Jeśmanowicz' Conjecture with Congruence Relations. II

Yasutsugu Fujita and Takafumi Miyazaki

Abstract

Let a, b, and c be primitive Pythagorean numbers such that $a^{2}+b^{2}=c^{2}$ with b even. In this paper, we show that if $b_{0} \equiv \epsilon(\bmod a)$ with $\epsilon \in\{ \pm 1\}$ for certain positive divisors b_{0} of b, then the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive solution $(x, y, z)=(2,2,2)$.

1 Introduction

Let a, b, and c be relatively prime integers with $\min \{a, b, c\}>1$. Then we consider the exponential Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1.1}
\end{equation*}
$$

where x, y, and z are positive integers. There are many works on equation (1.1) in the literature. Almost all of them concern the case where a, b, and c also satisfy $a^{p}+b^{q}=c^{r}$ for some other positive integers p, q, and r; in particular, the case $p=$ $q=r=2$ has interested many researchers. In 1956, Sierpiński [10] considered the case of $(a, b, c)=(3,4,5)$, and he showed that equation (1.1) has only the solution $(x, y, z)=(2,2,2)$. In the same year, Jeśmanowicz [5] studied some of the cases where a, b, and c are primitive Pythagorean numbers; that is, a, b and c are relatively prime with $a^{2}+b^{2}=c^{2}$, and he obtained the same conclusion as Sierpiński. Also, Jeśmanowicz proposed the following problem.

Conjecture 1.1 Let a, b, and c be primitive Pythagorean numbers such that $a^{2}+b^{2}=c^{2}$. Then Diophantine equation (1.1) has only the solution $(x, y, z)=$ $(2,2,2)$.

This is an unsolved problem in spite of many studies. It is known that if a, b, and c are primitive Pythagorean numbers such that $a^{2}+b^{2}=c^{2}$ with b even, then a, b, and c are parameterized as follows:

$$
a=m^{2}-n^{2}, \quad b=2 m n, \quad c=m^{2}+n^{2},
$$

where m and n are relatively prime positive integers of different parities with $m>n$. In what follows, we consider the above expressions.

[^0]After the work of Jeśmanowicz, Lu [7] proved that Conjecture 1.1 is true if $n=1$. Dem'janenko [1] showed that Conjecture 1.1 is true if $c=b+1$, which is equivalent to $m=n+1$. Their results play important roles in other known results. The second author [9] generalized their results by proving the conjecture to be true if $a \equiv \pm 1$ $(\bmod b)$ or $c \equiv 1(\bmod b)$. Recently, the authors [4] generalized a result of [9] and obtained related results. The aim of this paper is to give further related results in this direction.

Throughout this paper, we assume that

$$
\begin{equation*}
b_{0} \equiv \epsilon(\bmod a) \tag{1.2}
\end{equation*}
$$

where $b_{0}>1$ is a divisor of b and $\epsilon \in\{ \pm 1\}$. We write $b_{1}:=b / b_{0}$. The first main result is the following theorem.

Theorem 1.2 If b_{1} has no prime factors congruent to 1 modulo 4, then Conjecture 1.1 is true.

This is a generalization of [4, Theorem 1.2] concerning the case where b is even, corresponding to $b_{1}=2^{r}$ with nonnegative integer r. We remark that the condition in the statement of Theorem 1.2 is similar to those due to Deng and Cohen [2]. We also prove the following result.

Theorem 1.3 Conjecture 1.1 is true if one of the following holds:
(i) $m-n$ has a divisor congruent to 3 or 5 modulo 8 ;
(ii) $m+n$ has a divisor congruent to 5 or 7 modulo 8 .

In particular, if a has a prime factor congruent to 5 modulo 8, then Conjecture 1.1 is true.

Some examples of the theorems are given as follows.

$$
\begin{aligned}
\epsilon=1 ; & m=2 b_{1}^{2}, n=2 b_{1}^{2}-2 b_{1}+1 \\
\epsilon=1 ; & m=4 b_{1}^{3}+4 b_{1}^{2}+3 b_{1}+1, n=4 b_{1}^{3}+b_{1} \\
\epsilon=-1 ; & m=2 b_{1}^{2}+2 b_{1}+1, n=2 b_{1}^{2} \\
\epsilon=-1 ; & m=4 b_{1}^{3}+b_{1}, n=4 b_{1}^{3}-4 b_{1}^{2}+3 b_{1}-1
\end{aligned}
$$

where we can take b_{1} as any positive integer such that b_{1} has no prime factors congruent to 1 modulo 4 , or $b_{1} \equiv 2(\bmod 4)$, or $b_{1} \equiv-\epsilon(\bmod 4)$. More generally, one can construct various parametric families of m and n satisfying the assumptions in Theorems 1.2 or 1.3 (see Section 5).

2 Preliminary Considerations

From (1.2) we can write

$$
\begin{equation*}
b=\epsilon b_{1}+b_{1} a t \tag{2.1}
\end{equation*}
$$

with some nonnegative integer t. Since $b_{0}>1$, we find that $b_{1}<b$, so $t \geq 1$. Putting $M=m+n$ and $N=m-n$, we see from (2.1) that

$$
\begin{equation*}
\left(M-b_{1} N t\right)^{2}-\left(\left(b_{1} t\right)^{2}+1\right) N^{2}=2 \epsilon b_{1} . \tag{2.2}
\end{equation*}
$$

If $t \geq 2$, then the Pell equation $U^{2}-\left(\left(b_{1} t\right)^{2}+1\right) V^{2}=2 \epsilon b_{1}$ has no primitive solution (cf., e.g., [3, Lemma 2.3]), and Diophantine equation (2.2) has no solution, since $\operatorname{gcd}(M, N)=1$. Hence, $t=1$ and $b_{0}=\epsilon+a$. Since b_{0} is even, we can write

$$
\begin{equation*}
m^{2}-n^{2}=2 m_{0} n_{0}-\epsilon \tag{2.3}
\end{equation*}
$$

where m_{0} and n_{0} are the positive divisors of m and n, respectively, such that $m_{0} n_{0}=$ $b_{0} / 2$.

We can assume that $n \geq 2$ by [7] and $n \leq m-3$ by [1]. Suppose that $\min \left\{m_{0}, n_{0}\right\} \leq 2$. Then $m_{0} n_{0} \leq 2 \max \left\{m_{0}, n_{0}\right\} \leq 2 m$. Since $m^{2}-n^{2} \geq m^{2}-$ $(m-3)^{2}=6 m-9$, we find from (2.3) that $6 m-9 \leq m^{2}-n^{2}=2 m_{0} n_{0}-\epsilon \leq 4 m+1$, which implies that $m \leq 5$, hence $(m, n)=(5,2)$, particularly, $a=b+1$, where Conjecture 1.1 is known to be true by [9, Corollary 1]. Thus, we can assume that $m_{0}, n_{0} \geq 3$. By (2.3) we have the congruences

$$
\begin{equation*}
m^{2} \equiv-\epsilon\left(\bmod n_{0}\right) \quad \text { and } \quad n^{2} \equiv \epsilon\left(\bmod m_{0}\right) \tag{2.4}
\end{equation*}
$$

Lemma 2.1 Let (x, y, z) be a solution of (1.1). If $\epsilon=1$, then x and z are even. If $\epsilon=-1$, then z is even.

Proof Equation (1.1) implies that

$$
\left(-n^{2}\right)^{x} \equiv\left(n^{2}\right)^{z}(\bmod m) \quad \text { and } \quad\left(m^{2}\right)^{x} \equiv\left(m^{2}\right)^{z}(\bmod n)
$$

The assertion now follows from (2.4) and $m_{0}, n_{0} \geq 3$.
In the following sections, we consider the cases of $\epsilon=1$ and $\epsilon=-1$ separately.

3 The Case $\epsilon=1$

Let us consider the case $\epsilon=1$. Let (x, y, z) be a solution of (1.1). By Lemma 2.1, we can write $x=2 X$ and $z=2 Z$ with positive integers X and Z. By [8, Theorem 1.5], we know that both X and Z are odd. We write $(2 m n)^{y}=D E$, where

$$
D=\left(m^{2}+n^{2}\right)^{Z}+\left(m^{2}-n^{2}\right)^{X}, \quad E=\left(m^{2}+n^{2}\right)^{Z}-\left(m^{2}-n^{2}\right)^{X}
$$

It is easy to see that $\operatorname{gcd}(D, E)=2$ and $y>1$. Observe that $D \equiv 0(\bmod 4)$ if m is even, and $E \equiv 0(\bmod 4)$ if m is odd.

We prepare several lemmas.
Lemma 3.1 The following congruences hold:

$$
\begin{array}{lll}
\text { if } m \text { is even, then } & D \equiv 0\left(\bmod 2^{y-1} m_{0}^{y}\right) & \text { and } \\
\text { if } m \text { is odd, then } & D \equiv 0\left(\bmod 2 m_{0}^{y}\right) & \text { and } \quad E \equiv 0\left(\bmod 2 n_{0}^{y}\right) \\
\text { } & \left.E-1 n_{0}^{y}\right) .
\end{array}
$$

Moreover, if b_{1} has no prime factors congruent to 1 modulo 4 , then

$$
(D, E)= \begin{cases}\left(2^{y-1} m^{y}, 2 n^{y}\right) & \text { if } m \text { is even } \\ \left(2 m^{y}, 2^{y-1} n^{y}\right) & \text { if } m \text { is odd } .\end{cases}
$$

Proof We assume that m is even. By (2.4), we see that

$$
E \equiv 2\left(\bmod m_{0}\right), \quad D \equiv-2\left(\bmod n_{0}\right)
$$

Since n_{0} is odd, the second congruence implies that n_{0} is prime to D. Hence n_{0}^{y} divides E. Also, the first congruence tells us that m_{0}^{y} divides D if m_{0} is odd. If m_{0} is even, then, since $2^{2 y-1}\left(m_{0} / 2\right)^{y} n_{0}^{y} b_{1}^{y}=D(E / 2)$ and $E / 2$ is prime to $m_{0} / 2$ by the first congruence, we observe that $\left(m_{0} / 2\right)^{y}$ divides $D / 2$. This proves the first part of the lemma. Similarly, we can obtain the desired congruences in the case where m is odd.

From now on, we assume that b_{1} has no prime factors congruent to 1 modulo 4 . By [4] we can assume that b_{1} is not a power of 2 . Take any odd prime factor of b_{1}, say p. Then p divides m or n. It suffices to show that $D \equiv 0(\bmod p)$ if $p \mid m$, and that $E \equiv 0(\bmod p)$ if $p \mid n$. Consider the case of $p \mid m$. Suppose that $D \not \equiv 0(\bmod p)$. Then $E \equiv 0(\bmod p)$. Since $E \equiv n^{2 Z}+n^{2 X}(\bmod p)$ and $\operatorname{gcd}(p, n)=1$, we see that

$$
n^{2|X-Z|} \equiv-1(\bmod p)
$$

This tells us that -1 is a quadratic residue modulo p, which contradicts our assumption that $p \equiv 3(\bmod 4)$. Hence the claim is proved. Similarly, we can show that $E \equiv 0(\bmod p)$ if $p \mid n$.

Lemma 3.2 The following congruences hold:

$$
\begin{array}{ll}
\text { if } m \text { is even, then } & X \equiv Z\left(\bmod b_{0} / 4\right) \\
\text { if } m \text { is odd, then } & X \equiv Z\left(\bmod b_{0} / 2\right)
\end{array}
$$

In particular, if $X \neq Z$, then $|X-Z| \geq(a+1) / 4$.
Proof Since $y>1$ and X is odd, we see from Lemma 3.1 that

$$
\begin{aligned}
D & \equiv n^{2 Z}-n^{2 X} \equiv 0\left(\bmod m_{0}^{2}\right) \\
E & \equiv m^{2 Z}-m^{2 X} \equiv 0\left(\bmod n_{0}^{2}\right)
\end{aligned}
$$

The first congruence together with (2.3) yields $\left(1-b_{0}\right)^{X} \equiv\left(1-b_{0}\right)^{Z}\left(\bmod m_{0}^{2}\right)$. Hence,

$$
b_{0} X \equiv b_{0} Z\left(\bmod m_{0}^{2}\right)
$$

Also, the second congruence together with (2.3) yields

$$
b_{0} X \equiv b_{0} Z\left(\bmod n_{0}^{2}\right)
$$

Since $\operatorname{gcd}\left(m_{0}, n_{0}\right)=1$ and $m_{0} n_{0}=b_{0} / 2$, we have

$$
b_{0} X \equiv b_{0} Z\left(\bmod b_{0}^{2} / 4\right)
$$

From (2.3) we see that b_{0} is divisible by 4 if m is even, and that b_{0} is exactly divisible by 2 if m is odd. It follows that $X \equiv Z\left(\bmod b_{0} / 4\right)$ if m is even, and $X \equiv Z\left(\bmod b_{0} / 2\right)$ if m is odd. The second assertion follows from (2.3).

The following lemma holds under the condition of Theorem 1.3 (cf. [2]). From now on, we assume the condition of Theorem 1.2 that b_{1} has no prime factors congruent to 1 modulo 4.

Lemma 3.3 Under the preceding assumption, y is even.
Proof First, we assume that m is even. By Lemma 3.1, we see that

$$
\begin{equation*}
\left(m^{2}+n^{2}\right)^{Z}=(D+E) / 2=2^{y-2} m^{y}+n^{y} . \tag{3.1}
\end{equation*}
$$

Taking (3.1) modulo m_{0}^{2}, we see from (2.4) that

$$
\begin{equation*}
n^{y} \equiv 1\left(\bmod m_{0}\right) \tag{3.2}
\end{equation*}
$$

Suppose that y is odd. We will observe that this leads to a contradiction. Congruences (2.4) and (3.2) together imply that $n \equiv 1\left(\bmod m_{0}\right)$. Putting $n=1+m_{0} h$ with a positive integer h, we see from (2.3) that

$$
\left(m+m_{0} h\right)\left(m / m_{0}-h\right)=2 h+2 n_{0}
$$

From this we see that the first factor in the left-hand side is a positive divisor of the right-hand side. Since $m>n \geq n_{0}$ and $m_{0} \geq 3$, we find that the second factor in the left-hand side has to be 1 ; that is,

$$
\begin{gather*}
m+m_{0} h=2 h+2 n_{0}, \tag{3.3}\\
m / m_{0}-h=1 . \tag{3.4}
\end{gather*}
$$

If $n_{0}<n$, then $m>n>m_{0} h \geq 3 h$ and $n_{0} \leq n / 3$, which contradicts equation (3.3). Hence $n_{0}=n$. Since $b_{1}=m / m_{0}=h+1$ by (3.4) and $n_{0}=n=1+m_{0} h$, we observe that

$$
m_{0} b_{1}=m=2 h+2\left(1+m_{0} h\right)-m_{0} h=2(h+1)+m_{0} h=2 b_{1}+m_{0}\left(b_{1}-1\right)
$$

so $m_{0}=2 b_{1}$. Therefore, we find that $(m, n)=\left(2 b_{1}^{2}, 2 b_{1}^{2}-2 b_{1}+1\right)$. We will consider the cases where b_{1} is even and b_{1} is odd separately.

Suppose that b_{1} is even. Then, $m \equiv 0\left(\bmod 2 m_{0}\right)$, which together with (2.3) yields $n^{2} \equiv 1\left(\bmod 2 m_{0}\right)$. By (3.1) we have $n^{y} \equiv 1\left(\bmod 2 m_{0}\right)$. Since y is odd, we obtain $n \equiv 1\left(\bmod 2 m_{0}\right)$. It follows from $m_{0}=2 b_{1}$ and $n=2 b_{1}^{2}-2 b_{1}+1$ that $b_{1} \equiv 1(\bmod 2)$, which contradicts the evenness of b_{1}.

Suppose that b_{1} is odd. Then $m \equiv 2(\bmod 4)$, so $c=m^{2}+n^{2} \equiv 5(\bmod 8)$. Taking $c^{Z}=2^{y-2} m^{y}+n^{y}$ modulo 8 , we find that $n \equiv 5(\bmod 8)$, since both $y(\geq 3)$ and Z are odd. This implies that $b_{1} \equiv 3(\bmod 4)$. Then $m+n \equiv 4 b_{1}^{2}-2 b_{1}+1 \equiv 7$ $(\bmod 8)$. Taking (1.1) modulo $m+n$, we find that $\left(-2 m^{2}\right)^{y} \equiv\left(2 m^{2}\right)^{2 Z}(\bmod m+n)$. This tells us that -2 is a quadratic residue modulo $m+n$, which contradicts $m+n \equiv 7$ $(\bmod 8)$. Therefore, y is even.

Second, we assume that n is even. Taking $\left(m^{2}+n^{2}\right)^{Z}=m^{y}+2^{y-2} n^{y}$ modulo n_{0}, we see from (2.4) that $m^{y} \equiv-1\left(\bmod n_{0}\right)$. If y is odd, then $m \equiv \pm 1\left(\bmod n_{0}\right)$, and hence $m^{2} \equiv 1\left(\bmod n_{0}\right)$, which contradicts $m^{2} \equiv-1\left(\bmod n_{0}\right)$ and $n_{0} \geq 3$. Therefore, y is even.

By Lemma 3.3, we can write $y=2 Y$ with a positive integer Y. Now we are ready to prove the theorems. Since $\left\{a^{X}, b^{Y}, c^{Z}\right\}$ forms a primitive Pythagorean triple, we can write

$$
a^{X}=k^{2}-l^{2}, \quad b^{Y}=2 k l, \quad c^{Z}=k^{2}+l^{2}
$$

where k and l are relatively prime positive integers of different parities with $k>l$. Since $b<c<a^{2}$ and $a^{X}<c^{Z}<b^{2 Y}$, we find that

$$
\begin{equation*}
|X-Z|<Z<2 Y \tag{3.5}
\end{equation*}
$$

Since $(k+l)(k-l)=a^{X}$ and $\operatorname{gcd}(k+l, k-l)=1$, we can write

$$
k+l=u^{X}, \quad k-l=v^{X}
$$

for some relatively prime positive odd integers u and v satisfying $u>v$ and $u v=a$. Then we see that

$$
b^{Y}=2 k l=\frac{u^{2 X}-v^{2 X}}{2}=\frac{u^{2}-v^{2}}{2} w,
$$

where $w=\left(u^{2 X}-v^{2 X}\right) /\left(u^{2}-v^{2}\right)$ is an odd integer, since u, v, and X are odd. It follows from the above equation that

$$
Y \nu_{2}(b)=\nu_{2}\left(u^{2}-v^{2}\right)-1=\nu_{2}(u \pm v)
$$

holds for the proper sign for which $u \pm v \equiv 0(\bmod 4)$, where ν_{2} is the 2-adic valuation normalized by $\nu_{2}(2)=1$. Since $u \pm v \leq u+v \leq u v+1=a+1$, we find that

$$
Y=\frac{\nu_{2}(u \pm v)}{\nu_{2}(b)} \leq \frac{\log (a+1)}{2 \log 2}
$$

It follows from (3.5) that

$$
|X-Z| \leq 2 Y-2 \leq \frac{\log (a+1)}{\log 2}-2
$$

Since the right-most number is less than $(a+1) / 4$, we can conclude that $X=Z$ by Lemma 3.2. Since X is odd, we see that

$$
b^{2 Y}=D E=c^{2 X}-a^{2 X}=b^{2} w^{\prime},
$$

where $w^{\prime}=\left(c^{2 X}-a^{2 X}\right) /\left(c^{2}-a^{2}\right)$ is an odd integer, since a, c, and X are odd. Hence, $\nu_{2}\left(b^{2 Y}\right)=\nu_{2}\left(b^{2}\right)$. This implies that $Y=1$, so $X=Z=1$ by (3.5). This completes the proof of the theorems for the case of $\epsilon=1$.

4 The Case $\epsilon=-1$

Let (x, y, z) be a solution of (1.1). By Lemma 2.1, we know that z is even. It suffices to show that both x and y are even. Indeed, if so, then we can prove that $x=y=z=2$ in a similar manner to the preceding section. We will consider the cases where m is even and where m is odd separately.

First, we assume that m is even. Reducing equation (1.1) modulo 4, we find that $(-1)^{x} \equiv 1(\bmod 4)$; that is, x is even. Then we define D and E as in the preceding section, and we can show the same assumptions as Lemma 3.1. Hence Theorem 1.3 follows from this. We assume the condition of Theorem 1.2. Since $(D, E)=$ $\left(2^{y-1} m^{y}, 2 n^{y}\right)$, taking $\left(m^{2}+n^{2}\right)^{Z}=2^{y-2} m^{y}+n^{y}$ modulo m_{0}, we see from (2.4) that
$n^{y} \equiv-1\left(\bmod m_{0}\right)$. If y is odd, then $n \equiv \pm 1\left(\bmod m_{0}\right)$ by (2.4), and hence $n^{2} \equiv 1$ $\left(\bmod m_{0}\right)$, which contradicts (2.4) and $m_{0} \geq 3$. Therefore, y is even.

Second, we assume that m is odd. We write

$$
m=2^{\beta} j+e, \quad n=2^{\alpha} i
$$

where α, β, i, j are positive integers with i, j odd, and with $\alpha \geq 1, \beta \geq 2$ and $e \in\{ \pm 1\}$. In order to show the evenness of x, we use the following lemma (cf. [9, Lemma 2.1]).

Lemma 4.1 With the above notation, we assume that $2 \alpha \neq \beta+1$. Let (x, y, z) be a solution of (1.1). If $y>1$, then $x \equiv z(\bmod 2)$.

We claim that $2 \alpha \neq \beta+1$. We can assume that $\alpha \geq 2$. By equation (2.3), we have

$$
\begin{aligned}
\beta+1 & =\nu_{2}\left(m^{2}-1\right)=\nu_{2}\left(n^{2}+2 m_{0} n_{0}\right)=\nu_{2}\left(2 n_{0}\right)+\nu_{2}\left(\frac{n^{2}}{2 n_{0}}+m_{0}\right) \\
& =\nu_{2}\left(n_{0}\right)+1 \leq \nu_{2}(n)+1=\alpha+1<2 \alpha
\end{aligned}
$$

Hence the claim is proved. Next, we show that $y>1$. Suppose that $y=1$. We will show that this leads to a contradiction. Equation (1.1) is now

$$
\begin{equation*}
a^{x}+b=c^{z} . \tag{4.1}
\end{equation*}
$$

This is a Pillai equation. We can easily show that $x \geq 4$ and $x>z>1$. Also, x and z are relatively prime. Indeed, if d is a common divisor of them, then we see from (4.1) that b is divisible by $\left(c^{z / d}\right)^{d-1}+a^{x / d}\left(c^{z / d}\right)^{d-2}+\cdots+\left(a^{x / d}\right)^{d-1}$, which is greater than $c(>b)$ if $d>1$.

Since

$$
z \log c=\log \left(a^{x}+b\right)=x \log a+\log \left(1+\frac{b}{a^{x}}\right)<x \log a+\frac{b}{a^{x}}
$$

we see that

$$
\begin{equation*}
z \log c-x \log a<\frac{b}{a^{x}} \tag{4.2}
\end{equation*}
$$

The left-hand side of (4.2) is a nonzero linear form in two logarithms with $x=$ $\max \{x, z\}$. Baker's theory gives us lower estimates of its absolute value such as $1 / x^{\mathcal{C}}$, where \mathcal{C} is a positive constant depending only on a and c. In order to observe this we prepare some notation as follows.

For an algebraic number α of degree d over the field of rational numbers \mathbb{O}, we define as usual the absolute logarithmic height of α by

$$
\mathrm{h}(\alpha)=\frac{1}{d}\left(\log c_{0}+\sum_{i=1}^{d} \log \max \left\{1,\left|\alpha^{(i)}\right|\right\}\right),
$$

where $c_{0}(>0)$ is the leading coefficient of the minimal polynomial of α over the ring of rational integers, and $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(d)}$ are the conjugates of α in the field of complex numbers.

Let α_{1} and α_{2} be two nonzero algebraic numbers with $\left|\alpha_{1}\right| \geq 1$ and $\left|\alpha_{2}\right| \geq 1$, and let $\log \alpha_{1}$ and $\log \alpha_{2}$ be any determination of their logarithms. We consider the linear
form in two logarithms

$$
\Lambda=\beta_{2} \log \alpha_{2}-\beta_{1} \log \alpha_{1}
$$

where β_{1} and β_{2} are positive integers. Put

$$
D=\left[\mathbb{O}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{O}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{R}\right],
$$

where we denote by \mathbb{R} the field of real numbers. Define

$$
b^{\prime}=\frac{\beta_{1}}{D \log A_{2}}+\frac{\beta_{2}}{D \log A_{1}}
$$

where $A_{1}>1$ and $A_{2}>1$ are real numbers such that

$$
\log A_{i} \geq \max \left\{\mathrm{h}\left(\alpha_{i}\right),\left|\log \alpha_{i}\right| / D, 1 / D\right\} \quad(i=1,2)
$$

We choose to use a result due to Laurent [6, Corollary 2; $\left.\left(m, C_{2}\right)=(10,25.2)\right]$.
Proposition 4.2 With the above notation, suppose that $\alpha_{1}, \alpha_{2}, \log \alpha_{1}, \log \alpha_{2}$ are real and positive. If α_{1} and α_{2} are multiplicatively independent, then we have the lower estimate

$$
\log |\Lambda| \geq-25.2 D^{4}\left(\max \left\{\log b^{\prime}+0.38,10\right\}\right)^{2} \log A_{1} \log A_{2} .
$$

In order to apply Proposition 4.2 to the case of $\Lambda=z \log c-x \log a(>0)$, we set $\left(\alpha_{1}, \alpha_{2}\right)=(a, c)$ and $\left(\beta_{1}, \beta_{2}\right)=(x, z)$. Then $D=1, \mathrm{~h}(a)=\log a$, and $\mathrm{h}(c)=\log c$. We can take $A_{1}=a$ and $A_{2}=c$. Proposition 4.2 tells us that

$$
\log \Lambda>-25.2\left(\max \left\{\log \left(\frac{x}{\log c}+\frac{z}{\log a}\right)+0.38,10\right\}\right)^{2} \log a \log c
$$

Combining this with (4.2), we find that

$$
\log b-x \log a>-25.2\left(\max \left\{\log \left(\frac{x}{\log c}+\frac{z}{\log a}\right)+0.38,10\right\}\right)^{2} \log a \log c
$$

or

$$
\frac{x}{\log c}<\frac{\log b}{\log a \log c}+25.2\left(\max \left\{\log \left(\frac{x}{\log c}+\frac{z}{\log a}\right)+0.38,10\right\}\right)^{2}
$$

Since $a \geq 3, b<c$ and $c^{z}=a^{x}+b<a^{x}+a^{2} \leq 2 a^{x}$, we see that

$$
\frac{x}{\log c}<1+25.2\left(\max \left\{\log \left(\frac{2 x}{\log c}+\frac{\log 2}{\log c}\right)+0.38,10\right\}\right)^{2} .
$$

This implies that

$$
\begin{equation*}
x<2521 \log c . \tag{4.3}
\end{equation*}
$$

Then, since

$$
x-z<x-\frac{\log a}{\log c} x=\frac{\log (c / a)}{\log c} x
$$

we have

$$
\begin{equation*}
x-z<2521 \log (c / a) \tag{4.4}
\end{equation*}
$$

On the other hand, by taking equation (4.1) modulo m_{0}^{2}, we find that $\left(-n^{2}\right)^{x}+$ $b \equiv n^{2 z}\left(\bmod m_{0}^{2}\right)$, which together with (2.3) yields $b_{0} x+b \equiv b_{0} z\left(\bmod m_{0}^{2}\right)$.

Also, taking equation (4.1) modulo n_{0}^{2}, we have $b_{0} x+b \equiv b_{0} z\left(\bmod n_{0}^{2}\right)$. Since $\operatorname{gcd}\left(m_{0}, n_{0}\right)=1$ and $m_{0} n_{0}=b_{0} / 2$, we have

$$
b_{0} x+b \equiv b_{0} z\left(\bmod b_{0}^{2} / 4\right)
$$

Since $x>z$ and $b_{0}=a-1$, it follows from the above congruence that

$$
x-z \geq \frac{b_{0}}{4}-\frac{b}{b_{0}}=\frac{a-1}{4}-\frac{b}{a-1} .
$$

Here, we can assume that $m \geq n+7$. Since, by [2], if $m-n>1$ (by [1]) has a divisor congruent to ± 3 modulo 8 , then y is even. Since

$$
\frac{b}{a}=\frac{2 m n}{m^{2}-n^{2}} \leq \frac{2 m(m-7)}{14 m-49}
$$

we see that (4.4) gives

$$
\begin{aligned}
\frac{7 m-25}{2} \leq \frac{a-1}{4} & <2521 \log (c / a)+\frac{b}{a-1} \\
& =\frac{2521}{2} \log \left(1+(b / a)^{2}\right)+\frac{b / a}{1-1 / a} \\
& \leq \frac{2521}{2} \log \left(1+\left(\frac{2 m(m-7)}{14 m-49}\right)^{2}\right)+\frac{m(m-7)}{7 m-25}
\end{aligned}
$$

This implies that $m \leq 4926$. On the other hand, since

$$
\frac{b}{a^{x}} \leq \frac{b}{a^{4}} \leq \frac{2 m(m-7)}{(14 m-49)^{4}}<\frac{1}{5042}
$$

we see from (4.2) and (4.3) that

$$
\left|\frac{\log a}{\log c}-\frac{z}{x}\right|<\frac{b}{x a^{x} \log c}<\frac{2521\left(b / a^{x}\right)}{x^{2}}<\frac{1}{2 x^{2}}
$$

Therefore, $\frac{z}{x}$ is a convergent in the simple continued fraction expansion of $\frac{\log a}{\log c}$. Hence we can write $\frac{z}{x}=\frac{p_{s}}{q_{s}}$, which is the s-th such convergent. Since $\operatorname{gcd}(x, z)=1$, we see that $x=q_{s}$ and $z=p_{s}$. Remark that $q_{s} \geq 4$. By a well-known fact on the continued fraction expansion, we find that

$$
\left|\frac{\log a}{\log c}-\frac{p_{s}}{q_{s}}\right|>\frac{1}{\left(\alpha_{s+1}+2\right) q_{s}^{2}},
$$

where α_{s+1} is the $(s+1)$-th partial quotient to $\frac{\log a}{\log c}$. It follows that

$$
\alpha_{s+1}+2>\frac{x a^{x} \log c}{b q_{s}^{2}}=\frac{a^{q_{s}} \log c}{b q_{s}} .
$$

For each of the pairs (m, n) under consideration, we can numerically check that the inequality

$$
\alpha_{s+1}+2>\frac{a^{q_{s}} \log c}{b q_{s}}
$$

does not hold for any s satisfying $4 \leq q_{s}<2521 \log c$. This is a contradiction. Therefore, $y>1$.

It follows from Lemma 4.1 that x is even. It remains for us to show the evenness of y. We assume the condition of Theorem 1.2. As in the preceding section, we
define D and E, and we can show that $(D, E)=\left(2 m^{y}, 2^{y-1} n^{y}\right)$. Taking $\left(m^{2}+n^{2}\right)^{Z}=$ $m^{y}+2^{y-2} n^{y}$ modulo n_{0}, we see from (2.4) that $m^{y} \equiv 1\left(\bmod n_{0}\right)$. Suppose that y is odd. We will show that this leads to a contradiction. Congruences (2.4) and (3.2) together imply that $m \equiv 1\left(\bmod n_{0}\right)$. Putting $m=1+n_{0} h$ with a positive integer h, we see from (2.3) that

$$
\left(n_{0} h+n\right)\left(h-n / n_{0}\right)=2\left(m_{0}-h\right)
$$

If $m_{0}=h$, then $h=n / n_{0}$, so $m_{0}=n / n_{0}$, which is absurd, since $\operatorname{gcd}(m, n)=1$ and $m_{0}>1$. Hence the value of the right-hand side is nonzero. Since $h \leq n / n_{0}$ implies $m=1+n_{0} h \leq 1+n$, we have $h \leq n / n_{0}$ and $m_{0}>h$. Hence we see that the second factor in the left-hand side has to be 1 ; that is,

$$
\begin{gather*}
n_{0} h+n=2\left(m_{0}-h\right), \tag{4.5}\\
h-n / n_{0}=1 . \tag{4.6}
\end{gather*}
$$

If $m_{0}<m$, then $m_{0} \leq m / 3$, so equation (4.5) implies $m \leq 2\left(m_{0}-h\right)<2 m_{0} \leq$ $(2 / 3) m$, which is a contradiction. Hence, $m_{0}=m$. Using this together with (4.6), similarly to Lemma 3.3, we can observe that $(m, n)=\left(2 b_{1}^{2}+2 b_{1}+1,2 b_{1}^{2}\right)$, which yields a contradiction. To sum up, we have completed the proof of the theorems for the case $\epsilon=-1$.

5 Examples

In this final section, we will explain how to find examples of m and n satisfying the assumptions of our results. As we observed in Section 2, m and n satisfy Pell equation (2.2) with $t=1$; that is,

$$
\begin{equation*}
U^{2}-\left(b_{1}^{2}+1\right) V^{2}=2 \epsilon b_{1} \tag{5.1}
\end{equation*}
$$

where $U=m+n-b_{1}(m-n)$ and $V=m-n$. It is clear that (5.1) has the two classes of solutions

$$
\begin{equation*}
U+V \sqrt{b_{1}^{2}+1}=\left(U_{0}+V_{0} \sqrt{b_{1}^{2}+1}\right)\left(2 b_{1}^{2}+1+2 b_{1} \sqrt{b_{1}^{2}+1}\right)^{l} \tag{5.2}
\end{equation*}
$$

with nonnegative integer l, where

$$
\left(U_{0}, V_{0}\right)= \begin{cases}\left(b_{1}+1, \pm 1\right) & \text { if } \epsilon=1 \tag{5.3}\\ \left(\pm\left(b_{1}-1\right), 1\right) & \text { if } \epsilon=-1\end{cases}
$$

Now Theorems 1.2 and 1.3 immediately imply the following.
Corollary 5.1 Conjecture 1.1 is true if one of the following holds:
(i) $\quad b_{1}$ has no prime factors congruent to 1 modulo 4 , and U, V satisfy (5.2) with a positive integer l and with $\left(U_{0}, V_{0}\right)$ satisfying (5.3).
(ii) Either $b_{1} \equiv 2(\bmod 4)$ or $b_{1} \equiv-\epsilon(\bmod 4)$, and U, V satisfy (5.2) with a positive odd integer l and with $\left(U_{0}, V_{0}\right)$ satisfying (5.3).

Proof It is obvious from Theorem 1.2 that if (i) holds, then Conjecture 1.1 is true. Consider the case of (ii). By (5.2), we have $V=v_{l}$, where

$$
v_{0}=V_{0}, v_{1}=\left(2 b_{1}^{2}+1\right) V_{0}+2 b_{1} U_{0}, v_{l+2}=2\left(2 b_{1}^{2}+1\right) v_{l+1}-v_{l} .
$$

Equation (5.3) shows that if $b_{1} \equiv 2(\bmod 4)$ and l is odd, then $v_{l} \equiv V_{0}+4(\bmod 8)$, in other words, $m-n=V=v_{l} \equiv \pm 5(\bmod 8)$. Similarly, if $b_{1} \equiv-\epsilon(\bmod 4)$ and l is odd, then we see that $m-n=v_{l} \equiv 3 V_{0} \equiv \pm 3(\bmod 8)$. In any case, one can conclude from Theorem 1.3 that Conjecture 1.1 is true.

The examples in the first section are given by setting
$\left(\epsilon, U_{0}, V_{0}, l\right)=\left(1, b_{1}+1,-1,1\right),\left(1, b_{1}+1,1,1\right),\left(-1,1-b_{1}, 1,1\right),\left(-1, b_{1}-1,1,1\right)$.
Acknowledgment The author would like to thank the anonymous referee for helpful comments.

References

[1] V. A. Dem'janenko, On Jeśmanowicz' problem for Pythagorean numbers. (Russian) Izv. Vyssh. Ucebn. Zaved. Matematika 1965, no. 5(48), 52-56.
[2] M. Deng and G. L. Cohen, A note on a conjecture of Jeśmanowicz. Colloq. Math. 86(2000), no. 1, 25-30.
[3] Y. Fujita, The non-extensibility of $D(4 k)$-triples $\left\{1,4 k(k-1), 4 k^{2}+1\right\}$ with $|k|$ prime. Glas. Mat. Ser. III 41(61)(2006), no. 2, 205-216. http://dx.doi.org/10.3336/gm.41.2.03
[4] Y. Fujita and T. Miyazaki, Jeśmanowicz' conjecture with congruence relations. Colloq. Math. 128(2012), no. 2, 211-222. http://dx.doi.org/10.4064/cm128-2-6
[5] L. Jeśmanowicz, Several remarks on Pythagorean numbers. (Polish) Wiadom. Mat. 1(1955/1956), 196-202.
[6] M. Laurent, Linear forms in two logarithms and interpolation determinants II. Acta Arith. 133(2008), no. 4, 325-348. http://dx.doi.org/10.4064/aa133-4-3
[7] W. T. Lu, On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$. (Chinese) Acta Sci. Natur. Univ. Szechuan 2(1959), 39-42.
[8] T. Miyazaki, Jeśmanowicz' conjecture on exponential Diophantine equations. Funct. Approx. Comment. Math. 45(2011), part 2, 207-229. http://dx.doi.org/10.7169/facm/1323705814
[9] , Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples. J. Number Theory 133(2013), no. 2, 583-595. http://dx.doi.org/10.1016/j.jnt.2012.08.018
[10] W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$. (Polish) Wiadom. Mat. 1(1955/1956), 194-195.
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp
Department of Mathematics, College of Science and Technology, Nihon University 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
e-mail: miyazaki-takafumi@math.cst.nihon-u.ac.jp

[^0]: Received by the editors January 18, 2013; revised February 4, 2014.
 Published electronically April 28, 2014.
 The first author is partially supported by JSPS KAKENHI Grant Number 25400025.
 The second author is supported by JSPS KAKENHI Grant-in-Aid for JSPS Fellows $25 \cdot 484$.
 AMS subject classification: 11D61, 11D09.
 Keywords: exponential Diophantine equations, Pythagorean triples, Pell equations.

