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CONSTRAINED MINIMIZATION
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Abstract

If a constrained minimization problem, under Lipschitz or uniformly continuous hypotheses
on the functions, has a strict local minimum, then a small perturbation of the functions leads
to aminimum of the perturbed problem, close to the unperturbed minimum. Conditions are
given for the perturbed minimum point to be a Lipschitz function of a perturbation parameter.
This is used to study convergence rate for a problem of continuous programming, when the
variable is approximated by step-functions. Similar conclusions apply to computation of
optimal control problems, approximating the control function by step-functions.

1. Introduction

In computing a constrained minimum, it is often necessary to approximate the given
minimization problem. For example, a nonsmooth problem may be approximated by
a smooth problem, or a minimization over a space of piecewise continuous functions
(as is often required in optimal control) may be approximated by minimization over a
prescribed sequence of step-functions. In numerical experiments such approximations
often work very well (see for example [10]). This raises the question, what general
properties are required of the functions in a minimization problem, in order that such
approximation methods will converge to the minimum of the given problem, and at
what rate?

As a simple example, let f(x,q) := x2 + 2gx (where x € R, and x; := x if
x >0, 0if x < 0). If the parameter ¢ = 0, then f(., 0) reaches an unconstrained
minimum at 0. If ¢ < O, then f(., g) reaches a minimum at —g; but if ¢ > 0,
then f(.,q) does not reach any minimum. This function may be compared with
g(x,q) = xi +a(—x)1 +2gx, where « is small and positive. Unlike f(., ¢), g(., ¢)
has a strict minimum at Q; thus, for some 6(r) = ar? > 0, g(x, 0) > (r) whenever
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[x —0| = r. Whengq > 0, g(., q) is minimized at —q/(2¢). As g varies from 0,
the minimum of g(., ¢) remains in some neighbourhood of the minimum of g(., 0);
the size of this neighbourhood depends on «. From this simple example, stability to
perturbations should not be expected, if the given minimum is not strict.

2. Approximating a problem

Following the results in [4] and [5], consider a parametric family of constrained
minimization problems:

Minimize, f(x, q) subjectto p(x,¢q) € K, (P(q))

in which X and Y are normed spaces, K C Y is a closed convex cone, x € X, and
the parameter q¢ € RY. Whenq = 0, let f(x,0) = fo(x) and p(x,0) = po(x),
where f and p, are given functions. Assume that the functions f(x, ¢) and p(x, q)
are uniformly continuous in (x, ¢), when x is in a bounded neighbourhood N'(g) of
A, :={x € X : p(x,q) € K}, and q € N, a bounded neighbourhood of 0 € R".
(In finite dimensions, a compact set E may exist such that (Vg € N) N'(¢) C E, and
then it suffices to assume that the functions are continuous on E x N. However, other
validation must be found in infinite dimensions.) The following results also apply
when q is restricted to a discrete set, such as {1/n : n =1, 2, 3, ...}. Let the point a
satisfy po(a) € K. Define p(.,.) by:

p(x,q) := p(x,q) — p(a,q) + p(a,0);

then p(a, q) = p(a,0) = po(a). LetT, :={x € X : p(x,q) € K}. Fora € X, let
B(a,r):={x e X :||x—a|l <r}. Fore € E, the distance d(x, E) := inf,.g||d —e]|.
Let A,(r) :=T,N B(a, r), and A;(r) =,N{xeX:||x—al=r}

LEMMA 1. Assume p(., .) is uniformly continuous on bounded sets, and the point a
satisfies po(a) € K. Fixr > 0, let 0 < € < r. Then, for sufficiently small ||q||, each
point of A,(r) is distant less than € from Ao(r).

PROOF. By construction,a € " and a € T',. For 0 < € < r, define
m(€) = inf{d(p(x), K) : ||x —all < r,d(x, Ao(r)) = €}.

Since K isclosed, if [[x —a|| < randx ¢ A¢(r),thend(x, Ao(r)) > 0,d(p(x), K) >
0, and 7 (¢) > 0. By the uniform continuity, there is § > 0 such that, if ||| < §, then
Ilp(x,q) — p(x, 0| < m(e)/3, uniformly in x in a neighbourhood of Ay(r). Since
also || p(a, q) — p(a, )| < m(€)/3, it follows that 5(x, q) lies in a ball with centre

https://doi.org/10.1017/50334270000010237 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000010237

52 B. D. Craven 3]

p(x, 0) and radius 27 (€)/3, which is disjoint from the closed convex set K; hence
p(x,q) ¢ K. Taking the contrapositive,

[ix — all < rand 5(x,q) € K] = [Ix ~all < randd(x, A() < €].

REMARKS. If a is a boundary point of ", then there is a sequence {x;} — a, with each
x; ¢ I';hence w(e) | Oase | 0. Otherwise, m(e) | m(0) > 0, and & does not tend
to 0 as € | O in this proof. It suffices if the uniform continuity holds for x in some
bounded neighbourhood of Ay (r).

LEMMA 2. Assume p(.,.) is uniformly continuous on bounded sets, and the point a
satisfies po(a) € K. Fixr > 0; let 0 < € < r. Then, for sufficiently small \|q||, each
point of A, (r) is distant less than € from Ay(r).

PROOF. The same proof holds with A (r) replacing A, (r).

Now suppose that the point a is a local minimum of the problem (P(0)). For
constant y > 0, define F(x, q) := f(x, q) + v|lx — al®. Then the point a is a strict
local minimum of F (x, 0), subjectto p(x, 0) € K, meaning that

V6 >0) Bk > 0) (Vx, p(x,0) e K, ||Ix — a]| =9)
F(x,0) > F(a,0) +«.

The next lemma (based on [4]) shows that, because of the strict minimum, F (., g) has
a constrained minimum near to a, when ||g|| is small.

LEMMA 3. Let f(x,q) and p(x,q) be uniformly continuous, for x in a bounded
neighbourhood of Ay(r) and q in a neighbourhood of 0. When q # 0, assume that
F (., q) reaches a minimum on each closed bounded set. If ||q|| is sufficiently small,
then F(x, q) reaches a minimum, subject to the constraint p(x, q) € K, at a point
x(q), where x(q) — a as |lq|| — 0.

PROOFE. Let 0 < r < §; let € > 0. Since F(.,0) has a strict minimum at a, there is
6 > Osuchthat F(£,0) > F(a, 0)+40 for all § € Ay(r). By the uniform continuity,
|F(x,0) — F(x',0)] < @ and |F(x, q) — F(x,0)| < 6 whenever jjx — x'| < §,(8),
say. If ||g|| is sufficiently small, and x € A; (r), then d(x, Ay(r)) < 8,(6) by Lemma
2. So, for some x' € Ay(r),

F(x,q)=F@a,0)+{F(x,q) — F(x,0] + [F(x,0) — F(x',0)]
+[F(x',0) — F(a, 0)]
> F(a)—0 —0+46.
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Similarly, if [|¢|! is sufficiently small, then
F(a,q) = F(a,0) + [F(a,q) — F(a,0)] < F(a) +86.

For g # 0, F(., q) reaches a local minimum on the closed bounded set A,(r), say at
x = x(q). Since (Vx € A\ (r)) F(x,q) — F(a,q) = 6 > 0, x(q) ¢ A,(r). Hence
X(q) is a local minimum of F(.,g) onT,.

If now r | 0, then the corresponding 8 | 0 and ¢ | 0. Since ||x(g) —a| < r, it
follows that [|x(¢) —al|| — Oas |l¢g] | O.

3. Lipschitz maps

The results in Section 2 assume uniform continuity, but do not require any differen-
tiability. Consider now the case where p(., .) is continuously (Fréchet) differentiable,
and also the Robinson stability condition holds at the point @ when ¢ = 0, namely
that 0 € int[p(a, 0) + p.(a, 0)(X) — K]. Then [8], for some constant ¥ > 0, and all
sufficiently small ||q ||,

d(a,{x:p(x,q) € K}) <«d (0, p(a,q) — K) = «O(llqlD), )

using differentiability. Hence, for some constant v, if ||g|| < ve,then A,(r) liesinane-
neighbourhood of A¢(r). Otherwise expressed, A, (r) lies in a x~!||¢ ||-neighbourhood
of Ag(r). A similar result holds also when A, (r) and Ay(r) are replaced by A (r) and
Ag(r) respectively. It is deduced by adjoining the additional constraint ||x — a|| = r;
since this constraint is not generally active, it does not change the stability condition.

If X and Y are finite-dimensional, p is Lipschitz (no longer continuously differen-
tiable), the mapping (x, g) — 3p(x, q) (the Clarke generalized Jacobian with respect
to x) is upper semicontinuous at (@, 0), and the generalized stability condition holds:

(YM € 0p(a,0)) 0 eint[p(a,0) + M(X) — K],

then Yen [12] has shown that (}}) still holds. Hence, in this case also, it follows that
A; (r) lies in a k~!||q||-neighbourhood of Ay(r) for some constant «.

LEMMA 4. Assume p(.,.) is uniformly continuous on bounded sets, and Lipschitz;
assume either the Robinson stability condition, or the generalized stability condition
in finite dimensions. Let F(.,.) be Lipschitz, with Lipschitz constant x,. Let F(.,0)
reach a strict minimum at x = a, subject to p(x,0) € K, satisfying also the linear
growth condition:

F(x,0)— F(a,0) >0 = (k3/)r when x € Ay(r),
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for some constant k3. Then, for sufficiently small ||q||, F(x, q) reaches a minimum,
subject to p(x,q) € K, at x = x(q), satisfying (for some constant k,) the Lipschitz
condition:

Ix(g) —all < ksllql.

PROOE. From either stability hypothesis, there is a constant x; so that A, (r) lies in

a i |lq||-neighbourhood of Ay(r), whenever ||gq|| is sufficiently small. This result is

used in place of Lemma 2 in a modification, as follows, of the proof of Lemma 3.
If x € Ay(r) and |lg|| = (x241)7'6, then

d(x, Ay(r) < d(A,(r), Ay(r)) < k;'6.
So, for some x’ € Ay(r), k2]lx — x'|] < 6; hence
F(x,q)> F(a,0)—0—-0+4+46.

The rest of the proof is unchanged, showing that there is a minimum x(g) of F(., q)
on I'y, with ||x(q) — al| < r, where now

lgll = (k1) ™10 = [ies/ (4kc12)]r.

Thus, setting x4 := 4x,k, /K3, the stated conclusion follows.

4, Truncation in 2

To motivate the following, consider a constrained minimization problem with an
objective function f (&), where the variable £(.) € L?[0, 1]. Let & be expanded in a
Fourier-Walsh series, with expansion coefficients x;, x,, ...; thenx 1= (x;, x2,...) €
£2. If the Fourier-Walsh series is truncated after the kth term, this gives an approxim-
ation to £(.) by a step-function, where [0, 1] is divided into 2* subintervals, and the
step-function is constant on each subinterval. Since £ = Ux for some unitary trans-
formation U, the convergence of such approximations to the solution of the original,
infinite-dimensional, minimization problem may be studied equivalently in terms of
f(x) := f(Ux), where x € €2,

Consider then X = £2. If x = (x, x3,...) € €2, denote by x® := (x,,..., x,,
0,0, ...) the truncation of x to the first n nonzero components. Similarly define ¢
from ¢ € £2. Consider a minimization problem:

Minimize,.: f (x) subject to p(x) € K. (Py)
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Assume P, reaches a local minimum at x = a. Letg = 1/n (n = 1,2,..)),
f(x,q) := f(x™), p(x,q) := p(x™), and p defined from p and a as in Section 2
above. In some sense, the truncated problem:

Minimize ez f(x, 1/n) subject to j(x, 1/n) € K (P

approximates the given problem Py,.
In the particular case of a linear objective function f(x) := (c, x) with ¢ € £2,

1f(x,0) = fx,1/m)] = [{c, x — x™)| = {c — ¢, x — x)| < G, Ix]l,

where 6, := sup;_,Ic;| - 0 as n — o0o. So the desired uniform approximation
occurs on norm-bounded sets. For a quadratic function, uniform approximation is
attained only by restricting x to a subspace of £2. Let 0 < {b;} — o0; let w; := b]?;
restrict x so that the weighted norm |x[|* := [3_ w;x?]"* < co. Then

(x, x) — (x™, x™) = (z, 1) where ¢t :=x —x™ and z :=2x —¢;

1/2
z, 1)] < [Z(b,-_zbizi)z- Z(bjtj)z:l

j>n J

172
<6, I:Z(bizi)z- Z(bjtj)z]

J

= Gn- 21”2 )1* < 6, BllxIDlx],

where 6, := sup;_, w; > 0asn — oo.

Consider now a function £(.) in a suitable subspace S of L?[0, 1], and x € ¢
the sequence of the Fourier-Walsh coefficients for £. Assume that ||x|| < oo; this
restricts high-frequency oscillations of x(.), but does not restrict £(.) to a finite-
dimensional subspace. Let f(x) :=< x, x >. From the previous paragraph, f(x™)
uniformly approximates f(x) on norm-bounded subsets. Now x is the transform of
a step-function, &,(.) say on [0, 1]. Let p(§) := fol £(s)*ds; then (&) = f(x). Hence
¢ (&,) uniformly approximates ¢(&) on bounded subsets of S. A similar construction
applies to a functional ¢ (&) := f h(&(s), s)ds, if the transform f (x) satisfies | f (x) —
F(&x®| < {c(x), x — x™), where ||c(x)] < const|x]|.

5. Constrained minimum

Consider a constrained continuous programming problem:
Minimize f(x) subjectto p(x) € K, (CP)
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where f(x) := f, h(x(t),t)dt, I = [0,1], x(.) € L*[0,1), p(x)(.) = k(x(.), )
(r € I, K is a cone of nonnegative functions on /. Denote by x,(.) a step-function
approximation to x (.), obtained by truncating / into n subintervals (where n is a power
of 2.) Denote by (CP,) the approximated problem, obtained by replacing x (.) by x,(.)
in (CP).

THEOREM 1. For problem (CP), letx(.) lie in a subspace S of L*(1), such that uniform
approximation of (CP) by step-functions x,(.) holds:

Ve >0,r >0) 3n) vx eS8, jxil <r)
[f(x) — fX)] <€, |p(x) — p@) <e.

Assume that (CP) reaches a minimum at x(.) = x(.). Then (CP,) reaches a local
minimum at a point x,, where x, = X asn — 09.

If in addition, the functions h and k are Fréchet differentiable and the Robinson
stability condition holds, and f satisfies the linear growth condition, then there is a
Lipschitz constant k so that ||x, — x|| < k/n.

PROOF. The approximated problem (CP,) involves only finitely many (say r) variables,
hence f(x), with x restricted to S, reaches a minimum on each closed bounded subset.
From Lemma 3, problem (CP,) reaches a minimum at a point, x, say, for which
Hx, — x|| > Oasn — o0.

The remaining conclusion follows from Lemma 4.

REMARKS. A similar result holds for various optimal control problems. Some cases
when the uniform approximation property holds are detailed in Section 4. See [5] for
a discussion of when the linear growth condition holds for f(.). If linear growth is
weakened to quadratic growth (see for example [1],[2]), then the Lipschitz conclusion
of Lemma 4 is weakened to a Hélder condition: ||x(q) — a| < k4|lg||'/?, and then in
Theorem 1, || X, — X|| < k/n'/2

6. Optimal control

Consider an optimal control problem:

Minimize J () = f; fo(x(), u(t), )dt + ®(x(T))subject to
x(0) =xo; dx@)/dt =m(x(t),u),t) 0O<t<T) (00)
u) eT@y) (©<t<T).

Here, x (¢) is the state function, u(¢) is the control function; f(.,.,.), ®()andm(., .,.)
are continuously differentiable (and hence Lipschitz) functions, and I'(¢) is a convex
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set, depending smoothly on ¢, The objective function can be written as J (), since the
differential equation for dx(t)/dt determines x(.) uniquely as a Lipschitz function of
u(.). Assume (as commonly happens in applications) that (OC) reaches an optimum,
with the optimal control i(.) a piecewise-continuous function.

The conclusions of Theorem 1 apply also to the optimal control problem (OC),
now replacing x(.) of (CP) by the control function u(.) of (OC), taking the subspace
S in Theorem 1 to be a subspace of piecewise-continuous functions such that uniform
approximation by step-functions holds, and assuming the Robinson stability condition.
Then Theorem 1 shows that approximating u(.) by a step-function u,(.) (whereby the
interval [0, T] is divided into 2" equal subintervals, with u,(.) constant on each),
leads to an approximate optimum function «,(.), such that ||u,(.) — ()| < «/n in
an appropriate norm, as n — 00. There is an obvious extension when 2" is replaced
by another integer r, with r — 0.

Such step-function approximations to the control function have proved very suc-
cessful in computational practice—see [6], [9], [10], [11], and other papers cited in
these references. The present results show that such approximations will work well
under quite general conditions. An open question remains, as to what improvement
in convergence might be had, by using spline approximations of higher order.

7. Convergence under different hypotheses

Consider the minimization problem in the form:
Minimize f(x) subjecttox € I',

where I is a closed subset of €2, and f is Lipschitz, with Lipschitz constant . Assume
that a minimum is reached at x = x¥. Denote by P, the projection that takes x =
(x1,X2,...) € &to P.x = (x1,%2,...,%,,0,0,...). Note that ' N P,(¢?) = P,T,
for some maximal subset 7, C I'; usually I', # I,

Assume that the approximated problem, obtained by restricting x to P, (£?), reaches
a minimum at X,;. Denote by A, the feasible set for this approximated problem.
Consider the following hypotheses:

(H1): (vx e N d(P.x, T N P,(£?)) > 0as n — oo.

(H2): If E is a bounded set containing ¥, and €’ > 0, then for sufficiently large n,
E N A, is contained in an €’-neighbourhood of E N T, and E N T is contained in an
¢’-neighbourhood of £ N A,,.

(H3): The global minimum x of the given problem is strict.

THEOREM 2. If f(.) reaches a minimum over T at X, and reaches a minimum over
' N P,(€) at %i,y, and if (H1) holds, then { f (X))} | f ().
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PROOF. Let 1, := d(P,x, ' N P,(£?)). By (H1), t, = 0 as n — oo. There is a point
x, € I' N P,(£2) such that || P,x — x,|| < 2t,. Then

FQ) = fQm) £ Fx)
S fQY+I1fE) = FG)|+ 1f Gm) — )] < f(X) + k€ + kQ21).

The convergence is monotone since the feasible set is expanding.

REMARKS. The sequence {f (X,)} decreases, but not always to f(x). But the hy-
pothesis (H1), to ensure convergence to f(x), is very strong. See Lemma 1 for
conditions when (H2) is satisfied.

To obtain a computable problem, a further approximation is needed, to replace I
by A,.

THEOREM 3. Let f(.) be minimized over I at x; let (H1) and (H3) hold; let A, be
bounded closed for each n. Then there exists a minimum point wg, for f(.) over
I N P,(£%), such that {w,} — X, and { f ()} = f(x).

PROOF. Let € > 0. From (H3), f(x) > f(x) 4+ 7x€” whenever x € I" and d(x, x) =
r(€”), forsome 0 # r(e”) | 0ase€” ] 0. If E is a bounded set containing x, then

(Ve > 0) (3n(e, E)) (Vn > n(e, E)) (Vx € E)
|f(x) = f(Pax)| < klx — Pox| < ke.

If E = B(x, ro), for some rq > 0, then | f(x) — f(P,x)| < «e for all n sufficiently
large. From (H1), || P,x —v,|| < € whenv, € T'NP,(£?). Ifw € A,N3(P,B(x, r(€)))
and €’ in (H2) is chosen sufficiently small, there is w’ € " N a(P,B(x, r(¢))) for
which |lw — w'|| < €, and there is y € A, N P,(£?) such that |y — v,|| < €.
Since f has Lipschitz constant «, f(y) < f(v,) + ke < f(P.X) + k€ + ke. Also
there is z’ orthogonal to P,(£2) such that w’ + z’ € I' N dB(X, r(¢)). From (H3),
fw +12") = f(x) + Tke; since w' = P,(w' + 2'), f(w) = f(x) + 6ce. Hence

fw) = f(x)+6xke —kjw—w| > f(X)+5«e = f(P.x) — k€ + Ske.

Thus w # y; so no point w € A, N 3(P,B(x, r(€))) can minimize f(.) over A, N
P,B(x, r(€)). Such a minimum point exists, say w, since the set is bounded closed
in finite dimensions. Since the constraint imposed by the boundary of the set is thus not
binding, the point w®™ minimizes f(.) over A, N P,(£2). By construction, [jw™ —X||.
By choosing suitable sequences of € | 0 and corresponding n(e) — 0o, there follows
{w™} — X. Since f(.) is continuous, { f (w™)} — f(x).
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REMARK. If a given constraint holds for infinitely many points (for example, (V¢)£(r)
> 0in the original problem), it must be approximated computationally by a constraint
which holds only for finitely many points. Assuming suitable continuity, A, may
be bracketed by two perturbed versions of the given feasible set. (For example,
a constraint |£(¢)] < 1 may be bracketed by two constraints |§*(t)| > 1 — € and
|£*(e)! < 1 + €, where £*(¢) approximate §(¢) by considering only a finite grid of
points.) If the original problem is stable to small perturbations of constraints (say of
g(x) < 0to g(x) < e), then the usual perturbation theory (see for example [8], [3])
may be applied. Consequently, this additional approximation will only have a small
effect on the optimal objective function, when € is small.

8. Acknowledgement

Some of this research was done while visiting the University of Poitiers. Section 7
was done while visiting the University of Western Australia.

References

[1]1 W. Alt, “Stability of solutions for a class of nonlinear cone constrained optimization problems”,
Numer. Funct. Anal. Appl. 10 (1989) 1053-1064 and 1064—1076.

[2]1 W. Alt, Stability of solutions and the Lagrange-Newton method for nonlinear optimization and
optimal control problems (Habilitationsschrift, Universitiit Bayreuth, 1990).

[3] B. D. Craven, “Perturbed minimization, with constraints adjoined or deleted”, Optimization 14
(1983) 23-26.

[4] B.D. Craven, “Nondifferentiable optimization by smooth approximations”, Optimization 17 (1986)
3-17.

[5]1 B. D. Craven and R. Janin, “On stability in constrained optimization”, submitted for publication,
1992.

[6] L.S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3, Optimal Control Software, Theory
and User Manual (1990).

[71 F. Lempio and H. Maurer, “Differential stability in infinite-dimensional nonlinear programming”,
Appl. Math. Optim. 6 (1980) 139-152.

[8] S. M. Robinson, “Stability theory for systems of inequalities, Part II: Differentiable nonlinear
systems”, SIAM J. Numer. Anal. 13 (1976) 497-513.

[91 K. L. Teo and C. J. Goh, “A computational method for combined optimal parameter selection
and optimal control problems with general constraints”, J. Austral. Math. Soc. Ser. B 30 (1989)
350-364.

[10] K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach to optimal control
problems (Longman Scientific and Technical, 1991).

[11] K.L.TeoandR. S. Womersley, “A control parametrization algorithm for optimal control problems
involving linear systems and linear terminal inequality constraints”, Numer. Funct. Anal. Opt. 6
(1983) 291-313.

[12] N. D. Yen, “Stability of the solution set of perturbed nonsmooth inequality systems”, J. Optim.
Theor. Appl., to appear.

https://doi.org/10.1017/50334270000010237 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000010237

