ON TOPOLOGICAL INVARIANTS OF THE PRODUCT OF GRAPHS

M. Behzad* and S.E. Mahmoodian
(received June 28, 1968)

1. Introduction. We consider ordinary graphs, that is, finite, undirected graphs with no loops or multiple Iines. The product (also called cartesian product [4]) $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} with point sets V_{1} and V_{2}, respectively, has the cartesian product $\mathrm{V}_{1} \times \mathrm{V}_{2}$ as its set of points. Two points (u_{1}, u_{2}) and (v_{1}, v_{2}) are adjacent if $u_{1}=v_{1}$ and u_{2} is adjacent with v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent with v_{1}. In this note we investigate the chromatic numbers, planarity and traversability (often referred to as topological invariants) of $G_{1} \times G_{2}$.
2. Notations and Definitions. Let $\mathrm{v}_{1}=\left\{\mathrm{v}_{1}^{1}, \mathrm{v}_{1}^{2}, \ldots, \mathrm{v}_{1}^{\mathrm{p}}{ }_{1}\right\}$, $v_{2}=\left\{v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{p_{2}}\right\}$, and let q_{i} denote the number of lines of $G_{i}, i=1,2$. The graph $G_{1} \times G_{2}$ has $p_{1} p_{2}$ points and $p_{1} q_{2}+q_{2} p_{1}$ lines. This graph which is isomorphic with $G_{2} \times G_{1}$ contains p_{2} disjoint "horizontaI" copies $G_{1}^{1}, G_{1}^{2}, \ldots, G_{1}^{P_{2}}$ (ordered from top to bottom) of G_{1} and p_{1} "vertical" copies $G_{2}^{1}, G_{2}^{2}, \ldots, G_{2}{ }^{1}$ (ordered from left to right) of G_{2}. A horizontal copy G_{1}^{i} and a vertical copy G_{2}^{j} have only one point $\left(v_{1}^{j}, v_{2}^{i}\right)$ in common.

The (point-) chromatic number $\chi(G)$ of a graph G is the minimum number of colors required to color points of G in such a way that no two adjacent points have the same color. The Iine-chromatic number $X^{\prime}(G)$ is defined similarly. The total-chromatic number $X^{\prime \prime}(G)$ of G [1] is
*Research supported in part by a grant from the Office of Naval Research.

Canad. Math. Bull. vol. 12, no. 2, 1969
the minimum number of colors required to color the elements (points and lines) of G in such a way that no two adjacent elements (two points or two lines) and no two incident elements (a point and a line) have the same color.

A graph is planar if it can be drawn in the plane with no lines crossing.

A graph G is called hamiltonian if it contains a cycle passing through all points of G. A connected graph G is called eulerian if the degree of (that is, the number of lines incident with) every point of G is even.
3. Chromatic Numbers. In this section the point, line and total-chromatic numbers of $G_{1} \times G_{2}$ are investigated. By a proper coloring of, for example, points of G is meant an assignment of colors to points of G in such a way that adjacent points receive different colors. The color of an element e of G will be denoted by $c(e)$. The notation $c(u, v)$ will be used for the color of the point (u, v).

THEOREM 3.1. $x\left(G_{1} \times G_{2}\right)=\max \left\{x\left(G_{1}\right), x\left(G_{2}\right)\right\}$.

Proof. Assume, without loss of generality, that $x\left(G_{1}\right) \geq x\left(G_{2}\right)$. Color the points of G_{1}^{1} with colors $1,2, \ldots, \chi\left(G_{1}\right)$ properly and suppose $c\left(v_{1}^{1}, v_{2}^{1}\right)=1$. Then color the points of G_{2}^{1} with colors $1,2, \ldots, x\left(G_{2}\right)$ properly in such a way that $c\left(v_{1}^{1}, v_{2}^{1}\right)=1$. Now color the point $\left(v_{1}^{j}, v_{2}^{i}\right), i, j>1$, with color $m+n-1 \bmod \left(x\left(G_{1}\right)\right)$, where $m=c\left(v_{1}^{1}, v_{2}^{i}\right)$ and $n=c\left(v_{1}^{j}, v_{2}^{1}\right)$. In order to show that this coloring is a proper coloring of points of $G_{1} \times G_{2}$ it suffices to consider two points with the same first and with the same second entries.

Let, for example $\left(v_{1}^{\ell}, v_{2}^{s}\right)$ and $\left(v_{1}^{\ell}, v_{2}^{t}\right)$ be two adjacent points of $G_{1} \times G_{2}$. We have $c\left(v_{1}^{\ell}, v_{2}^{s}\right)=r+w-1 \bmod \left(x\left(G_{1}\right)\right)$ and and $c\left(v_{1}^{\ell}, v_{2}^{t}\right)=v+w-1 \bmod \left(x\left(G_{1}\right)\right)$, where $c\left(v_{1}^{1}, v_{2}^{s}\right)=r$, $c\left(v_{1}^{\ell}, v_{2}^{1}\right)=w$, and $c\left(v_{1}^{1}, v_{2}^{t}\right)=v$. Clearly $\left(v_{1}^{1}, v_{2}^{s}\right)$ and $\left(v_{1}^{1}, v_{2}^{t}\right)$ are adjacent in the subgraph G_{2}^{1} of $G_{1} \times G_{2}$. Hence $r \neq v$.

This implies $c\left(v_{1}^{\ell}, v_{2}^{s}\right) \neq c\left(v_{1}^{\ell}, v_{2}^{t}\right)$.

Let max deg G denote the maximum degree among the degree of points of G. Concerning $\chi^{\prime}(G)$, Vizing [5] has shown that $\max \operatorname{deg} G \leq X^{\prime}(G) \leq \max \operatorname{deg} G+1$. Since $\max \operatorname{deg} G_{1} \times G_{2}=$ $\max \operatorname{deg} G_{1}+\max \operatorname{deg} G_{2}$ we have

THEOREM 3. 2. max $\operatorname{deg} G_{1}+\max \operatorname{deg} G_{2} \leq x^{\prime}\left(G_{1} \times G_{2}\right) \leq$ $\max \operatorname{deg} G_{1}+\max \operatorname{deg} G_{2}+1$.

If the line-chromatic number of $G_{i}, i=1,2$, equals its maximal degree, we shall show $X^{\prime}\left(G_{1} \times G_{2}\right)$ equals the maximal degree of $G_{1} \times G_{2}$.

THEOREM 3. 3. Suppose $X^{\prime}\left(G_{i}\right)=\max \operatorname{deg} G_{i}, i=1,2$.
Then $X^{\prime}\left(G_{1} \times G_{2}\right)=\max \operatorname{deg} G_{1}+\max \operatorname{deg} G_{2}$.

Proof. Clearly $X^{\prime}\left(G_{1}\right)+x^{\prime}\left(G_{2}\right) \leq x^{\prime}\left(G_{1} \times G_{2}\right)$. The converse is true for every pair of graphs G_{1} and G_{2}. To see this color the lines of each horizontal copy properly with colors $1,2, \ldots, \chi^{\prime}\left(G_{1}\right)$ and each vertical copy properly with colors $X^{\prime}\left(G_{1}\right)+1, X^{\prime}\left(G_{1}\right)+2, \ldots$, $x^{\prime}\left(G_{1}\right)+x^{\prime}\left(G_{2}\right)$.

Assuming $X^{\prime}\left(G_{i}\right)=\max \operatorname{deg} G_{i}+1, i=1,2$, one might think $X^{\prime}\left(G_{1} \times G_{2}\right)=\max \operatorname{deg} G_{1}+\max \operatorname{deg} G_{2}+1$. In Fig. $1 \quad G_{1}$ and G_{2} are taken to be $K_{5}-x$, where K_{n} is the complete graph of order n and $K_{n}-x$ denotes K_{n} minus one line. $x^{\prime}\left(G_{1}\right)=x^{\prime}\left(G_{2}\right)=$ $\max \operatorname{deg} G_{1}+1$. But $X^{\prime}\left(G_{1} \times G_{2}\right)$ is shown to be $\max \operatorname{deg} G_{1}+$ $\max \operatorname{deg} G_{2}=8$. The graph $\left(\mathrm{K}_{5}-\mathrm{x}\right) \times\left(\mathrm{K}_{5}-\mathrm{x}\right)$ is the smallest graph with the above property.

Given two graphs G_{1} and G_{2} we have $\chi\left(G_{1}\right) \leq x^{\prime \prime}\left(G_{2}\right)$ or $\chi\left(G_{2}\right) \leq x^{\prime \prime}\left(G_{1}\right)$. Suppose $\chi\left(G_{1}\right)>x^{\prime \prime}\left(G_{2}\right)$. Then $\chi^{\prime \prime}\left(G_{1}\right) \geq$ $x\left(G_{1}\right)>x^{\prime \prime}\left(G_{2}\right) \geq x\left(G_{2}\right)$ imply $x\left(G_{2}\right)<\chi^{\prime \prime}\left(G_{1}\right)$.

Fig. 1

THEOREM 3. 4. If $x\left(G_{1}\right) \leq x^{\prime \prime}\left(G_{2}\right)$, then max deg $G_{1}+$ $\max \operatorname{deg} G_{2}+1 \leq x^{\prime \prime}\left(G_{1} \times G_{2}\right) \leq x^{\prime \prime}\left(G_{2}\right)+x^{\prime}\left(G_{1}\right)$.

Proof. The first inequality is obvious. Color the elements of G_{2}^{1} and the lines of each horizontal copy properly with colors $1,2, \ldots, x\left(G_{1}\right), \ldots, x^{\prime \prime}\left(G_{2}\right)$ and colors $x^{\prime \prime}\left(G_{2}\right)+1$, $\chi^{\prime \prime}\left(G_{2}\right)+2, \ldots, X^{\prime \prime}\left(G_{2}\right)+\chi^{\prime}\left(G_{1}\right)$, respectively. Suppose $c\left(v_{1}^{1}, v_{2}^{1}\right)=1$. Then color the points of G_{1}^{1} with colors $1,2, \ldots, x\left(G_{1}\right)$ properly in such a way that the point $\left(v_{1}^{1}, v_{2}^{1}\right)$ receives color 1 . Next, consider $G_{2}^{j}, j=2, \ldots, p_{1}$ and let e be
an element of G_{2}^{j}. To e corresponds an element el of G_{2}^{1}. Let $c(e)=c\left(v_{1}^{j}, v_{2}^{1}\right)+c\left(e^{\prime}\right)-1 \bmod \left(\chi^{\prime \prime}\left(G_{2}\right)\right)$. Now it is an easy matter to check that this coloring is a proper coloring of the elements of $G_{1} \times G_{2}$; completing the proof.

Remarks. (i) The bounds given in Theorem 3.4 cannot, in general, be improved. That is, for two positive integers m and n the re exist two graphs G_{1} and G_{2} with $x^{\prime}\left(G_{1}\right)=m, \quad x^{\prime \prime}\left(G_{2}\right)=n$, and $x^{\prime \prime}\left(G_{1} \times G_{2}\right)=x^{\prime}\left(G_{1}\right)+x^{\prime \prime}\left(G_{2}\right)$. In fact, let $G_{1}=K_{1, m}$ and $G_{2}=K_{1, n-1}$, where $K_{m, n}$ denotes the complete bigraph of order $m+n$. Incidently, for the se graphs $\max \operatorname{deg} G_{1}+\max \operatorname{deg} G_{2}+1$ equals $X^{\prime \prime}\left(G_{1} \times G_{2}\right)$, too.
(ii) The second inequality in the theorem cannot be changed to an equality as can be seen by considering $C_{4} \times C_{4}$, where $C_{n}, n \geq 3$, denotes the cycle of length n.
(iii) It was conjectured by one of the authors [1] that for any graph G max deg $G+1 \leq \chi^{\prime \prime}(G) \leq \max d e g G+2$. This conjecture has been proved to be true for many special classes of graphs [1,3]. However, Theorem 3.4 together with the theorem of Vizing stated earlier imply that if the conjecture is true for prime graphs, then for a composite graph G the number max deg $G+3$ is an upper bound for $x^{\prime \prime}(G)$.
(iv) If $x\left(G_{1}\right) \leq x^{\prime \prime}\left(G_{2}\right)$ and $x\left(G_{2}\right) \leq x^{\prime \prime}\left(G_{1}\right)$, then
$x^{\prime \prime}\left(G_{1} \times G_{2}\right) \leq \min \left\{x^{\prime \prime}\left(G_{2}\right)+x^{\prime}\left(G_{1}\right), x^{\prime \prime}\left(G_{1}\right)+x^{\prime}\left(G_{2}\right)\right\}$.
4. Planarity. Without loss of generality, in this section, we consider only connected graphs. For $G_{1}, G_{2} \notin\left\{K_{1}, K_{2}\right\}$ we have

THEOREM 4.1. If $G_{1}, G_{2} \notin\left\{K_{1}, K_{2}\right\}$, then $G_{1} \times G_{2}$ is planar if and only if both are paths or one is a path and the other is a cycle.

Proof. If G_{1} and G_{2} are both paths or one is a path and the other is a cycle, then it is clear that $G_{1} \times G_{2}$ is planar. In order to prove the converse we consider two cases.
(i) G_{1}, for example, has a point of degree three. Then $K_{1,3}$
is a subgraph of G_{1} and $K_{1,2}$ is a subgraph of G_{2}. The graph $\mathrm{K}_{1,3} \times \mathrm{K}_{1,2}$ which is homeomorphic with $\mathrm{K}_{3,3}$ is a subgraph of $G_{1} \times G_{2}$. Hence by a well-known theorem of Kuratowski - a graph G is planar if and only if it has no subgraph homeomorphic with K_{5} or $K_{3,3}-G_{1} \times G_{2}$ is not planar.
(ii) Both G_{1} and G_{2} are cycles. It is not difficult to show that $C_{m} \times C_{n}$ contains a subgraph homeomorphic with $K_{3,3}$ in this case, too. Hence, in order for $G_{1} \times G_{2}$ to be planar neither factors can have a point of degree three nor both can be cycles; implying the theorem.

In Theorem 4.1 we assumed that $G_{1}, G_{2} \notin\left\{K_{1}, K_{2}\right\}$. If $G_{2}=K_{1}$, then clearly $G_{1} \times K_{1}$ is planar if and only if G_{1} is planar. Before we study the case $G_{2}=K_{2}$, we consider outer-planar graphs.

A graph G is said to be homeomorphic from a graph H if G is obtained from H by inserting points (of degree 2) on some lines of H. An outer-planar graph is a graph G which can be embedded in the plane so that every point of G lies on the exterior region. Chartrand and Harary [2] have characterized outer-planar graphs as those graphs which do not contain subgraphs homeomorphic from K_{4} or $K_{2,3}$.

LEMMA. If G is an outer-planar graph, then $G \times K_{2}$ is planar.

Proof. From the definition of outer-planar graphs it can be assumed that every point of an outer-planar graph lies on a cycle. This and the fact that $C_{n} \times K_{2}$ is planar imply the lemma.

THEOREM 4.2. $G \times K_{2}$ is planar if and only if G does not contain a subgraph homeomorphic from K_{4} or $\mathrm{K}_{2,3}$.

Proof. Since $\mathrm{K}_{4} \times \mathrm{K}_{2}\left(\mathrm{~K}_{2,3} \times \mathrm{K}_{2}\right)$ has a subgraph homeomorphic with $\mathrm{K}_{5}\left(\mathrm{~K}_{3,3}\right)$ the product of a graph homeomorphic from $\mathrm{K}_{4}\left(\mathrm{~K}_{2,3}\right)$ and K_{2} will have a subgraph homeomorphic with K_{5}, ($\mathrm{K}_{3,3}$, respectively) too. Hence by Kuratowski's theorem if G has a subgraph homeomorphic from K_{4} or $K_{2,3}$, then $G \times K_{2}$ is not planar. The preceding lemma implies the converse.
5. Traversability. An important notion in graph theory is that of hamiltonian. No one has found yet a criterion for graphs having a hamilton cyc.le. Before we give conditions under which $G_{1} \times G_{2}$ is hamiltonian, it might be of value to mention that $G_{1} \times G_{2}$ is eulerian if and only if points of G_{1} and G_{2} are of the same parity and both are connected.

THEOREM 5.1. Let G_{1} and G_{2} be two graphs having spanning paths. Then $G_{1} \times G_{2}$ is not hamiltonian if and only if both have an odd number of points and none has an odd cycle.

Proof. Assume that $2 m+1$ and $2 n+1, m$ and n positive integers, are the orders of G_{1} and G_{2}, and that
$P_{1}=\left\{v_{1}^{1}, \ldots, v_{1}^{2 m+1}\right\}$ and $P_{2}=\left\{v_{2}^{1}, \ldots, v_{2}^{2 n+1}\right\}$ are their spanning paths, respectively. Suppose neither G_{1} nor G_{2} has an odd cycle. Moreover, assume that $G_{1} \times G_{2}$ is hamiltonian. The Iength of a hamilton cycle C of $G_{1} \times G_{2}$ is odd. Draw $G_{1} \times G_{2}$ in the plane in such a way that the lines of spanning paths $P_{1}^{i}\left(P_{2}^{j}\right)$ in all copies $G_{1}^{i}\left(G_{2}^{j}\right)$ of $G_{1} \times G_{2}$ are horizontal (vertical) and that neither a line of $G{ }_{1}^{i}\left(G_{2}^{j}\right)$ crosses a line of $G{ }_{1}^{k}\left(G_{2}^{\ell}\right)$ for $i \neq k\left(j \neq \ell\right.$, respectively) nor a line of G_{1}^{i} crosses a line of G_{2}^{j} more than once, for $i, k=1,2, \ldots, 2 m+1 ; j, \ell=1,2, \ldots, 2 n+1$. Draw $2 n$ horizontal (2 m vertical) lines "between" G_{1}^{i} and $G_{1}^{i+1}, i=1,2, \ldots$, $2 n\left(G_{2}^{j}\right.$ and $\left.G_{2}^{j+1}, j=1,2, \ldots, 2 m\right)$. The number of times the line s of C cross each of the se horizontal (vertical) lines is even. Since there are $2 m+2 n$ horizontal and vertical lines, the length of the cycle C must be even, a contradiction to our assumption.

For the converse we need to consider the following cases.
(i) Suppose the order of G_{1} or G_{2} is even. It is easy to see that the product of two paths is hamiltonian if at least one has odd length. Hence the assertion is true in this case.
(ii) Suppose the order of G_{1} and G_{2} is odd, and one, say G_{1}, has an odd cycle. To complete the proof of the theorem, it suffices to show that $G_{1} \times G_{2}$ is hamiltonian if G_{1} is a path of order
$2 m+1$ with $2 m+2$ lines having a cycle C of odd length and $G 2$ is a path of order $2 \mathrm{n}+1$.

Remove the lines of C from G_{1} to obtain two paths P_{1} and P_{2} and a set of isolated points. (In general P_{1} or P_{2} might be an isolated point, too; in which case it will be considered as a path of length zero.) The length of these paths are of the same parity. According to their length two cases must be studied.
(i) The length of P_{1} and P_{2} is odd.
(ii) The length of P_{1} and P_{2} is even.

Instead of writing a tedious proof for our assertion we show a method of finding a hamilton cycle for each case in the following figures.

COROLLARY. If G_{1} and G_{2} are hamiltonian, then $G_{1} \times G_{2}$ is hamiltonian also.

Case (i)

Case (ii)

The next two theorems give sufficient conditions under which $G_{1} \times G_{2}$ is not hamiltonian,

THEOREM 5.2. If in G_{1} three points of degree one are adjacent to a point and if G_{2} contains a point of degree one, then $\mathrm{G}_{1} \times \mathrm{G}_{2} \xrightarrow{\text { is not hamiltonian. }}$.

Proof. Let v_{1}^{1} be adjacent to points v_{1}^{2}, v_{1}^{3} and v_{1}^{4} each of degree one in G_{1} and let v_{2}^{1} be a point of degree one in G_{2}. Then the points $\left(v_{1}^{2}, v_{2}^{1}\right),\left(v_{1}^{3}, v_{2}^{1}\right)$, and $\left(v_{1}^{4}, v_{2}^{1}\right)$ in $G_{1} \times G_{2}$ all have degree two and are adjacent with $\left(v_{1}^{1}, v_{2}^{1}\right)$. Since no cycle can contain three lines adjacent with one point, $G_{1} \times G_{2}$ cannot be hamiltonian.

THEOREM 5.3. Let G_{i} have two points of degree one adjacent with a point of $G_{i}, i=1,2$. Then $G_{1} \times G_{2}$ is not hamiltonian.

Proof. Let v_{i}^{1} be adjacent with two points v_{i}^{2} and v_{i}^{3} of degree one in $G_{i}, i=1,2$ Suppose $G_{1} \times G_{2}$ is hamiltonian. Then the lines $\left(v_{1}^{2}, v_{2}^{2}\right)\left(v_{1}^{1}, v_{2}^{2}\right),\left(v_{1}^{1}, v_{2}^{2}\right)\left(v_{1}^{3}, v_{2}^{2}\right)$,
$\left(v_{1}^{3}, v_{2}^{2}\right)\left(v_{1}^{3}, v_{2}^{1}\right),\left(v_{1}^{3}, v_{2}^{1}\right)\left(v_{1}^{3}, v_{2}^{3}\right),\left(v_{1}^{3}, v_{2}^{3}\right)\left(v_{1}^{1}, v_{2}^{3}\right)$, $\left(v_{1}^{1}, v_{2}^{3}\right)\left(v_{1}^{2}, v_{2}^{3}\right),\left(v_{1}^{2}, v_{2}^{3}\right)\left(v_{1}^{2}, v_{2}^{1}\right)$ and $\left(v_{1}^{2}, v_{2}^{1}\right)\left(v_{1}^{2}, v_{2}^{2}\right)$ must be in a hamilton cycle of $G_{1} \times G_{2}$. These themselves form a cycle not containing the point $\left(v_{1}^{1}, v_{2}^{1}\right)$, a contradiction.

REFERENCES

1. M. Behzad and G. Chartrand, An introduction to total graphs. Theory of graphs; International Symposium, Rome 1966. (Gordon and Breach, New York, 1967).
2. G. Chartrand and F. Harary, Planar permutation graphs. Les Annales de I' Institut Henri Poincaré, Vol. III, 4 (1967) 433-438.
3. M. Rosenfeld, On the total chromatic number of certain graphs (to appear).
4. G. Sabidussi, Graph multiplication. Math. Z. 72 (1960) 446-457.
5. V.G. Vizing, On an estimate of the chromatic class of a p-graph. Diskret. analiz. 3 (1964) 25-30.

The National University of Iran
Western Michigan University
Pahlavi University, Iran

