ≤ z. Then, by (a), either x or y does not
belong to F. Assume the first possibility holds: (c) x /∈ F . By (4.5), for some u1 ∈ R+

we have u1 � x and u1 �= x. Observe that by (b) and (3.7), u1 is a non-tangential
part of any z ∈ F . By means of (4.5) and the axiom of dependent choices we produce
a sequence 〈un | n < �〉 such that u0 := x, ui+1 � ui and ui+1 �= ui . The filter ↑X
generated by the set of the terms of the sequence is obviously round, and by (b) and
(c) it is the case that F � ↑X . Therefore, F /∈ Ult and F /∈ M.Rnd.

Finally, from Lemma 4.6, Proposition 4.7 and (� ⊆C) we obtain:

Proposition 4.8. In any atomless BCA, all filters from M.Rnd are free.4

§5. Pre-points. Let R be a BQCA based on a BA B. A pre-point of R is any
non-empty set Q of non-empty regions which satisfies the following conditions:

∀u,v∈Q(u = v ∨ u� v ∨ v� u), (r1)

∀u∈Q∃v∈Q v� u, (r2)

∀x,y∈R
(
∀u∈Q(u � x ∧ u � y) =⇒ x C y

)
. (r3)

The purpose of this definition is to formally grasp the intuition that a point is a system
of diminishing regions determining a unique location in space. We call it a pre-point,
since if we understand a point as a perfect representation of some location in space,
then it may happen that two different sets of regions represent one and the same
location. Further, we will identify such pre-points to act as one point. Let Q be the set
of all pre-points of R.

4 In the primary version of the paper we proved this proposition only for atomless BCAs
satisfying (IA). However, one of the reviewers suggested to us that assumption (IA) is
redundant, which prompted us to look for Proposition 4.7.
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516 RAFAŁ GRUSZCZYŃSKI AND ANDRZEJ PIETRUSZCZAK

Notice that by (� ⊆≤), all pre-points are chains with respect to the part of relation.
Furthermore, by (r1), (� ⊆≤) and (df≤), all pre-points have the finite intersection
property. So each pre-point Q generates the filter ↑Q := {x ∈ R | ∃u1,...,un∈Q u1 � ··· �
un ≤ x}. From (r1) we have ↑Q = {x ∈ R | ∃u∈Q u ≤ x}.

By (4.2) and (� ⊆C), all singletons composed of atoms are pre-points in all
BCAs:

Lemma 5.1. In any BCA, for any a ∈ At the singleton {a} is a pre-point.

§6. Grzegorczyk points.

6.1. Grzegorczyk points of BQCAs. Let R be a BQCA based on a BA B. By a
Grzegorczyk point (G-point for short) of R we will mean any filter generated by a
pre-point of R. Thus, for any filter F we have:

a filter F is a G-point iff there is a Q ∈ Q such that F = ↑Q.
Let Gpt be the set of all G-points of R. Its elements will be denoted by small gothic
letters ‘p’ and ‘q’.

Every G-point is a maximal filter in Gpt (see [16]):

∀p,q∈Gpt(p ⊆ q =⇒ p = q).

Furthermore, in [18] we proved that in all BQCAs:

∀x,y∈R∀p∈Gpt
(
∀z∈p(x � z ∧ y � z) =⇒ x C y

)
, (6.1)

∀x,y∈R
(
x� y =⇒ ∀p∈Gpt(y ∈ p ∨ ∃z∈p z⊥x)

)
. (6.2)

For Grzegorczyk contact algebras, which are presented in Section 8 and which are
BCAs, we obtain the converse implications (8.2) and (8.3).

In the light of (r2) and (3.7) we have Gpt ⊆ Rnd. Hence, by (6.2) and Lemmas 3.1
and 3.2, for any BQCA we obtain the following fact:

Proposition 6.1. Every G-point in a BQCA belongs to M.Rnd.5

Hence, in the light of Lemma 3.1, condition (6.1) is equivalent to the following (cf.
condition (%)):

∀p∈Gpt∀x,y∈R
(
∀z∈p(x C z ∧ y C z) =⇒ x C y

)
. (6.1′)

Now we will consider BQCAs which are complete.

Proposition 6.2. 1. In any complete BQCA, every G-point being an ultrafilter is
principal and generated by an atom, i.e., Gpt ∩ Ult ⊆ PFAt.

2. In any atomless complete BQCA, no G-point is an ultrafilter, i.e., Gpt ∩
Ult = ∅.

Proof. Ad 1. Every ultrafilter is free or belongs to PFAt. Every G-point is generated
by a chain. But no free ultrafilter in a complete BA is generated by a chain (see, e.g.,
[21, lemma 43]). Ad 2. Directly from point 1.

5 In [14, 18] it was proven only for GCAs.
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6.2. G-points of BCAs. In the general case of BCAs, from Lemma 5.1 and
Proposition 6.1 we obtain:

Proposition 6.3. In any BCA, every principal filter generated by an atom is a G-point
being an ultrafilter and belongs to M.Rnd, i.e., PFAt ⊆ Gpt ∩ Ult ∩ M.Rnd = Gpt ∩ Ult.

Hence we have:

Corollary 6.4. In any BCA, every principal ultrafilter is a G-point generated by an
atom, i.e., PF ∩ Ult ⊆ Gpt ∩ PFAt.

Moreover, by Propositions 6.2(1) and 6.3, for complete BCAs we have:

Corollary 6.5. In any complete BCA, Gpt ∩ Ult = PFAt = Gpt ∩ Ult ∩ M.Rnd.

From Propositions 6.1 and 6.3 for atomic BCAs we obtain:

Proposition 6.6. In any atomic BCA, every G-point being a principal filter is generated
by an atom, i.e., Gpt ∩ PF ⊆ PFAt.

Proof. By Proposition 6.1, if ↑x ∈ Gpt then ↑x ∈ M.Rnd. Moreover, for some a ∈
At we have a ≤ x. Hence ↑x ⊆ ↑ a. But, ↑ a ∈ Gpt, by Proposition 6.3. Therefore
x = a.

For atomless BCAs, by Propositions 6.3 and 4.8, we obtain:6

Theorem 6.7. Every G-point of an atomless BCA is a free filter.

Finally, we consider the case of BCAs�. Firstly, since all filters in BCAs� are round,
from Proposition 6.1 we get:

Lemma 6.8. In any BCA�, Gpt ⊆ M.Rnd = Ult.

Secondly, there are, however, BCA�s in which Gpt � M.Rnd:

Proposition 6.9. In any infinite complete atomic BCA�, Gpt � M.Rnd = Ult.

Proof. Every infinite complete atomic BA has a free ultrafilter. But, by Proposition
6.2(1), no free ultrafilter is a G-point. Hence Gpt � Ult = M.Rnd, by Lemma 6.8.

From finite–cofinite BAs we only get BCAs� (see Proposition 4.4). Hence from
Propositions 6.3 and 6.9, Corollary 6.5 and Lemma 6.8, respectively, we get:

Corollary 6.10. 1. In any finite BCA, Gpt = PFAt = Ult = M.Rnd.
2. In any infinite finite–cofinite BCA, PFAt ⊆ Gpt ⊆ Ult = M.Rnd.

§7. The Fréchet filter vs. G-points. As we have seen in any BCA each principal
ultrafilter is a G-point generated by an atom (cf. Corollary 6.4). In the case of finite
BCAs we have Gpt = PFAt = Ult (cf. Corollary 6.10.(1)). We will now answer the
following two questions: Are there any other G-points than principal ultrafilters in
infinite atomic algebras? and In which infinite atomic BCAs the Fréchet filter can or
cannot be a G-point? The subclass of BCAs which will serve to answer those question
corresponds to a certain subclass of GCAs.

Let B be an infinite atomic BA. Then the set cAt of all coatoms has a finite
intersection property and generates the so-called Fréchet (or cofinite) filter Fc, which
is free. We will use the following properties of Fc.

6 We can also use (6.1), (≤ |R+⊆C) and Lemma 4.6.
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Lemma 7.1. For any x ∈ Fc there are a1, ... , an ∈ At (n > 0) such that x =– (a1 �
··· � an).

From Lemma 7.1 and Proposition 4.4 we obtain:

Corollary 7.2. If Fc ∈ Ult, then B is finite–cofinite, and so 〈B,�〉 is the only BCA
based on B.

The following two lemmas are analogous to the facts given in [4], where the
completeness of a Boolean algebra B is assumed and the fact that B is isomorphic to
the algebra of sets over At is used.

Lemma 7.3. Let B have countably many atoms: a1, a2, .... Then Fc is generated by the
chain Cc := {– a1 � ··· � – an | n ∈ ω}.

Proof. If x ∈ Fc then for some k > 0 and ai1 , ..., aik ∈ At we have – ai1 � ··· � –
aik ≤ x. Hence Cc �– a1 � ··· � – amax{i1,...,ik} ≤– ai1 � ··· � – aik ≤ x. So Fc ⊆ ↑Cc.
Furthermore, if for some n ∈ ω we have – a1 � ··· � – an ≤ x, then – x ≤ a1 � ··· � an,
which means that – x is composed of finitely many atoms, i.e., x ∈ Fc. So also ↑Cc ⊆
Fc.

The proof of the lemma below is after [4], yet omits the completeness assumption.

Lemma 7.4. If B has uncountably many atoms, then Fc is not generated by a chain.

Proof. Assume for a contradiction that Fc is generated by a chain C. Then C ⊆ Fc.
Hence, by Lemma 7.1, for any x ∈ C there are n > 0 and a1, ... , an ∈ At such that
– x = a1 � ··· � an. Therefore the set At⊥x is finite.

Furthermore, since C is a chain, for all x, y ∈ C such that x �= y either At⊥x � At⊥y
or At⊥y � At⊥x . Thus, the functionC � x �→ Card(At⊥x ) ∈ ω is injective; and so C and⋃
x∈C At⊥x are countable. Hence for somea0 ∈ At we havea0 /∈

⋃
x∈C At⊥x , i.e., for any

x ∈ C we have x �– a0. However, for all a ∈ At it is the case that – a ∈ Fc. Therefore,
since Fc is generated by C, for some xa ∈ C we have xa ≤– a; a contradiction.

Furthermore, let us remind that:

Lemma 7.5. Fc is included in any free filter in B.

Now we will show two classes of BCAs in which Fc is not a G-point. From them we
will also get two classes of GCAs in which Fc /∈ Gpt (see Section 10). Keep in mind
that whether Fc is generated by the chain depends on whether B has countably many
atoms.

Because all G-points are generated by chains, in the light of Lemma 7.4 we obtain:

Proposition 7.6. There is no atomic BQCA with uncountably many atoms such that:

Fc ∈ Gpt . (pFc)

Moreover, we have the following generalization of model 6.18 from [14]:

Proposition 7.7. There is no infinite complete atomic BCA� that satisfies (pFc).

Proof. Let R = 〈B,�〉 be based on an infinite complete atomic BA. If R has
uncountably many atoms, then we use Proposition 7.6. Otherwise, Fc is free and
generated by a chain, by Lemma 7.3. Hence Fc /∈ Ult, because no free ultrafilter in
a complete BA is generated by a chain (see, e.g., [21, lemma 43]). But Gpt ⊆ Ult, by
Lemma 6.8. Thus, we have Fc /∈ Gpt.
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In consequence, there are BCAs that do not satisfy (pFc). In Theorem 7.9 we will
construct a certain class of BCAs satisfying (pFc). Moreover, in Theorem 10.1 we will
show that elements of the class are also GCAs. Now we will focus on some properties
of infinite atomic BCAs in which Fc is a G-point.

Theorem 7.8. Let R be an infinite atomic BCA satisfying (pFc). Then:

1. R has countably many atoms.
2. For all x, y ∈ R: x C y iff either x � y or both Atx and Aty are infinite.7

3. Fc is the only G-point of R being a free filter.
4. Gpt = PFAt ∪ {Fc} and Gpt is countable.
5. Fc ∈ Ult iff Gpt ⊆ Ult iff R is a BCA�.
6. If Fc ∈ Ult , then Gpt = Ult and R is incomplete and finite–cofinite.

Proof. Ad 1. Directly from Proposition 7.6.
Ad 2. The “⇒”-part we obtain directly from Lemma 4.3. For the “⇐”-part assume

that Atx and Aty are infinite. Then, by Lemma 7.1, for any z ∈ Fc we have: z � x and
z � y. Hence, since Fc ∈ Gpt, by condition (r3), we have x C y.

Ad 3. By Lemma 7.5, Fc is included in any free filter. In consequence, if Fc belongs
to Gpt, then its maximality in the set of G-points excludes any free filter from the set
Gpt . In other words, none of the other G-points is a free filter.

Ad 4. By our assumption and Proposition 6.3, we have PFAt ∪ {Fc} ⊆ Gpt. In virtue
of point 2, since R is atomic, all G-points different from Fc belong to PFAt. Thus, also
Gpt ⊆ PFAt ∪ {Fc}. So, by point 1, Gpt is countable.

Ad 5. It is obvious that PFAt ⊆ Ult. So if Fc ∈ Ult then Gpt ⊆ Ult, by point 3.
Moreover, if Gpt ⊆ Ult then Fc ∈ Ult, also by point 3. HenceR is a BCA�, by Corollary
7.2. Finally, if R is a BCA� then Gpt ⊆ Ult , by Lemma 6.8. So Fc ∈ Ult , by our
assumption.

Ad 6. Suppose that Fc ∈ Ult. Then Gpt ⊆ Ult, by point 5. For the converse inclusion
assume that U ∈ Ult. But each ultrafilter in a given BA either belongs to PFAt or is
free. In the first case, U ∈ Gpt, by point 3. In the second case, by Lemma 7.5, we have
Fc ⊆ U . So U = Fc ∈ Gpt. Thus, we also obtain that Ult ⊆ Gpt.

Finally, since Fc ∈ Gpt ∩ Ult, by Proposition 6.2(1),R is incomplete (we can also use
point 5 and Proposition 7.7). Furthermore, R is finite–cofinite, by Corollary 7.2.

Below we describe a construction of BCAs which satisfy (pFc). The construction is
a generalization of model 6.19 from [14].

Theorem 7.9. Let B be an infinite atomic BA with countably many atoms. For all
x, y ∈ R we put:

x C y :⇐⇒ either x � y or both Atx and Aty are infinite.

Then:

1. For all x, y ∈ R we have:

x� y ⇐⇒ (x ≤ y ∧ Atx is finite) ∨ (x ≤ y ∧ At–y is finite).

2. 〈B,C〉 is a BCA.

7 This point was suggested by one of the reviewers. Obviously, in the case when Fc ∈ Ult , by
point 5, we obtain that C = �.
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3. For the chain Cc from Lemma 7.3 and x ∈ R we have:

x overlaps with each member of Cc ⇐⇒ Atx is infinite. (†)

4. Cc is a pre-point and Fc is a G-point of 〈B,C〉.
Proof. Ad 1. For all x, y ∈ R: x� y iff xC/ – y iff x⊥ – y and either Atx or At–y is

finite iff either both x ≤ y and Atx is finite, or both x ≤ y and At–y is finite.
Ad 2. It is obvious that 〈B,C〉 satisfies (C0)–(C2) and (C4). Moreover, from point

1 we have (∃�). For (C3) suppose that x ≤ y and z C x. If z � x, then z � y. If both
Atz and Atx are infinite, then Aty is also infinite; and so z C y.

Ad 3. Condition (†) is obvious.
Ad 4. Let At := {a1, a2, ...}. For any x ∈ Cc the set At–x is finite, since for some

n ∈ ω we have – x = a0 � ··· � an. For (r1) suppose that u, v ∈ Cc and u �= v. Then
u ≤ v or v ≤ u. Thus u� v or v� u, by point 1. For (r2) notice that in the case
u ∈ Cc for some n ∈ ω we have: v :=– a1 � ··· � – an� – an+1 ≤– a1 � ··· � – an = u.
So v ∈ Cc and v� u, by point 1. For (r3) suppose that x and y overlap with each
element of Cc. Then, by (†), Atx and Aty are infinite. So x C y.

To round off the proof we use Lemma 7.3.

Thus, directly from Theorems 7.8 and 7.9 we obtain the following characterization
of infinite atomic BCAs having the Fréchet filter as a G-point:

Corollary 7.10. Let 〈B,C〉 be an infinite atomic BCA. Then Fc ∈ Gpt if and only if
B has countably many atoms and for all x, y ∈ R:

x C y ⇐⇒ either x � y or both Atx and Aty are infinite.

Remark 7.11. (i) For any set X, let P(X ) be the power set algebra of X. Any given
atomic BA is monomorphic to P(At). Namely, it is isomorphic to the field of sets
{Atx | x ∈ R}. If a BA is complete, it is isomorphic to P(At). Thus, any atomic BA
with countably infinitely many atoms is isomorphic to a dense subalgebra of P(ω).
Moreover, if such a BA is complete, then it is isomorphic to P(ω).

(ii) With reference to Theorems 7.8 and 7.9, let us observe that we can distinguish
three kinds of infinite atomic BAs with countably many atoms:

1. finite–cofinite—they are incomplete and isomorphic to the finite–cofinite
algebra of sets on ω (shortly: FC(ω));

2. complete—they are isomorphic to P(ω);
3. incomplete, but not finite–cofinite—each is isomorphic to a dense subalgebra of

P(ω). This type includes, for example, the Borel algebra of the space of rational
numbers with the standard topology (see, e.g., [22, p. 21]).

If in such BAs we introduce the relation C from Theorem 7.9, we obtain BCAs in which
Fc is a G-point. For the first type of BAs, we get C = �, Fc ∈ Ult and Gpt = Ult; but
for the other two types, � � C and Fc /∈ Ult (cf. Proposition 4.4 and Theorem 7.8).

By Theorems 7.8 and 7.9, the above three types of BAs constitute all infinite atomic
BAs satisfying (pFc).

It is often walking on thin ice when trying to infer philosophical conclusions from
mathematical results. Nevertheless, we venture to sketch a spatial perspective on
Corollary 7.10. The notion of Fréchet filter is one of the central concepts of the theory
of atomic Boolean algebras. As is well-known, there are algebras whose Stone spaces of
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points contain the filter, and in the case a BA has the Fréchet filter, it is a subset of every
point (ultrafilter) of the Stone space. The notion of a Grzegorczyk point is motivated by
geometrical intuitions about the pre-theoretical concept of point. Thus, the sentence
“the Fréchet filter is a Grzegorczyk point” might be viewed as saying that the Fréchet
filter of a BA satisfies the geometrical intuitions about points. Corollary 7.10 shows
that the class of algebras whose Fréchet filter meets those intuitions is relatively narrow,
and as such, it testifies to a kind of limitation result about the dependency between
the spatial, region-based motivations and purely algebraic constructions. Most of the
Boolean algebras have Fréchet filters that do not follow the idea of a point embodied
in the definition of Grzegorczyk’s.

§8. Grzegorczyk contact algebras. We extend the axioms for the class of BQCAs
with the following second-order postulates:

∀x,y∈R(x � y =⇒ ∃Q∈Q∃u∈Q u ≤ x � y), (G�)

∀x,y∈R
(
x C y ∧ x⊥y =⇒ ∃Q∈Q∀u∈Q(u � x ∧ u � y)

)
, (G⊥)

called Grzegorczyk axioms, introduced in [16, Proposition 6.1] and equivalent to
the single axiom from [19]. Every BQCA which satisfies (G�) and (G⊥) is called a
Grzegorczyk contact algebra (GCA in short).

It has been demonstrated in [16, Theorem 6.4] that (C0)–(C3) together with (G�)
and (G⊥) entail (C4) and (C3c).8 All other conditions from Lemma 4.1, i.e., (C5),
(∃�), (ext≤) and (extC), hold as well. (We also get (∃�) from the reflexivity of � on
R+, (G�), (r2) and (3.7).) Therefore,

Proposition 8.1. Every GCA is a BCA.

Notice that in virtue of Lemma 5.1, we have that:

Lemma 8.2. All atomic BCAs satisfy (G�).

All GCAs with C = �will be called GCAs�. In this case we get (G⊥) in a trivial way.
Thus, we obtain:

Proposition 8.3. Every atomic BCA� is a GCA� and vice versa.

Thanks to Proposition 6.9 we obtain examples of GCAs� in which Gpt � M.Rnd
(all infinite complete atomic BCAs�).9

In any GCA, by (G�), the definition of Gpt and the reflexivity of � on R+, we
have:

∀x∈R+∃p∈Gpt x ∈ p. (8.1)

The following properties of G-points of R play an important role in the analysis of
GCAs (see [14, 18]):

∀x,y∈R
(
x � y ⇐⇒ ∃p∈Gpt(x ∈ p ∧ y ∈ p)

)
, (8.1)

8 The first proof that (C4) holds for Grzegorczyk structures can be found in [3], proposition
4.1, yet for a system with a different set of axioms. For a detailed comparison see [17].

9 See also model 6.15 from [14] and other models given in [16, 18] in which we have Gpt �
M.Rnd and which are atomless.
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∀x,y∈R
(
x C y ⇐⇒ ∃p∈Gpt∀z∈p(z � x ∧ z � y)

)
, (8.2)

∀x,y∈R
(
x� y ⇐⇒ ∀p∈Gpt(y ∈ p ∨ ∃z∈p z⊥x)

)
, (8.3)

∀x,y∈R
(
x� y ⇐⇒ ∀p∈Gpt(y ∈ p ∨– x ∈ p)

)
. (8.4)

We get that all points of a given GCA are ultrafilters if and only if it is trivial (and so
each of its region is separated from its complement):

Theorem 8.4. In any GCA:

Gpt ⊆ Ult iff ∀x∈R xC/ – x iff � is reflexive iff C = � iff R is a GCA�.

Proof. From (df�) and (8.4) we obtain:

∀x∈R xC/ – x iff � is reflexive iff ∀p∈Gpt∀x∈R(x ∈ p ∨– x ∈ p).

So we use (3.8), Lemma 6.8 and a property of ultrafilters.

§9. G-points, ultrafilters, principal filters and atoms of GCAs. Due to the seminal
duality established by Stone [24] for BAs, ultrafilters are candidates for points of GCAs
and therefore a question how they relate to G-points comes to mind in a natural way.
A partial answer, formulated in [14, 18], boils down to the following theorem which
is closely related to Corollary 6.10.(1). The proof of the theorem refers to two non-
trivial properties of BAs: any infinite BA has a free ultrafilter and an infinite antichain
and no free ultrafilter in a complete BA is generated by a chain (for the latter see, e.g.,
[21, Lemma 43]).

Theorem 9.1. If R is a complete GCA, the following conditions are equivalent:

a. R is finite,
b. Gpt is finite,
c. Ult ⊆ Gpt,
d. Ult = Gpt.

In Remark 7.11, we showed that 〈FC(ω),�〉 is an example of an infinite incomplete
atomic BCA� (and so also GCA�) in which we have Gpt = Ult.

In the sequel, we will consider the relationship between atoms and principal filters
in GCAs. To begin with, we show that we can strengthen Proposition 6.3.

Lemma 9.2. For any x ∈ R: x ∈ At iff ↑x ∈ M.Rnd.

Proof. The “⇒”-part we obtain directly from Propositions 6.3 and 8.1. For the
“⇐”-part, assume that x /∈ At. Then for some y ∈ R+ we have y � x. Moreover, by
(8.1), for some p0 ∈ Gpt we have y ∈ p0. Hence ↑x � p0. Therefore, ↑x is not maximal
in the family of all round filters, since p0 ∈ Rnd. Thus, we have ↑x /∈ M.Rnd.

Furthermore, we obtain the following theorem which previously appeared in
[14, 18] and which is a strengthening of Proposition 6.3 and Corollary 6.4 for GCAs:

Theorem 9.3. In any GCA, for any x ∈ R: x ∈ At iff ↑x ∈ Gpt iff ↑x ∈ Ult.

Proof. Obviously:x ∈ At iff ↑x ∈ Ult. From Propositions 6.3 and 8.1 for anyx ∈ At
we have ↑x ∈ Gpt. So if ↑x ∈ Ult then ↑x ∈ Gpt. Let ↑x ∈ Gpt. Then ↑x ∈ M.Rnd,
by Proposition 6.1. Hence x ∈ At, by Lemma 9.2. So also ↑x ∈ Ult.
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From the above theorem we have the following generalization of Proposition 6.6:

Corollary 9.4. In any GCA, PF ∩ Ult = PFAt = Gpt ∩ PF.

§10. G-points and free filters in infinite atomic GCAs. This section is devoted to
GCAs based on an infinite atomic BAs. In this case condition (pFc) is independent
from the axioms of GCAs.

Firstly, there are GCAs that do not satisfy (pFc). Indeed, in the light of Proposition
8.1 and Propositions 7.6 and 7.7, respectively, we get that: no atomic GCA with
uncountably many atoms or complete atomic GCA� with infinitely many atoms fulfills
(pFc).

Secondly, we show that there are GCAs satisfying (pFc). They are given by the
construction we used in Theorem 7.9.

Theorem 10.1. Let B be an infinite atomic BA with countably many atoms. For all
x, y ∈ R we put:

x C y :⇐⇒ either x � y or both Atx and Aty are infinite.

Then 〈B,C〉 satisfies conditions 1–4 from Theorem 7.9 and moreover:

5. 〈B,C〉 is a GCA satisfying (pFc).

Proof. From point 2 and Lemma 8.2 we have that 〈B,C〉 satisfies (G�). For (G⊥),
if x C y and x⊥y, then Atx and Aty are infinite, by point 2 and Lemma 4.3. Now we
use (†).

Finally, notice that in any infinite atomic GCAs in which (pFc) holds, the filter Fc

has all properties from Theorem 7.8.

§11. Topological spaces of G-points for infinite atomic GCAs. This section shows
how the relation between G-points and ultrafilters influences the topological spaces of
G-points.

Let R = 〈B,C〉 be a GCA. For any region x of R we put Ult(x) := {U ∈ Ult |
x ∈ U}. It is well-known that the family {Ult(x) | x ∈ R} is a topological basis on
Ult. By the Stone space of B we mean—in the standard way—the topological space
S(B) in which points are ultrafilters of B and the topology is introduced via the basis
{Ult(x) | x ∈ R}.10

Furthermore, for any region x of R we define the set of all its internal G-points:

Irl(x) := {p ∈ Gpt | x ∈ p}. (dfIrl)

Of course, Irl(0) = ∅ and Irl(1) = Gpt. Moreover, for all x, y ∈ R: if x � y, then
Irl(x � y) = Irl(x) ∩ Irl(y); x ≤ y iff Irl(x) ⊆ Irl(y) (see [18, p. 826]). It is routine
to verify that the family BR := {Irl(x) | x ∈ R} is a topological basis on Gpt . Let
TR := 〈Gpt,OR〉 be the topological space introduced via BR. One can prove that every
set from BR is regular open in TR, and so TR is semi-regular. Moreover, TR is concentric,
i.e., it is a T1-space and each point p ∈ Gpt has a local basis Bp

R
satisfying the following

10 For topological spaces and Stone spaces see, e.g., [2, 13], [22, chap. 3] and [1], respectively.

https://doi.org/10.1017/S1755020321000459 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000459
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condition:

∀U,V∈Bp

R

(
U = V ∨ ClU ⊆ V ∨ ClV ⊆ U

)
. (R1)

It is known that every topological space having the same properties as TR is also a
regular space (see [14, 16, 18] for details).11

In [18, p. 839] it is shown that: the base BR consists of clopen sets if and only if R
is a GCA�. Thus, in the general case, the base of TR does not have to consist of clopen
sets. However, below in Proposition 11.3 we can prove that for any infinite atomic
GCA R satisfying (pFc), TR is a continuous image of a certain Boolean space (i.e., a
Hausdorff, compact and zero-dimensional space).

Given a topological space T = 〈S,O〉, its compactification is a pair 〈K, e〉 such that:
K = 〈K,K 〉 is a compact space, e : S → K is an embedding (an injective continuous
map) of T into K (so e is a homeomorphism between S and e[S]) and the set e[S]
is dense in K. Moreover, we say that K is a compactification of T iff e is the identity
map.

The following lemma will be used in the proof of the last theorem of the paper.

Lemma 11.1. Let T1 = 〈S1,O1〉, T2 = 〈S2,O2〉 and K = 〈K,K 〉 be topological spaces
such that:

• 〈K, e〉 is a compactification of T1 for some e : S1 → K ,
• e′ : S1 → S2 is an embedding of T1 into T2,
• f : K → S2 is a continuous surjection such that for any p ∈ S1,f(e(p)) = e′(p).

Then 〈T2, e
′〉 is a compactification of T1.

Proof. T2 is compact as a continuous image of the compact space K. Therefore, it
remains to show that e′[S1] is dense inT2. Letp ∈ S2 \ e′[S1],V ∈ O2 andp ∈ V . Thus,
for some k ∈ K \ e[S1] we have f(k) = p and f–1[V ] ∈ K . So, f–1[V ] ∩ e[S1] �= ∅
and ∅ �= f[f–1[V ] ∩ e[S1]] ⊆ f[f–1[V ]] ∩ f[e[S1]] ⊆ V ∩ e′[S1].

The following proposition is standard:

Proposition 11.2. If R is infinite and atomic, then S(B) is (unique up to
homeomorphism) the Stone–Čech compactification of 〈PFAt, ℘(PFAt)〉.

Now we prove:

Proposition 11.3. Let R = 〈B,C〉 be an infinite atomic GCA satisfying (pFc). Then
TR is a continuous image of S(B) under the function f : Ult → Gpt (= PFAt ∪ {Fc})
defined via:

f(U ) :=

{
U if U ∈ PFAt,

Fc if U is free.

Furthermore, if Fc ∈ Ult, then f is the identity map.

11 Lemma A2 in [16] showed that every concentric topological space is regular. Moreover, it
is obvious that every concentric space has a linearly ordered base at each its point, i.e., is a
lob-spaces (see, e.g., [6, p. 37]). Motivated by one of the reviewers, in Appendix A we prove
that all regular lob-spaces are concentric. The result is not directly related to the problems
discussed in the paper, yet it is novel and relevant for the theory of GCAs.
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Proof. The proof is trivial if Fc ∈ Ult, because then we have Gpt = Ult, and so
f(U ) = U for any U ∈ Ult. In other cases, to show that f is continuous it is enough
to prove that for any x ∈ R, the set f–1[Irl(x)] is open in SR. We consider three
cases.

Let x be finite, i.e., x = a1 � ··· � an, for some a1, ... , an ∈ At. Then Irl(x) =
{↑ a1, ... , ↑ an} = Ult(x) = f–1[Irl(x)].

Let x be cofinite, i.e., x =– (a1 � ··· � an), for some a1, ... , an ∈ At. Then again we
have f–1[Irl(x)] = Ult(x), since for any free ultrafilter U we have: U ∈ f–1[Irl(x)] iff
U ∈ Ult(x). Indeed, assume that U ∈ f–1[Irl(x)], i.e., for some p ∈ Irl(x): p = f(U ).
Then x ∈ f(U ). Furthermore, f(U ) = Fc, since U is free. So f(U ) ∈ Irl(x). The other
way round, if f(U ) ∈ Irl(x), then x ∈ f(U ) = Fc, since U is free. Finally, because
Fc ⊆ U (see Lemma 7.5), we have x ∈ U , as required.

Let x be neither finite nor cofinite. Then Fc /∈ Ult and Irl(x) = {↑ a | a ∈ Atx},
because x /∈ Fc (see Lemma 7.5). Therefore, f–1[Irl(x)] = Irl(x) ⊆ Ult(x). Yet the
principal ultrafilters correspond to isolated points of SR; and so f–1[Irl(x)] must be
open in S(B).

Thanks to Lemma 11.1 and Propositions 11.2 and 11.3 we have the following theorem
which is a stronger version of Theorem 6.33 from [14]:

Theorem 11.4. Let R = 〈B,C〉 be an infinite atomic GCA satisfying (pFc). Then:

1. TR is compact.
2. TR is the one-point compactification of the discrete space 〈PFAt, ℘(PFAt)〉 with Fc

as the “point at infinity.”
3. OR = ℘(PFAt) ∪ {X ∪ {Fc} | X ⊆ PFAt and PFAt \ X is finite}.
4. TR is homeomorphic to the Stone space S(FC(B)) of the subalgebra FC(B) of B

composed of all its finite–cofinite elements.12

Proof. Ad 1. In the light of Proposition 11.3, TR is compact as a continuous image
of the compact space S(B).

Ad 2. Of course, id : PFAt → Gpt is an embedding of 〈PFAt, ℘(PFAt)〉 into TR.
By Proposition 11.2, S(B) is a compactification of 〈PFAt, ℘(PFAt)〉. By Proposition
11.3, TR is a continuous image of S(B) under the function f : Ult → Gpt. Thus,
since f is the identity map on PFAt, TR is a compactification of 〈PFAt, ℘(PFAt)〉, by
Lemma 11.1.

Furthermore, TR has the unique G-point Fc which does not belong to PFAt, and
therefore TR must be the one-point compactification of 〈PFAt, ℘(PFAt)〉.

Ad 3. Directly from point 2.
Ad 4. Fc is the only free ultrafilter in FC(B), which entails that S(FC(B)) is exactly

the one-point compactification of 〈PFAt, ℘(PFAt)〉. See also point 3.

With respect to Remark 7.11(ii), note that in the light of Theorem 11.4(4), there are
non-isomorphic GCAs R1 and R2 which have homeomorphic spaces TR1 and TR2 ,
respectively. For example, it is true for 〈FC(ω),�〉 and 〈P(ω),C〉, where C is such as in
Theorem 7.9 (see Proposition 8.3 and Theorem 10.1). Namely, in both cases, the dual
spaces are homeomorphic toS(FC(ω)). This may be a reason to question the usefulness
of the theorem. However, the primary objective of representation theorems is to find

12 This fact and Proposition 11.3 are consistent with the well-known fact that S(FC(B)) is a
continuous image of S(B).
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a familiar set-theoretical construction to which the initial structure can be reduced.
Concerning this, the theorem does a good job, so to say. The representation theorems
in the spirit of Stone [24], Düntsch & Winter [11] and Dimov & Vakarelov [8] were
presented by us in our earlier works [16, 18] where we produced object duality theorems
for the class of Grzegorczyk contact algebras that satisfy an algebraic version of the
countable chain condition.13 In the context of this paper, we are only interested in the
much narrower class of Grzegorczyk contact algebras. The results obtained, including
the representation theorem above, broaden the understanding of Grzegorczyk point-
free topology, so far a largely neglected system of a region-based theory of space.

§A. concentric topological spaces and lob-spaces. In this appendix, we prove that all
regular lob-spaces are concentric, and in consequence, a topological space is concentric
if and only if it is a regular lob-space.

Let T = 〈S,O〉 be a topological space. We call T a lob-space provided that for each
p ∈ S there is a linearly ordered base Bp at p (see, e.g., [6, definition 1.1]), i.e., Bp

satisfies the trichotomy condition:

∀U,V∈Bp
(
U = V ∨U � V ∨ V � U

)
.

Furthermore, T is concentric iff it is a T1-space and for any p ∈ S there is a base Bp

at p such that:

∀U,V∈Bp
(
U = V ∨ ClU ⊆ V ∨ ClV ⊆ U

)
. (C)

Obviously, all concentric spaces are lob-spaces. Now we prove that all regular lob-
spaces are concentric.

Theorem A.1 A topological space is concentric if and only if it is a regular lob-space.

Proof. For the “⇒”-part see Lemma A2 in [16].
For the “⇐”-part suppose that T = 〈S,O〉 is a regular lob-space and p ∈ S. Then

T is a T1-space and there is a base Bp at p satisfying the trichotomy condition and
such that for any B ∈ Bp there is a U ∈ O such that p ∈ U ⊆ ClU ⊆ B .

For some ordinal α, let 〈W� | � < α〉 be a coinitial subset of 〈Bp,⊆〉 such that for
all � < � < α we have W� �W� .14 For every � < α there is a � such that � � � < α
and ClW� ⊆W� . Indeed, for W� there is an open set U such that p ∈ U ⊆ ClU ⊆
W� . Yet 〈W� | � < α〉 is a base at p, so there is a � < α such that W� ⊆ U , and in
consequence ClW� ⊆W� , so � � �. Thus, there is a monotone coinitial subsequence
of 〈W� | � < α〉 that satisfies (C), as required.
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13 We have not been able to eliminate it so far.
14 See, e.g., [20], exercise on p. 68 and Counting Theorem on p. 80.
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