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Jeśmanowicz’ Conjecture with
Congruence Relations. II

Yasutsugu Fujita and Takafumi Miyazaki

Abstract. Let a, b, and c be primitive Pythagorean numbers such that a2 + b2 = c2 with b even. In this
paper, we show that if b0 ≡ ε (mod a) with ε ∈ {±1} for certain positive divisors b0 of b, then the
Diophantine equation ax + by = cz has only the positive solution (x, y, z) = (2, 2, 2).

1 Introduction

Let a, b, and c be relatively prime integers with min{a, b, c} > 1. Then we consider
the exponential Diophantine equation

ax + by = cz(1.1)

where x, y, and z are positive integers. There are many works on equation (1.1)
in the literature. Almost all of them concern the case where a, b, and c also satisfy
ap + bq = cr for some other positive integers p, q, and r; in particular, the case p =
q = r = 2 has interested many researchers. In 1956, Sierpiński [10] considered the
case of (a, b, c) = (3, 4, 5), and he showed that equation (1.1) has only the solution
(x, y, z) = (2, 2, 2). In the same year, Jeśmanowicz [5] studied some of the cases
where a, b, and c are primitive Pythagorean numbers; that is, a, b and c are relatively
prime with a2 + b2 = c2, and he obtained the same conclusion as Sierpiński. Also,
Jeśmanowicz proposed the following problem.

Conjecture 1.1 Let a, b, and c be primitive Pythagorean numbers such that
a2 + b2 = c2. Then Diophantine equation (1.1) has only the solution (x, y, z) =
(2, 2, 2).

This is an unsolved problem in spite of many studies. It is known that if a, b, and
c are primitive Pythagorean numbers such that a2 + b2 = c2 with b even, then a, b,
and c are parameterized as follows:

a = m2 − n2, b = 2mn, c = m2 + n2,

where m and n are relatively prime positive integers of different parities with m > n.
In what follows, we consider the above expressions.
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After the work of Jeśmanowicz, Lu [7] proved that Conjecture 1.1 is true if n = 1.
Dem’janenko [1] showed that Conjecture 1.1 is true if c = b + 1, which is equivalent
to m = n + 1. Their results play important roles in other known results. The second
author [9] generalized their results by proving the conjecture to be true if a ≡ ±1
(mod b) or c ≡ 1 (mod b). Recently, the authors [4] generalized a result of [9] and
obtained related results. The aim of this paper is to give further related results in this
direction.

Throughout this paper, we assume that

(1.2) b0 ≡ ε (mod a),

where b0 > 1 is a divisor of b and ε ∈ {±1}. We write b1 := b/b0. The first main
result is the following theorem.

Theorem 1.2 If b1 has no prime factors congruent to 1 modulo 4, then Conjecture 1.1
is true.

This is a generalization of [4, Theorem 1.2] concerning the case where b is even,
corresponding to b1 = 2r with nonnegative integer r. We remark that the condition
in the statement of Theorem 1.2 is similar to those due to Deng and Cohen [2]. We
also prove the following result.

Theorem 1.3 Conjecture 1.1 is true if one of the following holds:

(i) m− n has a divisor congruent to 3 or 5 modulo 8;
(ii) m + n has a divisor congruent to 5 or 7 modulo 8.

In particular, if a has a prime factor congruent to 5 modulo 8, then Conjecture 1.1 is
true.

Some examples of the theorems are given as follows.

ε = 1; m = 2b 2
1 , n = 2b 2

1 − 2b1 + 1,

ε = 1; m = 4b 3
1 + 4b 2

1 + 3b1 + 1, n = 4b 3
1 + b1,

ε = −1; m = 2b 2
1 + 2b1 + 1, n = 2b 2

1 ,

ε = −1; m = 4b 3
1 + b1, n = 4b 3

1 − 4b 2
1 + 3b1 − 1,

where we can take b1 as any positive integer such that b1 has no prime factors con-
gruent to 1 modulo 4, or b1 ≡ 2 (mod 4), or b1 ≡ −ε (mod 4). More generally,
one can construct various parametric families of m and n satisfying the assumptions
in Theorems 1.2 or 1.3 (see Section 5).

2 Preliminary Considerations

From (1.2) we can write

(2.1) b = εb1 + b1at
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with some nonnegative integer t . Since b0 > 1, we find that b1 < b, so t ≥ 1. Putting
M = m + n and N = m− n, we see from (2.1) that

(M − b1Nt)2 −
(

(b1t)2 + 1
)

N2 = 2εb1.(2.2)

If t ≥ 2, then the Pell equation U 2− ((b1t)2 + 1)V 2 = 2εb1 has no primitive solution
(cf., e.g., [3, Lemma 2.3]), and Diophantine equation (2.2) has no solution, since
gcd(M,N) = 1. Hence, t = 1 and b0 = ε + a. Since b0 is even, we can write

m2 − n2 = 2m0n0 − ε,(2.3)

where m0 and n0 are the positive divisors of m and n, respectively, such that m0n0 =
b0/2.

We can assume that n ≥ 2 by [7] and n ≤ m − 3 by [1]. Suppose that
min{m0, n0} ≤ 2. Then m0n0 ≤ 2 max{m0, n0} ≤ 2m. Since m2 − n2 ≥ m2 −
(m− 3)2 = 6m−9, we find from (2.3) that 6m−9 ≤ m2−n2 = 2m0n0−ε ≤ 4m+1,
which implies that m ≤ 5, hence (m, n) = (5, 2), particularly, a = b + 1, where
Conjecture 1.1 is known to be true by [9, Corollary 1]. Thus, we can assume that
m0, n0 ≥ 3. By (2.3) we have the congruences

m2 ≡ −ε (mod n0) and n2 ≡ ε (mod m0).(2.4)

Lemma 2.1 Let (x, y, z) be a solution of (1.1). If ε = 1, then x and z are even. If
ε = −1, then z is even.

Proof Equation (1.1) implies that

(−n2)x ≡ (n2)z (mod m) and (m2)x ≡ (m2)z (mod n).

The assertion now follows from (2.4) and m0, n0 ≥ 3.

In the following sections, we consider the cases of ε = 1 and ε = −1 separately.

3 The Case ε = 1

Let us consider the case ε = 1. Let (x, y, z) be a solution of (1.1). By Lemma 2.1, we
can write x = 2X and z = 2Z with positive integers X and Z. By [8, Theorem 1.5],
we know that both X and Z are odd. We write (2mn)y = DE, where

D = (m2 + n2)Z + (m2 − n2)X, E = (m2 + n2)Z − (m2 − n2)X.

It is easy to see that gcd(D, E) = 2 and y > 1. Observe that D ≡ 0 (mod 4) if m is
even, and E ≡ 0 (mod 4) if m is odd.

We prepare several lemmas.

Lemma 3.1 The following congruences hold:

if m is even, then D ≡ 0 (mod 2y−1m y
0 ) and E ≡ 0 (mod 2n y

0 ),

if m is odd, then D ≡ 0 (mod 2m y
0 ) and E ≡ 0 (mod 2y−1n y

0 ).
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Moreover, if b1 has no prime factors congruent to 1 modulo 4, then

(D, E) =

{
(2y−1my , 2ny) if m is even,

(2my , 2y−1ny) if m is odd.

Proof We assume that m is even. By (2.4), we see that

E ≡ 2 (mod m0), D ≡ −2 (mod n0).

Since n0 is odd, the second congruence implies that n0 is prime to D. Hence n y
0

divides E. Also, the first congruence tells us that m y
0 divides D if m0 is odd. If m0 is

even, then, since 22y−1(m0/2)yn y
0 b y

1 = D(E/2) and E/2 is prime to m0/2 by the first
congruence, we observe that (m0/2)y divides D/2. This proves the first part of the
lemma. Similarly, we can obtain the desired congruences in the case where m is odd.

From now on, we assume that b1 has no prime factors congruent to 1 modulo 4.
By [4] we can assume that b1 is not a power of 2. Take any odd prime factor of b1, say
p. Then p divides m or n. It suffices to show that D ≡ 0 (mod p) if p | m, and that
E ≡ 0 (mod p) if p | n. Consider the case of p | m. Suppose that D 6≡ 0 (mod p).
Then E ≡ 0 (mod p). Since E ≡ n2Z + n2X (mod p) and gcd(p, n) = 1, we see that

n2|X−Z| ≡ −1 (mod p).

This tells us that−1 is a quadratic residue modulo p, which contradicts our assump-
tion that p ≡ 3 (mod 4). Hence the claim is proved. Similarly, we can show that
E ≡ 0 (mod p) if p | n.

Lemma 3.2 The following congruences hold:

if m is even, then X ≡ Z (mod b0/4),

if m is odd, then X ≡ Z (mod b0/2).

In particular, if X 6= Z, then |X − Z| ≥ (a + 1)/4.

Proof Since y > 1 and X is odd, we see from Lemma 3.1 that

D ≡ n2Z − n2X ≡ 0 (mod m 2
0 ),

E ≡ m2Z −m2X ≡ 0 (mod n 2
0 ).

The first congruence together with (2.3) yields (1 − b0)X ≡ (1 − b0)Z (mod m 2
0 ).

Hence,
b0X ≡ b0Z (mod m 2

0 ).

Also, the second congruence together with (2.3) yields

b0X ≡ b0Z (mod n 2
0 ).

Since gcd(m0, n0) = 1 and m0n0 = b0/2, we have

b0X ≡ b0Z (mod b 2
0 /4).

From (2.3) we see that b0 is divisible by 4 if m is even, and that b0 is exactly divisible by
2 if m is odd. It follows that X ≡ Z (mod b0/4) if m is even, and X ≡ Z (mod b0/2)
if m is odd. The second assertion follows from (2.3).
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The following lemma holds under the condition of Theorem 1.3 (cf. [2]). From
now on, we assume the condition of Theorem 1.2 that b1 has no prime factors con-
gruent to 1 modulo 4.

Lemma 3.3 Under the preceding assumption, y is even.

Proof First, we assume that m is even. By Lemma 3.1, we see that

(m2 + n2)Z = (D + E)/2 = 2y−2my + ny .(3.1)

Taking (3.1) modulo m 2
0 , we see from (2.4) that

ny ≡ 1 (mod m0).(3.2)

Suppose that y is odd. We will observe that this leads to a contradiction. Congruences
(2.4) and (3.2) together imply that n ≡ 1 (mod m0). Putting n = 1 + m0h with a
positive integer h, we see from (2.3) that

(m + m0h)(m/m0 − h) = 2h + 2n0.

From this we see that the first factor in the left-hand side is a positive divisor of the
right-hand side. Since m > n ≥ n0 and m0 ≥ 3, we find that the second factor in the
left-hand side has to be 1; that is,

m + m0h = 2h + 2n0,(3.3)

m/m0 − h = 1.(3.4)

If n0 < n, then m > n > m0h ≥ 3h and n0 ≤ n/3, which contradicts equation (3.3).
Hence n0 = n. Since b1 = m/m0 = h + 1 by (3.4) and n0 = n = 1 + m0h, we observe
that

m0b1 = m = 2h + 2(1 + m0h)−m0h = 2(h + 1) + m0h = 2b1 + m0(b1 − 1),

so m0 = 2b1. Therefore, we find that (m, n) = (2b 2
1 , 2b 2

1 −2b1 + 1). We will consider
the cases where b1 is even and b1 is odd separately.

Suppose that b1 is even. Then, m ≡ 0 (mod 2m0), which together with (2.3)
yields n2 ≡ 1 (mod 2m0). By (3.1) we have ny ≡ 1 (mod 2m0). Since y is odd, we
obtain n ≡ 1 (mod 2m0). It follows from m0 = 2b1 and n = 2b2

1 − 2b1 + 1 that
b1 ≡ 1 (mod 2), which contradicts the evenness of b1.

Suppose that b1 is odd. Then m ≡ 2 (mod 4), so c = m2 + n2 ≡ 5 (mod 8).
Taking cZ = 2y−2my + ny modulo 8, we find that n ≡ 5 (mod 8), since both y (≥ 3)
and Z are odd. This implies that b1 ≡ 3 (mod 4). Then m + n ≡ 4b 2

1 − 2b1 + 1 ≡ 7
(mod 8). Taking (1.1) modulo m+n, we find that (−2m2)y ≡ (2m2)2Z (mod m+n).
This tells us that−2 is a quadratic residue modulo m+n, which contradicts m+n ≡ 7
(mod 8). Therefore, y is even.

Second, we assume that n is even. Taking (m2 + n2)Z = my + 2y−2ny modulo n0,
we see from (2.4) that my ≡ −1 (mod n0). If y is odd, then m ≡ ±1 (mod n0),
and hence m2 ≡ 1 (mod n0), which contradicts m2 ≡ −1 (mod n0) and n0 ≥ 3.
Therefore, y is even.
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By Lemma 3.3, we can write y = 2Y with a positive integer Y . Now we are ready
to prove the theorems. Since {aX, bY , cZ} forms a primitive Pythagorean triple, we
can write

aX = k2 − l2, bY = 2kl, cZ = k2 + l2,

where k and l are relatively prime positive integers of different parities with k > l.
Since b < c < a2 and aX < cZ < b2Y , we find that

|X − Z| < Z < 2Y.(3.5)

Since (k + l)(k− l) = aX and gcd(k + l, k− l) = 1, we can write

k + l = uX, k− l = vX

for some relatively prime positive odd integers u and v satisfying u > v and uv = a.
Then we see that

bY = 2kl =
u2X − v2X

2
=

u2 − v2

2
w,

where w = (u2X − v2X)/(u2 − v2) is an odd integer, since u, v, and X are odd. It
follows from the above equation that

Y ν2(b) = ν2(u2 − v2)− 1 = ν2(u± v)

holds for the proper sign for which u ± v ≡ 0 (mod 4), where ν2 is the 2-adic
valuation normalized by ν2(2) = 1. Since u ± v ≤ u + v ≤ uv + 1 = a + 1, we find
that

Y =
ν2(u± v)

ν2(b)
≤ log(a + 1)

2 log 2
.

It follows from (3.5) that

|X − Z| ≤ 2Y − 2 ≤ log(a + 1)

log 2
− 2.

Since the right-most number is less than (a + 1)/4, we can conclude that X = Z by
Lemma 3.2. Since X is odd, we see that

b2Y = DE = c2X − a2X = b2w′,

where w′ = (c2X − a2X)/(c2 − a2) is an odd integer, since a, c, and X are odd. Hence,
ν2(b2Y ) = ν2(b2). This implies that Y = 1, so X = Z = 1 by (3.5). This completes
the proof of the theorems for the case of ε = 1.

4 The Case ε = −1

Let (x, y, z) be a solution of (1.1). By Lemma 2.1, we know that z is even. It suffices to
show that both x and y are even. Indeed, if so, then we can prove that x = y = z = 2
in a similar manner to the preceding section. We will consider the cases where m is
even and where m is odd separately.

First, we assume that m is even. Reducing equation (1.1) modulo 4, we find that
(−1)x ≡ 1 (mod 4); that is, x is even. Then we define D and E as in the preceding
section, and we can show the same assumptions as Lemma 3.1. Hence Theorem
1.3 follows from this. We assume the condition of Theorem 1.2. Since (D, E) =
(2y−1my , 2ny), taking (m2 + n2)Z = 2y−2my + ny modulo m0, we see from (2.4) that
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ny ≡ −1 (mod m0). If y is odd, then n ≡ ±1 (mod m0) by (2.4), and hence n2 ≡ 1
(mod m0), which contradicts (2.4) and m0 ≥ 3. Therefore, y is even.

Second, we assume that m is odd. We write

m = 2β j + e, n = 2αi,

where α, β, i, j are positive integers with i, j odd, and with α ≥ 1, β ≥ 2 and
e ∈ {±1}. In order to show the evenness of x, we use the following lemma (cf. [9,
Lemma 2.1]).

Lemma 4.1 With the above notation, we assume that 2α 6= β + 1. Let (x, y, z) be a
solution of (1.1). If y > 1, then x ≡ z (mod 2).

We claim that 2α 6= β + 1. We can assume that α ≥ 2. By equation (2.3), we have

β + 1 = ν2(m2 − 1) = ν2( n2 + 2m0n0 ) = ν2(2n0) + ν2

( n2

2n0
+ m0

)
= ν2(n0) + 1 ≤ ν2(n) + 1 = α + 1 < 2α.

Hence the claim is proved. Next, we show that y > 1. Suppose that y = 1. We will
show that this leads to a contradiction. Equation (1.1) is now

(4.1) ax + b = cz.

This is a Pillai equation. We can easily show that x ≥ 4 and x > z > 1. Also, x and z
are relatively prime. Indeed, if d is a common divisor of them, then we see from (4.1)
that b is divisible by (cz/d)d−1 + ax/d(cz/d)d−2 + · · · + (ax/d)d−1, which is greater than
c (> b) if d > 1.

Since

z log c = log(ax + b) = x log a + log
(

1 +
b

ax

)
< x log a +

b

ax
,

we see that

(4.2) z log c − x log a <
b

ax
.

The left-hand side of (4.2) is a nonzero linear form in two logarithms with x =
max{x, z}. Baker’s theory gives us lower estimates of its absolute value such as 1/xC,
where C is a positive constant depending only on a and c. In order to observe this we
prepare some notation as follows.

For an algebraic number α of degree d over the field of rational numbers Q , we
define as usual the absolute logarithmic height of α by

h(α) =
1

d

(
log c0 +

d∑
i=1

log max
{

1, |α(i)|
})

,

where c0 (> 0) is the leading coefficient of the minimal polynomial of α over the
ring of rational integers, and α(1), α(2), . . . , α(d) are the conjugates of α in the field of
complex numbers.

Let α1 and α2 be two nonzero algebraic numbers with |α1| ≥ 1 and |α2| ≥ 1, and
let logα1 and logα2 be any determination of their logarithms. We consider the linear
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form in two logarithms
Λ = β2 logα2 − β1 logα1,

where β1 and β2 are positive integers. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R],

where we denote by R the field of real numbers. Define

b′ =
β1

D log A2
+

β2

D log A1
,

where A1 > 1 and A2 > 1 are real numbers such that

log Ai ≥ max
{

h(αi), | logαi |/D, 1/D
}

(i = 1, 2).

We choose to use a result due to Laurent [6, Corollary 2; (m,C2) = (10, 25.2)].

Proposition 4.2 With the above notation, suppose that α1, α2, logα1, logα2 are real
and positive. If α1 and α2 are multiplicatively independent, then we have the lower
estimate

log |Λ| ≥ −25.2 D4
(

max{log b′ + 0.38, 10}
)2

log A1 log A2.

In order to apply Proposition 4.2 to the case of Λ = z log c − x log a (> 0), we set
(α1, α2) = (a, c) and (β1, β2) = (x, z). Then D = 1, h(a) = log a, and h(c) = log c.
We can take A1 = a and A2 = c. Proposition 4.2 tells us that

logΛ > −25.2
(

max
{

log
( x

log c
+

z

log a

)
+ 0.38, 10

})2
log a log c.

Combining this with (4.2), we find that

log b− x log a > −25.2
(

max
{

log
( x

log c
+

z

log a

)
+ 0.38, 10

})2
log a log c,

or
x

log c
<

log b

log a log c
+ 25.2

(
max
{

log
( x

log c
+

z

log a

)
+ 0.38, 10

})2
.

Since a ≥ 3, b < c and cz = ax + b < ax + a2 ≤ 2ax, we see that

x

log c
< 1 + 25.2

(
max
{

log
( 2x

log c
+

log 2

log c

)
+ 0.38, 10

})2
.

This implies that

(4.3) x < 2521 log c.

Then, since

x − z < x − log a

log c
x =

log(c/a)

log c
x,

we have

(4.4) x − z < 2521 log(c/a).

On the other hand, by taking equation (4.1) modulo m 2
0 , we find that (−n2)x +

b ≡ n2z (mod m 2
0 ), which together with (2.3) yields b0x + b ≡ b0z (mod m 2

0 ).
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Also, taking equation (4.1) modulo n 2
0 , we have b0x + b ≡ b0z (mod n 2

0 ). Since
gcd(m0, n0) = 1 and m0n0 = b0/2, we have

b0x + b ≡ b0z (mod b 2
0 /4).

Since x > z and b0 = a− 1, it follows from the above congruence that

x − z ≥ b0

4
− b

b0
=

a− 1

4
− b

a− 1
.

Here, we can assume that m ≥ n + 7. Since, by [2], if m−n > 1 (by [1]) has a divisor
congruent to±3 modulo 8, then y is even. Since

b

a
=

2mn

m2 − n2
≤ 2m(m− 7)

14m− 49
,

we see that (4.4) gives

7m− 25

2
≤ a− 1

4
< 2521 log(c/a) +

b

a− 1

=
2521

2
log
(

1 + (b/a)2
)

+
b/a

1− 1/a

≤ 2521

2
log
(

1 +
( 2m(m− 7)

14m− 49

)2)
+

m(m− 7)

7m− 25
.

This implies that m ≤ 4926. On the other hand, since

b

ax
≤ b

a4
≤ 2m(m− 7)

(14m− 49)4
<

1

5042
,

we see from (4.2) and (4.3) that∣∣∣ log a

log c
− z

x

∣∣∣ < b

xax log c
<

2521(b/ax)

x2
<

1

2x2
.

Therefore, z
x is a convergent in the simple continued fraction expansion of log a

log c .

Hence we can write z
x = ps

qs
, which is the s-th such convergent. Since gcd(x, z) = 1,

we see that x = qs and z = ps. Remark that qs ≥ 4. By a well-known fact on the
continued fraction expansion, we find that∣∣∣ log a

log c
− ps

qs

∣∣∣ > 1

(αs+1 + 2)q 2
s

,

where αs+1 is the (s + 1)-th partial quotient to log a
log c . It follows that

αs+1 + 2 >
xax log c

bq 2
s

=
aqs log c

bqs
.

For each of the pairs (m, n) under consideration, we can numerically check that the
inequality

αs+1 + 2 >
aqs log c

bqs

does not hold for any s satisfying 4 ≤ qs < 2521 log c. This is a contradiction.
Therefore, y > 1.

It follows from Lemma 4.1 that x is even. It remains for us to show the evenness
of y. We assume the condition of Theorem 1.2. As in the preceding section, we
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define D and E, and we can show that (D, E) = (2my , 2y−1ny). Taking (m2 + n2)Z =
my + 2y−2ny modulo n0, we see from (2.4) that my ≡ 1 (mod n0). Suppose that y
is odd. We will show that this leads to a contradiction. Congruences (2.4) and (3.2)
together imply that m ≡ 1 (mod n0). Putting m = 1 + n0h with a positive integer h,
we see from (2.3) that

(n0h + n)(h− n/n0) = 2(m0 − h).

If m0 = h, then h = n/n0, so m0 = n/n0, which is absurd, since gcd(m, n) = 1 and
m0 > 1. Hence the value of the right-hand side is nonzero. Since h ≤ n/n0 implies
m = 1 + n0h ≤ 1 + n, we have h ≤ n/n0 and m0 > h. Hence we see that the second
factor in the left-hand side has to be 1; that is,

n0h + n = 2(m0 − h),(4.5)

h− n/n0 = 1.(4.6)

If m0 < m, then m0 ≤ m/3, so equation (4.5) implies m ≤ 2(m0 − h) < 2m0 ≤
(2/3)m, which is a contradiction. Hence, m0 = m. Using this together with (4.6),
similarly to Lemma 3.3, we can observe that (m, n) = (2b 2

1 + 2b1 + 1, 2b 2
1 ), which

yields a contradiction. To sum up, we have completed the proof of the theorems for
the case ε = −1.

5 Examples

In this final section, we will explain how to find examples of m and n satisfying the
assumptions of our results. As we observed in Section 2, m and n satisfy Pell equation
(2.2) with t = 1; that is,

U 2 − (b 2
1 + 1 )V 2 = 2εb1,(5.1)

where U = m + n − b1(m − n) and V = m − n. It is clear that (5.1) has the two
classes of solutions

U + V
√

b 2
1 + 1 =

(
U0 + V0

√
b 2

1 + 1
)(

2b 2
1 + 1 + 2b1

√
b 2

1 + 1
) l

(5.2)

with nonnegative integer l, where

(U0,V0) =

{
(b1 + 1,±1) if ε = 1,

(±(b1 − 1), 1) if ε = −1.
(5.3)

Now Theorems 1.2 and 1.3 immediately imply the following.

Corollary 5.1 Conjecture 1.1 is true if one of the following holds:

(i) b1 has no prime factors congruent to 1 modulo 4, and U , V satisfy (5.2) with a
positive integer l and with (U0,V0) satisfying (5.3).

(ii) Either b1 ≡ 2 (mod 4) or b1 ≡ −ε (mod 4), and U , V satisfy (5.2) with a
positive odd integer l and with (U0,V0) satisfying (5.3).
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Proof It is obvious from Theorem 1.2 that if (i) holds, then Conjecture 1.1 is true.
Consider the case of (ii). By (5.2), we have V = vl, where

v0 = V0, v1 = (2b 2
1 + 1)V0 + 2b1U0, vl+2 = 2(2b 2

1 + 1)vl+1 − vl.

Equation (5.3) shows that if b1 ≡ 2 (mod 4) and l is odd, then vl ≡ V0 + 4 (mod 8),
in other words, m− n = V = vl ≡ ±5 (mod 8). Similarly, if b1 ≡ −ε (mod 4) and
l is odd, then we see that m − n = vl ≡ 3V0 ≡ ±3 (mod 8). In any case, one can
conclude from Theorem 1.3 that Conjecture 1.1 is true.

The examples in the first section are given by setting

(ε,U0,V0, l) = (1, b1 + 1,−1, 1), (1, b1 + 1, 1, 1), (−1, 1− b1, 1, 1), (−1, b1− 1, 1, 1).
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