Canad. J. Math. Vol. 70 (3), 2018 pp. 538-594
http://dx.doi.org/10.4153/CJM-2016-055-2 ﬂ
© Canadian Mathematical Society 2017

jYCMS

Fixed Point Theorems for Maps With Local
and Pointwise Contraction Properties

Krzysztof Chris Ciesielski and Jakub Jasinski

Abstract. This paper constitutes a comprehensive study of ten classes of self-maps on metric spaces
(X, d) with the pointwise (i.e., local radial) and local contraction properties. Each of these classes
appeared previously in the literature in the context of fixed point theorems.

We begin with an overview of these fixed point results, including concise self contained sketches
of their proofs. Then we proceed with a discussion of the relations among the ten classes of self-maps
with domains (X, d) having various topological properties that often appear in the theory of fixed
point theorems: completeness, compactness, (path) connectedness, rectifiable-path connectedness,
and d-convexity. The bulk of the results presented in this part consists of examples of maps that
show non-reversibility of the previously established inclusions between these classes. Among these
examples, the most striking is a differentiable auto-homeomorphism f of a compact perfect subset
X of R with f' = 0, which constitutes also a minimal dynamical system. We finish by discussing a
few remaining open problems on whether the maps with specific pointwise contraction properties
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must have the fixed points.
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The well-known 1922 Banach Fixed Point Theorem states that every self-map f of a
complete metric space (X, d) must have a fixed point, i.e., an £ € X with f(&) = &
provided there exists a constant A € [0,1) such that d(f(x), f(¥)) < Ad(x, y) for all
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x, y € X. Maps like this are called contractions, and Banach’s theorem is also known
as the Contraction Principle.

The Contraction Principle has a multitude of generalizations where the contraction
assumption on f is weakened. Among them are two 1962 results of Edelstein [15,16]
that f must have a fix point provided: (i) X is compact and function f is shrinking,
thatis, d(f(x), f(y)) < d(x, y) for all distinct x, y € X; (i) X is compact-connected
and f is locally shrinking, that is, when for every x € X there exists an & > 0 such that
f restricted to the open ball B(x, €), centered at x, and of radius ¢, is shrinking. In
particular, (ii) implies that any f on a compact connected space X must have fixed
point provided f is locally contractive, that is, when for every x € X there exist an
e>0andal e [0,1) such that d(f(y), f(z)) < Ad(y,z) forall y,z € B(x,¢). Yet
another group of generalizations involves the functions f that are pointwise contrac-
tive, that is, such that for every x € X there exist an ¢ > 0 and a A € [0,1) for which
d(f(x),f(y)) < Ad(x,y) as long as y € B(x,¢). Notice that this notion is closely
related to that of a derivative, see Remark 2.3. Here we have the following results:
(iii) 1978 theorem of Hu and Kirk, with proof corrected in 1982 by Jungck, that f
must have a fixed point, provided X is rectifiable-path connected and f is uniformly
pointwise contractive, that is, pointwise contractive but such that A is the same for all
x € X [21,22] and (iv) our 2016 theorem that f must have a fixed point, provided X is
compact rectifiable-path connected and f is pointwise contractive [11]. Also, another
2016 paper [10] gives a paradoxically-looking example providing a key insight into a
possible behavior of the pointwise contractive maps.

The four local and pointwise notions of contractive and shrinking maps mentioned
above, together with their several uniform versions, led to twelve classes of mappings,
of which only ten are distinct, precisely defined in Section 2. The goal of this pa-
per is to fully discuss the fixed and periodic point theorems available for these map-
pings (see §3), as well as the inclusions among these classes of functions (see §4).
We restrict our attention to the mappings defined in Section 3. The multitude of
other contraction-like notions that appear in the literature fall outside of the scope
of the present material (see Rhoades’ 1977 paper [31] comparing 125 different global
contraction-like conditions, most of which involve distances of the form d(x, f(x)),
or the more recent works [5, 23, 24]. Section 5 contains the remetrization results on
which the generalizations of the Fixed Point Theorem are based.

The relations between the considered classes of maps depend on the topological
properties of the space (X, d) on which the maps act. We will restrict our atten-
tion to the topological properties that already appeared in the context of the fixed
point theorems. These include: completeness, compactness, connectedness and path
connectedness, rectifiable-path connectedness, and the so-called d-convexity that en-
compasses convexity in the Banach spaces. There are eight different topological classes
that can be defined in terms of the aforementioned properties. In Section 6, using di-
agrams, we summarize the inclusions between the ten classes of maps we consider
for the eight classes of topological spaces mentioned above. We reference examples
showing that no implication between the classes exist, unless the diagrams force the
implication. These examples are described in Section 7. All examples are with no fixed
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or periodic points, unless their existence is implied by an appropriate fixed or peri-
odic point theorem, respectively. The last section discusses the few remaining open
problems.

We should mention that a large portion of fixed point theory (including locally
contractive maps) is developed in metric spaces with additional algebraic structure,
like Banach spaces, partially ordered sets, complete lattices, and many other. Such
topics are not discussed in this paper and we refer interested readers to [3,7,19,24].

2 A Dozen Notions of Contractive Maps

In what follows, all self maps we consider are defined on the complete metric spaces,
with the space usually denoted by X and the metric by d. However, the notions defined
below are valid also for maps f: X — Y between arbitrary metric spaces X and Y.

Definition 2.1 Let X be a metric space and let f: X — X. The following properties
are also identified with the corresponding classes of functions.

Global notions:

(C) f is contractive (with a contraction constant 1), provided there exists a A €
[0,1) such that d(f(x), f(y)) < Ad(x, y) for every x, y € X.
(S) f is shrinking, provided d(f(x), f(¥)) < d(x, y) for every distinct x, y € X.

Local notions:

(LC) f is locally contractive, provided that for every y € X there exists an open
U 5 y such that f | U is contractive.

(uLC) f is locally contractive with the same contraction constant, provided that there
existsa A € [0, 1) such that for every y € X there existsan open U 3 y for which
f 1U is contractive with the contraction constant A. Occasionally we will use
an abbreviation (1)-(uLC) when we like to stress that (uLC) is satisfied with
a constant A.

(ULC) f is uniformly locally contractive, provided that there exist e > 0 and A € [0,1)
such that for every y € X the restriction f | B(y,¢) is contractive with a
contraction constant A. We will occasionally use an abbreviation (¢, 1)-(ULC)
when we like to stress that (ULC) is satisfied with the constants € and A.

(LS) f islocally shrinking, provided that for every y € X there exists an open U 3 y
such that f | U is shrinking.

(ULS) f is uniformly locally shrinking, provided that there exists an & > 0 such that
f I B(y, €) is shrinking for every y € X. Occasionally we will use the notation
(€)-(ULS) to stress that (ULS) is satisfied with a radius e.

Pointwise notions:

(PC) f is pointwise contractive, if for every x € X there exist an open U 3 x and a
A €[0,1) such that d(f(x), f(¥)) < Ad(x, y) forall y e U.!

IThe notions in this group are often named local radial contractions, see [20,21]. We feel that the
term pointwise contraction better describes the nature of these functions, see [12,18].
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(uPC) f is pointwise contractive with the same contraction constant, if there exists a
A € [0,1) such that for every x € X there is an open set U 3 x for which
d(f(x),f(y)) <Ad(x,y)forall ye U.

(UPC) f is uniformly pointwise contractive, if there exista A € [0,1) and an ¢ > 0 such
that for every x € X, d(f(x), f(¥)) < Ad(x, y) forall y € B(x, ¢).

(PS) f is pointwise shrinking, if for every x € X there exists an open U 3 x such
that d(f(x), f(y)) <d(x,y) forallye U, y # x.

(UPS) f is uniformly pointwise shrinking, if there exists an ¢ > 0 such that for every

x € Xwehave d(f(x), f(y)) <d(x,y)forall y € B(x,¢), y # x.

The obvious relations among the defined properties, plus those indicated by Re-
mark 2.2, are shown in Figure 1. We have included notions (UPC) and (UPS) in Def-
inition 2.1 for symmetry. However, as they are redundant, we will drop them from
further considerations (cf. also Figure 3).

© (ULC) — (uLC) (LC)

e /

(s) (ULS) — (LS)
(UPC) > (aPC) - |» (PC)
(UPS) (S)

Figure I: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being a complete metric space. The upward arrows are justified by Re-
mark 2.2. No other implications in the figure exist; see Theorem 6.1.

Figure 1, as well as the similar figures and the associated theorems for the maps
defined on the spaces X with other topological properties, will be discussed in detail
in Section 6.

Remark 2.2 (UPCQ) is equivalent to (ULC) and (UPS) is equivalent to (ULS).

Proof Clearly (ULC) implies (UPC). Now assume that f: X — X satisfies (UPC)
with some ¢ > 0 and A € [0,1). Let x € X and suppose that y,z € B(x, 5). Then
d(y,z) < d(y,x) +d(x,z) < 5+ % = ¢ 50z € B(y,¢). By the (UPC) property
d(f(y), f(z)) < Ad(y,z), which shows that f is (ULC) with the same A and . The
argument for (UPS) implies (ULS) is similar. [ ]
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For a self-map f on (X, d) and a limit point x € X, let

d( f(x),
D* f(x) =limsup —(f( ) f()/)) ,
y—x d(x,y)
and for an isolated point x we set D* f(x) = 0. In particular, if X is a subset of R
(considered with the standard metric), X has no isolated points, and f is differen-

tiable, then D* f(x) = |f'(x)|. The (PC) and (uPC) properties can be expressed in
terms of this notion as follows.

Remark 2.3  Forevery f: X — X, the (uPC) property simply says that
sup{D*f(x):xe X} <1,
and (PC) is equivalent to D* f(x) < 1 for all x € X.

Proof (uPC) gives us a number A < 1 such that D* f(x) < A for all limits x € X
because we have %ﬁ;m < A for y sufficiently close but not equal to x. Inversely,
ifsup{D*f(x) : x € X} = 5 <1, then f is (uPC) with any A such that n < A < 1. The

other equivalence follows similarly. [ ]

In the next two sections we review the fixed/periodic points theorems utilizing the
above-defined terminology and further discuss how the classes are related.

3 Fixed and Periodic Point Theorems

For f:X — X and a number n € @ = {0,1,2,...}, the n-th iteration f(") of f is
defined as f o--- o f, the composition of n instances of f. In particular, f*) = f and
£ is the identity function.

Banach’s [4] nearly century old theorem states the following.

Theorem 3.1 If X is a complete metric space and f: X — X is (C), then f has a unique
fixed point.

Proof Fixan x € X and notice that ( f") (x) : n < w) is a Cauchy sequence, since the
series formed by the distances d( (" (x), f("*V(x)) < A"d(x, f(x)) is convergent
as it is bounded by the geometric series Y, d(x, f(x))A", where A € [0,1) is a
contraction constant for f. So the sequence converges to a point { € X, which is a
fixed point, since

d(& f(§) = lim d( £ (x), F(F(x)))
= lim d( " (x), f"D(x)) =d(& &) =0,
implying that f(&) = & Property (C) also implies the uniqueness of &. [ |
This theorem, often called the Banach Contraction Principle, was studied in great

detail [23, 24, 31]. Here we focus solely on the fixed and periodic point theorems for
the mappings f, with properties from Definition 2.1.
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An x € X is a periodic point of f:X — X provided that f(")(x) = x for some
n > 0. In particular, x € X is a fixed point of f if and only if it is a periodic point of
f with period 1, that is, f()'(x) = x. The (forward) orbit of an x € X is defined as
O(x) = {f("(x) : n < w}. Very significant contributions to the study of shrinking
and locally shrinking maps are due to Edelstein [15,16].

Theorem 3.2 Let (X, d) be compact and let f: X — X.
(1) If f is (S), then f has a unique fixed point.
(ii) If f is (LS), then f has a periodic point.
(iii) If f is (LS) and X is connected, then f has a unique fixed point.

Proof In case (i), notice that X 5 x — d(x, f(x)) € R is a continuous mapping on a
compact space. Thus, it attains its minimum at some x € X, which, by (S), must be a
fixed point. This fixed point is clearly unique.

In case (ii), first notice (see Theorem 4.2) that f is actually (ULS) with some con-
stant € > 0. Fix an x € X and notice that there exist i < j < w such that

d(fD (x0), fP (x0)) < e.

Put n = j—i > 0 and notice that ]?: () still satisfies (ULS) with the constant e.

Fixa & € X at which the mapping X 5 x = d(x, f(x)) € R achieves the minimum.
Sod(& f(£) <d(fP (x0), F(f P (x0))) = d(f D (x0), f7 (x0)) < e, and we must
have d(&, f(£)) = 0, since otherwise d( 18, f(f(f))) < d(& f(¥)), contradicting
the choice of &. Hence, (") (&) = f(&) = &, that is, & is a periodic point of .

In case (iii), notice that, by Proposition 5.2 (ii), there exists a complete metric D
on X topologically equivalent to d, such that f is (S) with respect to this metric. Thus,
by (i), f has a unique fixed point. [ |

It is worth noting that Ding and Nadler [14, Theorem 2.6] generalized items (ii)
and (iii) of Theorem 3.2 to locally compact spaces X. See also [13].

Our next theorem is from Hu and Kirk [21], with a proof corrected by Jungck [22]
(see discussion in [2, p 66]). To state it, we need the following definitions.

A metric space X is rectifiably-path connected provided that any two points x, y € X
can be connected in X by a path p:[0,1] — X of finite length £(p), that is, by a
continuous map p satisfying p(0) = x and p(1) = y, and having a finite length €(p)
defined as the supremum over all numbers

Zd(p(ti)’p(ti—l)) withO<n<wand0 = o<ty <---<t,=1
i=1

Theorem 3.3 ([21,22]) If(X,d) is a rectifiable-path connected complete metric space
and a map f: X — X is (uPC), then f has a unique fixed point.

Proof The assumptions on (X, d) and f imply (see Proposition 5.5 (iii)) that there

exists a complete metric D on X such that f is (C), when X is considered with the
metric D. So, by Theorem 3.1, f has a unique fixed point (see also [2, Theorem 6]).
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It is worth noting that earlier Rakotch [30] and Marjanovi¢ [25] both proved The-
orem 3.3 under the stronger assumption that f is (uLC). The next theorem is very
recent. It generalizes Theorem 3.3 to the (PC) maps, no uniformity assumption, at the
expense of requiring that the domain of f is compact.

Theorem 3.4 ([11]) Assume that (X, d) is a compact rectifiable-path connected metric
space. If f: X — X is (PC), then f has a unique fixed point.

Proof Let D be the distance from Proposition 5.5. By part (iv) of that proposition,
f{X,D) - (X, D) is (S). Let M = inf{D(x, f(x)) : x € X}. Then, by Corollary 5.4
(ii), there exists an x € X such that D(%, f(x)) = M (which is not completely obvious,
since (X, D) need not be compact, see the footnote to Proposition 5.5).

To finish the proof, it is enough to notice that M must equal 0, since other-
wise D(f(x), f(f(x))) < D(x, f(x)), contradicting the minimality of M. Thus,
D(x, f(x)) = 0 and f(x) = X, as required. The uniqueness of the fixed point is en-
sured by the fact that f: (X, D) - (X, D) is (S). [ ]

Edelstein [15] proved the main part of the following theorem; see also [11] for
the proof of the entire theorem. (We missed this 1961 result of Edelstein when writ-

ing [11].)

Theorem 3.5  Assume that (X,d) is complete and that f: X — X is (ULC).

(1) If X is connected, then f has a unique fixed point [15].
(ii) If X has a finite number of components, then f has a periodic point [11].

Proof Tosee(i),lete > 0and A € [0,1) be such that f is (¢, 1)-(ULC). By Remark 5.1
and Proposition 5.2 (i), there exists a metric D on X topologically equivalent to d such
that f:(X,D) - (X, D) is (C) with constant A. Hence, by the Banach Contraction
Principle, f has a unique fixed point.

To see (ii), let Cy,. .., C,, be the connected components of X. Since f("™)[C,] is
connected, there must exist i < i + k with f()[C;] and f0*F)[C,] intersecting the
same component of X, call it C. Then f(¥)[C] c C. Applying (i) to f¥)}C:C - C,
we can find an x € C with f(¥)(x) = x. So x is a periodic point of f. [ ]

Notice that Theorems 3.3 and 3.5 are reduced to the Banach Contraction Princi-
ple by using appropriate (but different) remetrization results. Rosenholtz discussed
similar (but different) connections between Theorem 3.2 and the Banach Contraction
Principle [32].

4 Implications Among the Contractive Notions

Following Jungck [22], we say that (X, d) is d-convex provided that for any distinct
points x, y € X there exists a path p: [0,1] - X from x to y such thatd(p(t;), p(t3)) =
d(p(t1), p(t2)) + d(p(t2), p(t3)) whenever 0 < #; < t, < t3 < 1. Clearly, every
d-convex space is rectifiable-path connected. On the other hand, any convex subset

https://doi.org/10.4153/CJM-2016-055-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-055-2

Fixed Point Theorems for Maps With Local and Pointwise Contraction Properties 545

of a Banach space is d-convex. In particular, so is any interval considered with the
standard distance.
Part (i) of the next theorem is a particular case of [22, p. 503].

Theorem 4.1 Let (X, d) be d-convex and let f: X — X.

(i) If f is (uPC) with a constant A, then it is (C) with the same constant.
(ii) If f is (PS), then it is (S).

Proof First notice, that for every distinct y,z € X

o1 = 40(U).f(2)
(*) lfL = #

converging to x such that % >Lforalln < w.

, then there exist x € X and a sequence {(x, # x : n < w) in X

Indeed, let p:[0,1] - X be a path from y to z from the definition of d-convexity.

Define a nested sequence ([s,,t,] : n < w) of intervals in [0,1] such that, for every
1 <, [$n, ty] haslength 27" and W > L. We start with [so, to] = [0, 1]
and, having [s,, t, ], at least one of the halves of [s,, t, ] can be chosen as [s,11, tn11]-

Let {t} = Nu<w[Sn>tn]- Then x = p(t) is as desired, since for every n < w, there is
Uy € {sy, t, } for which x,, = p(u,) # x and satisfies W > L.

Now to see (i), notice that if L = W for some distinct y, z € X then, by (x),
L<D*f(x) <A

To see (ii), assume that f is not (S). Then there exist distinct y,z € X with L =
% > 1. Let x be as in () for this pair. Then f is not (PS) at x. [ |

For the compact spaces we have the following implications. (See [11, Proposi-
tion 4.3], [14, Theorem 4.2].)

Theorem 4.2  (LC) implies (ULC) and (LS) implies (ULS) for maps f: X — X with
compact X.

Proof Suppose X is compact. To see that (LC) implies (ULC), for each y € X find
an open set U, > y such that f | U, is Lipschitz with a constant 1,, € [0,1). By
compactness of X, there is a finite X, ¢ X such that Uy = {U, : y € Xy} covers X.
Let § > 0 be a Lebesgue number for the cover Uy of X. (See [27, Lemma 275].) Then
€ = §/2 satisfies (ULC) with the contraction constant A = max{A, : y € Xo}.

The argument for (LS) implies (ULS), when X is compact, is similar. [ |

The next result seems never to have been published before.
Theorem 4.3 (S)&(ULC) = (C) for maps f: X — X with compact X.

Proof Lete > 0and A € [0,1) be such that d(f(x), f(y)) < Ad(x,y) for any
x,y € Xwithd(x,y) <e LetZ = {{x,y) € X* : d(x,y) > ¢} and define g on
Zbyg(x,y) = |%’J;§m|. Since Z is compact, g attains its maximum value A; on

Z. We must have A; < 1, since f is (S). Thus, f is (C) with a contraction constant
max{A, A} <1 [ |
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5 Geodesics and Remetrization Results

For € > 0, we say that X is e-chainable, provided for every p, q € X there exists a finite
sequence s = (xg, X1, - . ., X ), referred to as an e-chain from p to q, such that xq = p,
Xn = q>and d(x;, x;41) < € for every i < n. The length of the e-chain s is defined as

[(S) =Yin d(xi+1) xi)-
Remark 5.1 All connected spaces are e-chainable for any € > 0.

Proof (See [17, Exercise 6.1.D (a)]) Fix x, y € X and € > 0. Define (B, c X:n < w)
by induction on n < w as By = {x} and B,41 = {z € X:3b e B,(d(z,b) <¢)}. The
union U<, Byn # @ is a clopen. So, by connectedness of the space X, we have
Un<w Bn = X. Thus, y € B, for some n < w and so, there exists an e-chain, with
n + 1terms, from x to y. ]

Proposition 5.2 (ii) can be found (with a slightly different proof) in Rosenholtz [32].
The proposition also resembles the results of Jungck [22] and of Hu and Kirk [21]. See
also [2, Lemma 2 ].

Proposition 5.2 Let ¢ > 0 and assume that (X, d) is connected or, more generally,
e-chainable. Then the map D: X? — [0, 00) given as

D(x, y) = inf{[(s) : s is an e-chain from x to y}

is a metric on X topologically equivalent to d. If (X, d) is complete, then so is (X, D).
Moreover,
() If f:(X,d) - (X,d) is (1, 1)-(ULC) for some 1 > ¢, then f:(X,D) — (X, D) is
(C) with constant A.
(i) If(X,d) is compact and f:(X,d) - (X, d) is (ULS) with a constant n > ¢, then
f:(X,D) - (X, D) is (S).

Proof To see that D is a metric on X, it is enough to show that D satisfies the triangle
inequality. So fix x, y,z € X and 8 > 0. Then there exist the ¢-chains s = (xy, ..., x,)
from x to y and t = (yo,..., ym) from y to z with D(x, y) > [(s) - 6 and D(y,z) >
[(t) - 8. Since u = (x0,...,%n, Y0»--->Ym) is an e-chain from x to z with [(u) =
[(s) + [(t), we have

D(x,y) + D(y,2) 2 1(s) =8+ [(t) - & = [(u) — 28 > D(x,2) - 20.

Since the constant § > 0 was arbitrary, we obtain the desired triangle inequality
D(x,y) + D(y,2) > D(x, 2).

Also if d(x, y) < &, then we have D(x, y) = d(x, y), since in that case d(x, y) <
D(x,y) < I({x,y)) = d(x,y). This implies the topological equivalence and com-
pleteness statements, finishing the proof of the main part of the proposition.

To see (i), fix x, y € X. We need to show that D(f(x), f(¥)) < AD(x, y). For
this, fixa 6 > 0 and let s = (xo,...,x,) be an e-chain from x to y with D(x, y)

>
[(s) — 8. Notice that, by (1, 1)-(ULC), for every i < n we have d(f(x;+1), f(x:)) <
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Ad(xi11,x;). In particular, £ = (f(xp), ..., f(x,)) is an e-chain and

(t) = Y d(f(xin), f(x0)) < Y Ad(xigns xi) = M(s).
i<n i<n
Hence, D(f(x), f(y)) < I(t) < M(s) < M(D(x, y) + 8). Since 8 > 0 was arbitrary, we
obtain the desired inequality D(f(x), f(y)) < AD(x, y).

To see (ii), choose distinct x,y € X. We need to show that D(f(x), f(y)) <
D(x, ). Solet {Uy : k < n} be a cover of X by open sets of d-diameter less than
e. Notice that if s = (xg,x1,...,%,,) is an e-chain from p to g and i < j < m are
such that x; and x; belong to the same Uy, then f = (xo, ... s XisXjs oo rs Xm) is also an
e-chain from p to g for which [(¢) < [(s). In particular, for any e-chain s from p to
q there exists an e-chain ¢ from p to g such that any Uy contains at most two of the
terms in ¢. In particular,

D(x, y) = inf{[(s) : s is an e-chain from x to y containing 2# terms}.

In other words, if Z ¢ X*" is the set of all e-chains (xo, ..., X2,-1) from x to y, then
Z is compact (as a closed subset of X?") and D(x, y) = inf{I(s) : s € Z}. Therefore,
the Extreme Value Theorem implies that there exists an e-chain s = (xg, ..., X2,-1)
from x to y with D(x, ) = [(s). To finish the proof, it is enough to notice that by the
(n)-(ULS) assumption, (f(xo), .., f(x24-1)) is an e-chain from f(x) to f(y) and
$0

D(f(x). f(r) < 30 d(f(xin). f(xi)) < 3 d(xisa,xi) =1(s) = D(x, )

i<2n-1 i<2n-1

as needed. [ ]

In what follows we will use the following result of Myers [29, p. 219]. For the
reader’s convenience, we include its short self-contained proof.

Lemma 53 Let (X,d) be a compact metric space and, for any n < w, let
Pn:[0,1] > X be a rectifiable path such that £(p, 1 [0,t]) = t€(p,) for any t € [0,1].
IfL =liminf,_, . €(ps) < oo, then there exists a subsequence (p,, : k < w) converging
uniformly to a rectifiable path p:[0,1] — X with £(p) < L.

Proof Select a countable dense subset U = {u,, : m < w} of [0,1]. By compactness
of X, it is possible to find a subsequence (p,, : k < w) with €(p,,) = k- L such
that limg, o P, (Um) = p(y) for all m < w. Then maps {p,, : k < w} converge
uniformly to continuous p: [0,1] - X with £(p) < L.

Indeed, let m € {ny : k < w} be such that £(p,, ) < €(pnm) for all k < w and notice
that for every 0 < s <t <1we have

d(pn(5)s P (1)) < E(pny M5, t]) = (£ = 5)e(pn,) < (£ = 5)€(pm)-

To see that the maps p,, form a uniformly converging sequence, choose an ¢ > 0.
It is enough to show that there exists an N such that d(p,;(s), ps,(s)) < e for all
s € [0,1] and j,k > N. So let J be a finite cover of [0,1] by open intervals each of

length not exceeding 6 = W;). For every J € J, choose a u € U n ] and an Nj such
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that d(pn, (u), p(u)) < ¢/4 for all k > Nj. Then, for every s € J and j, k > Ny, we

have
Ad(pn (), p(u)) <Ad(Pni(5), Py (u)) + d(pau, (1), p(u)) <|s — ule(pm) + Z
<88(pm) + Z = g

d(pu(s), pn; (5)) < d(puc(s), p(w)) +d(p(u), puy(5)) <.
Hence, p,, s converge uniformly to a continuous path p.
To see that £(p) < L, notice that forevery 0 =ty <t <--- < t, =1,

> d(p(t),plti)) = Jim 3 d(puy (1), o (10)

< kl:n(r)lo E(t,- = ti-1)e(pm) = €(pm)>
i1

so that £(p) < &(pm)-

Finally, for every ko < w, given a sequence (p,, : k < w), we can ensure that that
€(pm) = €(pn,,) by removing a finite number of elements. Therefore, we have that
2(p) < €(pn,) for every k < w, thatis, £(p) < limg_oo £(pn, ) = L. [ |

Recall that a rectifiable path p: [0,1] — X from x to y is a geodesic provided £(p) <
¢(q) for any other path g: [0,1] - X from x to y. From Lemma 5.3 it is easy to deduce
the following corollary, the first part of which is due to Menger [26].

Corollary 5.4 Let (X, d) be a compact metric space.

(1) Ifthere is a rectifiable path in X from x to y, then there is a geodesic in X from x
to y.

(i) If (X, d) is compact rectifiable-path connected, then for every continuous f: X —
X there exist an x € X and a path p from X to f(x) such that €(p) < €(q) for any
path q from any x € X to f(x).

Proof First notice that any rectifiable path p:[0,1] — X admits a reparametrization
p:[0,1] = X, i.e., a path with the same range and same length, satisfying the condition
from Lemma 5.3: £(p | [0, t]) = t&(p) for any t € [0,1]. Indeed, the map

p:{(‘w,pm) tefo,1])

is as required, since for any s = e(per([;)),t]) € [0,1], wehave £(p 1[0,s]) = &(p 1[0, t]) =
se(p) = se(p).

To see (i), assume that x, ¥ € X can be joint by a rectifiable path. Let L be the
infimum of the lengths of all such paths and choose rectifiable paths p,:[0,1] = X
from x to y such that lim,_, . €(p,) = L. Application of Lemma 5.3 to the sequence
(p, : n < w) gives a path p:[0,1] - X from x to y with £(p) = L.

To see (ii), let L = inf{€(q) : qisa path from x € X to f(x)}. Then, there exists
paths p,:[0,1] - X from x, to f(x,) such that lim,_, €(p,) = L. Application of
Lemma 5.3 to (p, : n < w) gives subsequence (p,, : k < w) converging uniformly to
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a rectifiable path p:[0,1] - X with £(p) < L. If X = p(0) = limy_.co Py, (0), then p
is from x = p(0) to p(1) = limj—co P, (1) = limg—eo f(Pn, (0)) = f(x). So, x and p

are as needed. [ ]

The following proposition is an elaboration of the results from [21, 22]; see also
[2, Theorem 6].

Proposition 5.5 If (X, d) is a rectifiable-path connected metric space, then the map
D:X? - [0, 00) given as D(x, y) = inf{€(p) : p is a rectifiable path from x to y} is a
metric on X. If (X, d) is complete, then so is (X, D).?

(i) If Pisthe range of a rectifiable path pin X, A > 0, and foreveryx € X, D* f(x) < A
with respect to the metric d, then £(f o p) < A8(p).

(i) If A > 0 and, for every x € X, D*f(x) < A with respect to the metric d, then
f:(X,D) — (X, D) is Lipschitz with the constant A. In particular, if 0 < A < 1
and f:(X,d) - (X,d) is (1)-(uPC), then f:(X,D) — (X, D) is (C) with the
contraction constant A.

(iii) If f:(X,d) — (X,d) is (LC), then f: (X, D) - (X, D) is (S).

(iv) If X is compact and f:(X,d) - (X, d) is (PC), then f:(X, D) - (X, D) is (S).

Proof The main part is straightforward and seems to be well known. For a proof,
see [21,28].
To show (i), fix an € > 0. First notice that

(5.1) d(f(p(t), f(p(s))) < (A+e)e(p I [s.t]) forevery0<s<t<1.

Indeed, for every x € [s, t] we have D*(f I P)(x) < A, so there exists a proper open
interval U, = (x — 8y, x + 8, ) such that

(5.2) d(f(p(x)), f(p(x"))) < (A+e)d(p(x), p(x")) for every x" € U, n [s, t].

Let ] be a finite subset of [s, ] such that U = {U, : x € J} isa cover of [s, t] containing
no proper subcover. Let (x1, X3, ..., %2,-1) be a list of elements of ] in the increasing
order. Then by minimality of U, for every 0 < i < n there exists an x;; € U,,, , N
Uiy N (X2i-1, %2141). Moreover, xo = s € Uy, and x2, = t € Uy, ,. In particular,
$=X0 <X < X3 < < Xapoq £ Xz = tand x4, X2i42 € Uy, for every i < n.

2i+1

Therefore, by (5.2),
d(f(p(1)). f(p(s))) < k%:nd(f(P(Xk)),f(p(xkﬂ)))
< k;ﬂ()t +e)d(p(xi), p(xxn)) < (A+e)e(p I [s.1]),
justifying (5.1).

ZNotice that the metrics d and D do not need to be topologically equivalent. For example, let X be
union of the “topologist’s sine curve” (see [27, p. 156]) and a semi-circular curve connecting one end of
the vertical segment with the “end” of the sine curve. If d is the standard metric on R?, then (X, d) is
compact rectifiable-path connected, while (X, D) is not compact, since it is homeomorphic to [0, co).
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To finish the argument for (i), choose the numbers 0 =ty < t; < --- < t, = 1 such

that £(f o p) < ¥ic, d(f(p(ti1)), f(p(t:))) + & Then, by (5.1),
e(fop) <y d(f(p(tin) f(p(1:))) +¢

<Y (A+e)e(p [t ti]) +e= (A +e)e(p) +e.

i<n

Since this holds with any & > 0, the desired inequality, &(f o p) < A8(p), follows.
Item (ii) follows from (i). Indeed, for every a, b € X and ¢ > 0, there is a rectifiable
path p from a to b such that £(p) < D(a, b) + . Then, by (i),

D(f(a), f(b)) =inf{€(q) : q is a rectifiable path from f(a) to f(b)}
<e(fop)<A(p) <A(D(a,b)+e¢).

Since ¢ was arbitrary, we get D(f(a), f(b)) < AD(a, b) for every a, b € X.

To prove property (iii), for distinct x, y € X, we need to show that D(f(x), f(y)) <
D(x, y). Notice that by (ii), f: (X, D) — (X, D) is Lipschitz with the constant 1. Also,
by (LC), there exists an open U 3 x such that f | U is d-contractive with a constant
1 e0,1).

Figure 2: In a rectifiable-path connected space X, if f is (LC) with metric d, then f is (S) in
metric D = inf{I(p) : P is a rectifiable path from x to y}.

Choose a d € (0, D(x, y)) such that z € U whenever d(x, z) < §, a rectifiable path
p:[0,1] = X from x to y with £(p) < D(x, y)+(1-1)8, and pick the smallest ¢ € (0,1)
with D(x, p(¢)) = & (see Figure 2). Then, p(t) € U for every ¢t € [0, €], since, for
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such t,d(x, p(t)) < D(x, p(t)) < D(x, p(¢)) = 8. Therefore by (ii), £(fop 1[0, ¢]) <
A€(p 1[0, €]). Hence
D(f(x), f(»)) < D(f(x), f(p())) + D(f(p(¢)), f(¥))
<e(fopl[0.¢e]) + D(p(e),y) < Ab(p M0, e]) + €(p I [e1])
=-(1-)e(p 1[0, ¢]) + €(p) < =(1-A)D(x, p(¢)) + €(p)
=—(1-1)8+¢€(p) < D(x,y),
as required.

To see (iv), fix distinct x, y € X. We need to show D(f(x), f(y)) < D(x, y). By
Corollary 5.4 (i), there exists a path p:[0,1] - X from x to y with D(x, y) = £(p).
Since €(f o p) = D(f(x), f(y)), it is enough to prove that £(p) > &(f o p).

To see this, let Y = p[[0, 1]]. It is easy to see that for every n < w, the set

Ky={xeY:d(f(x),f(x")) < -2d(x,x") forall x’ € Y with d(x,x") < -1

n+l n+l
is closed in Y. Since f is (PC), we have Y = U, <, K,. So by the Baire category
theorem, there is an n < w such that the interior intyK, of K, in Y is non-empty.
Thus, there exist a < b such that [a,b] c p~'(intyK,). In particular, D* f(x) < -

n+l

for every x € p[[a,b]] and, by (i), £(f o p I [a,b]) < Z=£€(p | [a,b]). Moreover,

n+l

property (S) implies that D* f (x) < 1for every x € Y so, again by (i),
e(feptled])<e(pllcd])

for every 0 < ¢ < d <1. Thus,
&(p) = (p 1 [0,a)) + €(p 1 [a,b]) + £(p 1 [b:1])
> €(p 1[0,a]) + —=—e(p 1 [a,b]) + €(p 1 [b,1])

>0(fop[0,a])+e(foptllab])+e(fopt[b1])
=t(feop)
as needed. [ |
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6 Discussion of the Relations Among the Contractive Classes

In all theorems in this section we present examples of maps that, if possible, have no
fixed and/or periodic points.

6.1 Complete Spaces

(©)3, (ULC) — (uLC) —— (LC)

s /

() (ULS) (LS)

(ul;C) > (PC)

/

(PS)

Figure 3: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being an arbitrary complete metric space. Maps from (C) are indicated
as (C)% |, to denote that they have the fixed point property F according to Theorem 3.1. The
maps from the other classes need not have periodic points, the existence of which will later be
denoted by a superscript P. No other implications in the figure exist, see Theorem 6.1.

Theorem 6.1 No combination of any of the properties shown in Figure 3 implies any
other property, unless the graph forces such an implication. In particular, for the classes
in the figure, listed by rows, we have the following.
(C): (C) < (S)&(ULC) by Example 27, with no periodic point;
(ULC): (ULC) < (S)&(uLC) by Example 16, with no periodic point;
(uLC): (uLC) < (S)&(LC)&(uPC) by Example 19, with no periodic point;
(LC): (LC) < (S)&(uPC) by Example 20, with no periodic point;
(S): (S) < (ULC) by Example 24, with no periodic point;
(ULS): (ULS) < (uLC) by Example 18, with no periodic point;
(LS): (LS) <t (uPC) by Examples 28 and 21, with no periodic point;
(uPC): (uPC) < (S)&(LC) by Example 4, with no periodic point;
(PC): (PC) < (S) by Example 3, with no periodic point.
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6.2 Connected and Path-connected Spaces

i -~

(©)3, (ULC)} 5 — (uLC) — (LC)

v /

(ULS) (LS)

®)

(uI;C) > (PC)

/

(PS)

Figure 4: The relations among the local contractive and shrinking properties for the maps
f+X — X, with X being a complete metric space which is either connected or path-connected.
The left dashed arrow indicates that, by Proposition 5.2 (i), there exists an equivalent metric
for which any map that is (ULC) in the old metric becomes (C). No other implications in the
figure exist, see Theorem 6.2.

Theorem 6.2  No combination of any of the properties shown in Figure 4 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the figure, listed by rows, we have the following.
(C): (C) <= (S)&(ULC) by Example 10, with fixed point;
(C) < (S)&(uLC), with no periodic point, see below (ULC) < (S)&(uLC);
(ULC): (ULC) < (S)&(uLC) by Example 16, with no periodic point;
(uLC): (uLC) < (S)&(LC)&(uPC) by Example 19, with no periodic point;
(LC): (LC) < (S)&(uPC) by Example 20, with no periodic point;
(S): (S) <= (ULC) by Example 6, with fixed point;
(S) < (ULS)&(uLC) by Example 17, with no periodic point;
(ULS): (ULS) < (uLC) by Example 18, with no periodic point;
(LS): (LS) < (uPC) by Example 21, with no periodic point;
(uPC): (uPC) < (S)&(LC) by Example 4, with no periodic point;
(PC): (PC) < (S) by Example 3, with no periodic point.
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6.3 Rectifiable-path Connected Spaces

(O, (ULO)j5s — (uLO);; ——= (LO)

OF (ULS) —~ (L)

Figure 5. The relations among the local contractive and shrinking properties for the maps

fiX >

X, with X being a complete metric space which is rectifiable-path connected. Each

of the dashed (not dotted) arrows indicates that, by Proposition 5.5, there exists another com-
plete rectifiable-path connected metric on X that makes any map from the larger class belong
to the smaller class. No other implications in the figure exist, see Theorem 6.3.

Theorem 6.3  No combination of any of the properties shown in Figure 5 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the figure, listed by rows, we have the following.

(C):
(ULC):
(uLC):

(LC):

(S):

(ULS):
(LS):

(uPC):

(PC)

(C) <= (S)&(ULC) by Example 10, with fixed point;

(C) < (S)&(LC), with no periodic point, see below (uPC) < (S)&(LC);
(ULC) < (S)&(uLC) by Example 11, with fixed point;

(ULC) < (S)&(LC), with no periodic point, see (uPC) < (S)&(LC);
(uLC) < (S)&(LC)&(uPC) by Example 13, with fixed point;

(uLC) < (S)&(LC), with no periodic point, see (uPC) < (S)&(LC);
(LC) < (S)&(uPC) by Example 14, with fixed point;

(LC) <« (S)&(PC) by Example 5, with no periodic point;

(S) <= (ULC) by Example 6, with fixed point;

(S) <+ (ULS)&(LC) by Example 7, with no periodic point;

(ULS) < (uLC) by Example 12, with fixed point;

(ULS) <= (LC) by Example 15, with no periodic point;

(LS) <= (uPC) by Example 9, with fixed point;

(LS) <= (PC) by Example 8, with no periodic point;

(uPC) < (S)&(LC) by Example 4, with no periodic point;

: (PC) < (S) by Example 3, with no periodic point.
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6.4 d-convex Spaces

(C)} | «——— (ULC)}, = (uLC)}, —— (LQ)

A

(ULS) ; (LS)

Figure 6: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being a d-convex metric space. The left and upper portions of the equiva-
lences «— follow from Theorem 4.1. No other implications in the figure exist, see Theorem 6.4.

Theorem 6.4 No combination of any of the properties shown in Figure 6 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the figure, listed by rows, we have the following.
(C): (C) < (S)&(LC), see the example below for (uPC);

(ULC): (ULC) < (S)&(LC), see the example below for (uPC);
(uLC): (uLC) <« (S)&(LC), see the example below for (uPC);

(LC): (LC) < (S)&(PC) by Example 5, with no periodic point;
(uPC): (uPC) < (S)&(LC) by Example 4, with no periodic point;

(PC): (PC) < (S) by Example 3, with no periodic point.
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6.5 Compact Spaces

Q) (ULQC)} , < (uLC); ,, «<—> (LO)3,

;S /

(S)52 (ULS)3, (LS)3,

(uI;C) > (PC)

/

(PS)

Figure 7: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being a compact metric space. The left portions of the equivalences «—
follow from Theorem 4.2. Moreover, we also have implication (S)&(ULC) = (C), see Theo-
rem 4.3. No other implications in the figure exist, see Theorem 6.5.

Theorem 6.5 No combination of any of the properties shown in Figure 7 implies any
other property, unless the graph forces such implication, with the exception of the impli-
cation (S)&(ULC) = (C). In particular, for the classes in the figure, listed by rows, we
have the following.

(C):

(ULC):
(uLC):
(LC):

(8):
(ULS):

(LS):
(uPC):

(PC):

(C) < (S)&(ULC), see Theorem 4.3;

(C) < (S)&(uPC), with fixed point, see below for (LC) <= (S)&(uPC);
(C) <« (ULC), with periodic but not fixed point, see below (S) <= (ULC);
(C) < (uPC), with no periodic point, see below (LS) < (uPC);

see the examples below for (LC);

see the examples below for (LC);

(LC) < (S)&(uPC) by Example 14, with fixed point;

(LC) < (ULS)&(uPC) by Example 26, with periodic but not fixed point;
(LC) < (uPC), with no periodic point, see example for (LS) < (uPC);
(S) <= (ULC) by Example 23, with periodic, but not fixed point;

(S) <= (uPC), with no periodic point, see example for (LS) <= (uPC);

see the example below for (LS);

(LS) < (uPC) by Example 28, with no periodic point;

(uPC) < (S)&(PC) by Example 2, with fixed point;

(uPC) <« (ULS)&(PC) by Example 25, with periodic, but not fixed point;
(uPC) < (PC) by Example 30, with no periodic point;

(PC) < (S) by Example 1, with fixed point;

(PC) <= (ULS) by Example 22, with periodic, but not fixed point;

(PC) < (PS) by Example 29, with no periodic point.
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6.6 Compact (Path) Connected Spaces

s

©)F, (ULQ);, © (uLC)}, «——> (LO)},

Jo S /

(5)F, —— (ULS),, (LS,

4 =

A\

(uPC);, > (PC),

/

(PS)g

Figure 8: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being a compact and either connected or path-connected metric space.
The dashed arrows indicate that, by Proposition 5.2, there exists a complete metric on X topo-
logically equivalent to the original, which makes any map from the larger class belong to the
smaller class. The left portions of the equivalences <— follow from Theorem 4.2. Moreover,
we also have implication (S)&(ULC) = (C), see Theorem 4.3. No other implications in the
figure exist, see Theorem 6.6. The question marks in the graph refer to open problems.

Theorem 6.6 No combination of any of the properties shown in Figure 8 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the figure, listed by rows, we have the following.
(C): (C) < (S)&(ULC), see Theorem 4.3;
(C) <= (S)&(uPC), with fixed point, see example for (LC) <= (S)&(uPC);
(C) <« (ULC), with fixed point, see below (S) <= (ULC);
(ULC): see the example below for (LC);

(uLC): see the example below for (LC);
(LC): (LC) < (S)&(uPC) by Example 14, with fixed point;
(S): (S) < (ULC) by Example 6, with fixed point;
(ULS): see the example below for (LS);
(LS): (LS) <= (uPC) by Example 9, with fixed point;
(uPC): (uPC) < (S)&(PC) by Example 2, with fixed point;
)

: (PC) < (S) by Example 1, with fixed point.
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6.7 Compact Rectifiable-path Connected Spaces

&

(©)5. (ULC);, < (uLO),, <—> (LO)3,

[ /

S, —— 1s)t,

(ULS)E, <

(PS)g

Figure 9: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being a compact and rectifiable-path connected metric space. The dashed
arrow indicates that, by Propositions 5.2 and 5.5, there exists an equivalent metric that makes
any map from the larger class belong to the smaller class. The left portions of the equivalences
«— follow from Theorem 4.2. Moreover, we also have implication (S)&(ULC) = (C), see
Theorem 4.3. No other implications in the figure exist, see Theorem 6.7. The question mark in
the graph refers to an open problem.

Theorem 6.7 No combination of any of the properties shown in Figure 9 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the figure, listed by rows, we have the following.

(C): (C) <~ (S)&(ULQ), see Theorem 4.3;
(C) < (S)&(uPC), with fixed point, see example for (LC) <= (S)&(uPC);
(C) <« (ULC), with fixed point, see below (S) <= (ULC);
(ULC): see the example below for (LC);
(uLC): see the example below for (LC);
(LC): (LC) < (S)&(uPC) by Example 14, with fixed point;
(S): (S) <+ (ULC) by Example 6, with fixed point;
(ULS): see the example below for (LS);
(LS): (LS) <= (uPC) by Example 9, with fixed point;
(uPC): (uPC) < (S)&(PC) by Example 2, with fixed point;
(PC): (PC) < (S) by Example 1, with fixed point.
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6.8 Compact d-convex Spaces

(C); | «—> (ULQ)} |, = (uLQ)} | «—> (LO);,

AP A

(8)3., <> (ULS);, —> (L9);,

Y

(uPC) | > (PO)E,

/

(PS);,

Figure 10: The relations among the local contractive and shrinking properties for the maps
f:X — X, with X being a compact d-convex metric space. The left and upper portions of
the equivalences «— follow from Theorem 4.1 and Theorem 4.2. No other implications in the
ﬁgure exist, see Theorem 6.8.

Theorem 6.8 No combination of any of the properties shown in Figure 10 implies any
other property, unless the graph forces such implication. In particular,

(C): see the example below for (uPC);
(ULC): see the example below for (uPC);
(uLC): see the example below for (uPC);
(LC): see the example below for (uPC);
(uPC): (uPC) < (S)&(PC) by Example 2, with fixed point;
(PC): (PC) <= (S) by Example 1, with fixed point.
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7 The Examples

All examples presented in this section consist of the self-maps of complete metric
spaces. Actually, all these metric spaces will be subsets of R considered with the stan-
dard topology; however, the metric we use will often be a non-standard metric.

7.1 Examples on Intervals With Standard Metric

Notice that by Theorem 3.2 (i) if X is compact, than any map f: X — X asin Example 1
must have a fixed point.

Example 1 The map f:[0,1] — [0,1], f(x) = arctanx, is from (S) &- (PC). It has
a fixed point, as f(0) = 0.

Proof Itisnot(PC)byRemark2.3,as f'(0) = 1. Itis (S) by the Mean Value Theorem,
since f'(x) € (0,1) for every x > 0. [ |

Notice that, by Theorem 3.2 (i), if X is compact, then any map f:X — X, as
in Example 2, must have a fixed point. Note also that although the map in Exam-
ple 2 is differentiable, it cannot be continuously differentiable since for C'[0,1] maps

(PC)=(uPCQ).

17 11

7 y=gX) y=f(x)

8

3

4

1,,

2

0 a; b, a; by a 1‘70_' 1 0 a; b, all })1 alo I;O 1

Figure 11: The graph of g:[0,1] — [0,1] from Example 2 for which the map f,(x) = [;* g(t) dt
is (S) and (PC), but not (uPC).

Example 2 There exists a map f,:[0,1] — [0,1] from (S)&(PC)&-(uPC). It has a
fixed point, as f,(0) = 0.

Construction Choose a sequence by > ag > by > a; > --- converging to 0 such that

0 is a Lebesgue density point of the complement of U, <, (@4, b, ). For every n < w let
gn beamap from [0,1] onto [0,1-27""'] with support in [a,,, b, ]. For example, take
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n-1

a tent-like g, (x) = Zlb_f__an dist(x, R\ [a,,b,]). Then g = ¥, ., gn (see Figure 11) is
from [0,1] onto [0,1) which is approximately continuous; it is ensured at x = 0 by the
Lebesgue density requirement.

This implies that fo(x) = [, g(t)dt is differentiable from [0,1] to [0,1] with
f(x) = g, see [6, Theorem 736]. By Remark 2.3, this property of f; implies that
f2 is (PC) and not (uPC). Also, by the Mean Value Theorem, f, is (S). [ |

Notice that by Theorem 3.2 (i), if f: X — X is as in Example 3, then X cannot be
compact.

Example 3 The map f:[0,00) - [0,00), f(x) =x + e is from (S)&-(PC) and
has no periodic point.

Proof Notice that f'(x) = 1- 2xe™*. Thus, f'(0) = 1and so, by Remark 2.3,
f is not (PC). Moreover, f'[(0,00)] € (0,1) so that f is (S) since, for any distinct
x,y € [0,00), the inequality |f(x) — f(¥)| < |x — y| follows from the Mean Value
Theorem. Finally, f has no periodic point, since f(x) > x for every x > 0. This
inequality also implies that f is indeed into [0, c0). [ |

The next example comes from Munkres [27, p. 182]. Notice that, by Theorem 3.2 (i),
if f: X - X is as in Example 4, then X cannot be compact.

Example 4 Themap f:R - R, f(x) = (x+V/x2 +1) is from (S) &(LC)&-(uPC)
and has no periodic point.

Proof Notice that f'(x) = 2(1+ —==)- Therefore, for any a € R, f'[(~o0,a]] =
(0, ] for some c € (0,1). Thus, the Mean Value Theorem implies that f is (S)&(LC).
On the other hand lim, ., f'(x) =1, so, by Remark 2.3, f is not (uPC). Finally, f has

no periodic point since f(x) > x for all x € R. [ |

Notice that, by Theorem 3.2 (i), if f: X — X is as in Example 5, then X cannot be
compact.

Example 5 There exists a map f:[0,00) — [0, 00) from (S)&(PC)&-(LC) having
no periodic point.

Construction Let f,:[0,1] — [0,1] be as in Example 2 and let r = f,(1). Define
g(x) = 3(x + Vx> +4r +4r?). This is a modification of the Munkress function
from Example 4. It has the property that g, (1) = r + 1= f,(1) + 1. Define

o A+ forxe[o,1],
/) {g,(x) for x € [1, 00).

Clearly, f is continuous and f(x) > x for all x € [0, 00), so f has no periodic
points. The restriction f I [0,1] is (S)&(PC)&-(uPC), as these are the properties
of f, and both functions have the same derivative. In particular, f 1 [0,1] cannot be
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(LC), since otherwise, by Theorem 4.2, f [0, 1] would be (uLC) and, therefore, (uPC).
Hence, f is not (LC). Notice also that

1 X
"(x) = —(1+ ——
&(x) 2( \/x2+4r+4r2)
so, as in Example 4, f | [1, 00) = g, is both (S) and (PC). Since f I [0,1] has the same
two properties, it is easy to verify that the same is true for f, (see discussion in [1]). l

7.2 Examples on Intervals With Non-standard Distances

In all examples f: X — X presented in Section 7.2, the space X is an interval. How-
ever, in none of these examples can X be equipped with the standard metric on R, as
justified by Theorem 4.1 and further elaborated before each example. Nevertheless, all
metrics we use here are complete and topologically equivalent to the standard metric
onRR, i.e., each X can be treated as a path in R?. The only property that we did not fully
investigate for these spaces is the question of which of the spaces can be isometric to
a subset of R? or, more generally, of R” with n > 1.

7.2.1 Using Simple Rectifiable-path Connected Metrics

Notice that, by Theorem 3.2 (i), if X is compact, then any map f: X — X as in Ex-
ample 6 must have a fixed point. Also, by Theorem 4.1, the metric p in the example
cannot be the standard metric (as, in such case, (ULC)=(uPC) =(C)=(S)).

Example 6 There exists a function f:([0,4],p) — ([0,4],p) from (ULC) &= (S),
where p is a rectifiable-path connected metric on [0, 4] that is topologically equivalent
to the standard metric. Clearly, f has a fixed point.

Construction Define p via p(x, ) = min{|x — y|,1} and put f(x) = x/2. It is easy
to see that f is (3, 3)-(ULC). Itis not (S), since p(f(0), f(4)) = p(0,2) =1=p(0,4).
|

Notice that by Theorem 3.2 (i), if f: X — X is as in the Example 7, then X cannot

be compact. Also, by Theorem 4.1, the metric p in the example cannot be the standard
metric (as, in such case, (ULS)=(PS)=(S)).

Example 7 Thereexistsamap f:([0,00),p) = ([0, 00), p), having no periodic point,
from the class (ULS)&(LC)&~(S), where ([0, 00),p) is a rectifiable path connected
and topologically equivalent to [0, oo) with the standard metric.

Construction The function f:[0,00) — [0, 00) from Example 4 has the desired
properties when the metric is defined as p(x, y) = min{|x — y|,1}. Indeed, the prop-
erties (LC) and (ULC) are not affected by this metric change. However, f is not
(S), since there are 0 < a < b for which b — a > f(b) - f(a) > 1 and we obtain
p(a,b) =1=p(f(a), f(b)). n

Notice that by Theorem 3.4, if f: X — X is as in Example 8, then X cannot be
compact. Also, by Theorem 4.1, the metric p in the example cannot be the standard
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metric (as, in such case, (PC)=(PS)=(S)=(LS)). However, we actually prove that
there is a map h: [0, co) — R for which the domain of f is the graph of h considered
as a subset of R? with the standard distance.

Example 8 There exists a map f:{[0,00),p) — ([0,00), p), having no periodic
point, from the class (PC)&=-(LS), where ([0, 00), p) is a rectifiable path connected
and topologically equivalent to [0, co) with the standard metric.

Construction For n < w let h,:[n,n + 1] > R be defined by a formula h, (x) =

—L_dist(x, {n,n +1}). Also, let h = U, <, h,, see Figure 12, and define p as

p(x,y) = [{x, h(x)) = (3, k(D))
Let f(x) =x+1

p(x’\i') p(f(s—s),f(s+e)) =p(s—£’,s+£)

EN TSN
.
Ky
/

s f(s) (X X
|

0o x y 1 s—¢ s+e 2 f(s+e) f(s+¢) 3

Figure 12: The graph of h: [0, co] — R from Example 8 for which f(x) = x + 1is (PC) but not
(LS).

Clearly, ([0, o), p) is rectifiable path connected and f has no periodic points. To
see that f is (PC), it is enough to prove that so is its restriction to any of the intervals
[n,n+0.5] and [n+0.5, n+1]. Indeed, if x and y are distinct points of such an interval,

then
1 1
p(F(2), () _ V' e = 1+ Gy
p(x.y) VIt el =yl 1t e

The function f is not (LS) at any point s = n + 1, since for any ¢ € (0,1/2) we have
p(f(s—¢), f(s+¢))=2e=p(s—¢s+¢). [ ]

Notice that by Theorem 3.3, if f: X — X is as in Example 9 and X is compact, then
f must have a fixed point. Also, by Theorem 4.1, the metric p in the example cannot
be the standard metric (as, in such case, (uPC)=(C)=(LS)). However, we actually
prove that there is a map h:[0,2] — R for which the domain of f is the graph of h
considered as a subset of R* with the standard distance.

<L

Example 9  There existsamap f:{[0,2], p) = ([0,2], p) from (uPC)&=-(LS), where
([0,2], p) is rectifiable path connected and topologically equivalent to [0,2] with the
standard metric. Clearly, f has a fixed point, as f(2) = 2.
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Construction Let p be the restriction to [0, 2] of the metric from Example 8 and
define f(x) = min{2, x +1}. The restriction f | [0,1] is identical for this example and
Example 8. So, as in Example 8, it is not (LS) at x = %, while it is (uPC). This ensures
that our f is not (LS). However, it is (uPC), since so are f 1 [0,1] and f I [1,2] (with
f 1[1,2] being a constant map). [ |

Notice that by Theorem 4.3, if f: X — X is as in Example 10, then X cannot be
compact. Also, by Theorem 3.4, the map in the example must have a fixed point.
Moreover, by Theorem 4.1, the metric d in the example cannot be the standard metric
(as, in such case, (ULC)=(uPC)=-(C)). However, we actually prove that there is a
map h:[0, o0) — R for which the domain of f is the graph of h considered as a subset
of R? with the standard distance.

Example 10  There exists a function f:([0,00),d) — ([0,00),d) from the class
(S)&(ULC)&~(C), where d is a rectifiable-path connected complete metric on [0, 00),
topologically equivalent to the standard metric. The map f has a fixed point f(0) = 0.

Construction Define d by a formula d(x, y) = In(1+ |x — y|). It is a metric, since
the map [0,00) 3 ¢t — In(1+ ¢) € [0, 00) is concave down on [0, c0). It is easy to see
that the metric d is complete and topologically equivalent to the standard metric. It
is rectifiable-path connected since the inequality In(1 + ¢) < ¢ implies that the length,
with respect to the metric d, of a path from x to y is at most |x — y|.

Define f:[0,00) — [0, 00) by f(x) = x/2. For any x € [0, 00) and z > 0, we have

d(f(x), f(x+2)) In(1+z/2) <1

d(x,x +z) In(1+z)

Therefore, f is (S). The map f is not (C), since, by 'Hopital’s Rule,

i AU fx42) 1z

= =1L
zmoo d(x,x+2) zo00 247

On the other hand,

20 d(x,x+2z) C02+z 2

lim d(f(x), f(x+2)) — lim l+z 1

so, there exists an ¢ > 0 such that

A/ (). f(x+2) _3
d(x,x +2z) 4

for every x > 0 and z € (0, ¢). But this means that f is (£, 3)-(ULC). [ |
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Notice that by Theorem 4.2, if f:X — X is as in Example 11, then X cannot be
compact. Also, by Theorem 3.3, the map f must have a fixed point. Moreover, by
Theorem 4.1, the metric p in the example cannot be the standard metric (as, in such
case, (uULC)=(uPC)=>(C)=(ULC)). We actually prove that there is a subset X ¢ R?
homeomorphic with R and a function f: X — X which has the desired properties
when X is taken with the standard metric.

Example 11  There exists a map f:(R,p) - (R,p) from (S)&(uLC)&-(ULC),
where p is a rectifiable-path connected complete metric on R topologically equivalent
to the standard metric. The map f has a fixed point.

Construction Choose numbers --- < a_y < a_; < ag < a; < a; < --- such that
ap =0andif I, = [a,, a,.1] for every n € Z, then for every k <

1 1 1
|L(k+1)| =T A |Izk| = m, and |Izk+1| = r

k+2’ +1
Notice that this choice ensures that R = U,z I,, and

[l k2| + [Ig1]

(7.1) lim |[Ix]=0 and lim .
k—oo k—oo || + [Taks2| + [T2k+3]|

For every k < w define g I I_(4,1) and g | I4x as a constant 0 function, g [ Iyx12 asa
constant 1 function, g | I4x; as a linear increasing map onto [0, 1], and g | 443 as
a linear decreasing map onto [0,1]. Define the metric p on R via formula p(x, y) =
[{(x,g(x)) = (y,g(»))|- Also, define f:R — R as follows. Put f(x) = 0 for every
x < 0 and, for every k < w, let f map each interval I, decreasingly and linearly
onto I_g_; = [a_g_1, a_g ] and each interval I, onto the singleton {a_; } (see Figure
13). We claim that f is as needed.

—— graphofg

vy Dkss

Qakey2 Q2ke+3 i Gakts

Figure 13: lllustration of g and f I [axk, azk+4] from Example 11.
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Indeed, f is not (ULC) because, for every k < w,

p(f(asks1) f(aaksa)) _ la_ok — a_sk_s| _ _pk—a| + [T_25]
p(a4k+1, a4k+4) |a4k+1 - a4k+4| |I4k+1| + |I4k+2| + |I4k+3|

which, by (71), converges to 1, as k — oo, and limy_, oo p(@4k+1> dak+4) = 0.
To see that the function f is (S), choose x < y in R. We need to show the inequality

p(f(x), f(y)) < p(x,3). But p(f(x), f(¥)) = |f(x) = f(y)], since f(x), f(y) €

(—o0,0] and p on (—o0, 0] is the standard metric. Moreover,

p(x,y) = [(x, g(x)) = (», g 2 |x - yl.

Hence, it is enough to show that |f(x) — f(y)| < |x — y|, that is, that f is (S) when
considered with the standard metric. However, if p, is the standard metric on I,
then the metric p on R induced by these metrics, as in Lemma 7.1, is the standard
metric. Clearly, with respect to the standard metric p, f | I, is (S) since it is linear
and |f[1,]| < |I.|- Hence, by Lemma 71, f is (S) when considered the standard metric
p, finishing the argument.

Finally, to see that f is (uLC), it is enough to prove that, for every n € Z,

(72) 1 (IyUlni) is(%)—(C).

Clearly, this is true when #n < 0, since then f | (I, U I,,41) is constant. So assume
that n > 0. We will assume also that # is an odd number 2k + 1, the even case being
essentially identical. Thus, to see (7.2), fix x < y from Lx1; U Irx42. We need to show
that p(f(x), f(y)) < 3p(x, 7).

This inequality is obvious when x, y € I .5, since f | I x4, is constant. For x, y €
Dk+1, this follows from the fact that f | I, is linear with the slope

p(f(a2k+1), f(G2k+2)) 1

<p(f(a2k1)s f(@2ks2)) = [Txa| = <
P(a2k+1: a2k+2)

1
k+2~ 2

The remaining case is when x < a4, < y. Then the inequality holds, since

PUG T = PG fla3ki2)) € 5p(kzesa) < 3p(x.7),

where the last inequality is justified by the fact that the angle between the segments
g I Ixs1 and g 1 Ipky, is obtuse. [ |

7.2.2 Using More Involved Rectifiable-path Connected Metrics

All remaining examples presented in Section 72 will be based on the next lemma.
It will be primarily used for the families J of the form {(a,, an+1) : n < w}, with
0 = ag < a1 < a < ---. However, in several examples, it will be used also with the
families J of more complex format.
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Lemma 71 LetJ = {(ay, b;) : t € T} be a family of pairwise disjoint non-empty open
bounded intervals in R and let ] be a closed interval in R containing U = U1 (ay, by).
Let d be the standard metric on U = J \ U and, for every t € T, let p; be a metric on
[at, by such that pi(ay, bs) = |a; — by|. Extend the function § = d U Uyer p¢ to the
metric p: J* — R by putting, for every x < y from ],

p(x,y) = p(3:x) = 8(x, x7) + 8(x",y7) + (7> y),
where x* = inf U° n [x,00) and y~ = sup U° n (—oo, y]. Then p is a metric on J. It
is complete and topologically equivalent to the standard metric, provided so is every p;.
Moreover, for every mapping f from (], p) into a metric space (Y, ), the following hold.
(S): fis (S) provided all maps f 1 [as, by] are (S) and U€ is discrete.
(uLC): f is (uLC) with a constant A € [0,1) provided all maps f 1 [ay, b;] are (uLC)
with constant A and U* is discrete.
(uPC): f is (uPC) with a constant A € [0,1) provided maps f | [ as, b | are (uPC) with
constant A and U° is discrete.
(LC): fis (LC) provided maps f | [ay, b;] are (LC) with constant A and U° is discrete.
(C): fis(C) with a constant A € [0,1) provided f | U as well as all maps f 1 [ay, b;]
are (C) with constant A.

Proof It is easy to see that p is a metric on J and that it is complete and topologically
equivalent to the standard metric, when every p; is such.

To see (S), choose x < y in J. Since U* is discrete, there exists a finite sequence
X = Xo <-+» < x, = y such that for all i < n, the pair {x;,x;,1} is contained in one of
the intervals [a;,, by, ] and xj € U° for all 0 < j < n. Then

p(x,y) = 20 pu (i xien) > 20 n(f (i), f(xi1)) 2 1(f (%), £())
i<n i<n
as needed, where the equation is ensured by the definition of p, while the strict in-
equality is ensured by the assumption on maps f | [a, b¢].

To see (uLC), choose z € J. We need to find an open neighborhood U c J of z such
that f ' U is (C) with the constant A. If there is an open neighborhood W c J of z
contained in a single interval [ay, b ], then, by our assumption on f | [a;, b;], there is
a U c W as needed. Otherwise, there are distinct s, t € T such that z = bs = a;. Then,
by our assumption, there are p € (as, bs) and g € (ay, b;) such that both f | (p, z] and
f Mz, q) are (C) with constant A. Then U = (p, q) is as needed. To see this, take x < y
from (p, q). We need to show that n(f(x), f(y)) < Ap(x, y). If z ¢ (x, y), then this
holds by what we know about f | (p,z] and f | [z, g). Otherwise, z = x* = y~ and
Ap(x,y) = Ap(x,2) + Ap(2, ) > n(f(x), f(2)) + n(f(2), f(¥)) 2 n(f(x), £(¥))
as needed.

The proofs of parts (uPC) and (LC) are straightforward variations of that for (uLC).

To see (C), notice that for every x < y from ] we have

Ap(x,y) = Ap(x,x™) + Ap(x™, y™) + Ap(y™, )
2n(f(x), f(x7)) +n(f(x7), f(r7) +n(f (7). f(»))
> n(f(x), f(»)),
as needed. [ |
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By Theorem 3.3, if the map f: X — X is as in Example 12, then it must have a fixed
point. By Theorem 4.1, the metric p on X cannot be the standard metric (as, in such
case, (uLC)=(uPC)=(C)=(ULS)). Also, by Theorem 3.2 (i), X cannot be compact
since, by Theorem 4.2, in such case any (uLC) map is also (ULC), so it is (ULS).

Example 12 ‘There exists a map f:{[0,00),p) — ([0,00),p) from the class
(uLC)&=(ULS), where ([0, 00), p) is rectifiabe path connected and topologically equi-
valent to [0, 0o) with the standard metric. It has a fixed point f(0) = 0.

m fllan+1] € Ion
eoe ' PR A "

Az2n-1 o 2n f(azn+1) f(azns2)

pZn+1.(X, y)

gn+l _

n+3 — isgraph of g

Figure 14: Illustration of the graph of ¢ from Example 12 for which the map f is (uLC) but not
(ULS) Notice that f[12n+1] c Ir,.

Construction Choose a sequence 0 = ag < g; < --- such that if, for every n < w,
we put I, = [a,, a,41], then each interval I, is centered at 9"*! and of length ﬁ.
Let g:[0,00) — [0,1] be such that g I I, = 0 for every even n < w, while, for every
odd 7 < w, the graph of g I I, is an upper semicircle of radius — and centered at
(9"*1,0). See Figure 14.

For each n < w let p,, be a metric on I,, defined as

pr(%,7) = [{x, gn(x)) = (¥, g (V)
and let p be the metric on [0, o) associated with metrics {p, : n < w} from Lemma 7.1.
Then p is complete and, clearly, rectifiable-path connected.
Define an increasing bijection L: [0, 00) — [0,00) as L(x) = £(g | [0,x]) and let
f:[0,00) — [0, 00) be defined as f(x) = L™'(£L(x)). In other words, f(x) is the
unique point r € [0, 00) such that £(g I [0,7]) = 2£(g 1 [0, x]) or equivalently,

73) LU() = 516),

We claim that f is as needed.

To see that f is (uLC), choose an arbitrary # € (1,3/2). By Lemma 71 (uLC), it is
enough to show that, for every n < w, f I I, is (uLC) with constant A = %11. Indeed,
if n is odd, then for any x € I,,, there is an open subset V of I,, containing x such that
for any y,z € V, we have |[L(y) — L(2)| < 1p(», 2) and, by (7.3),

p(f(), f(2) <IL(f(»)) - L(f(2)| = 3|L(y) - L(2)| < 31p(y, 2) = Ap(p, 2).

On the other hand, if # is even, then the following holds for every y, z € I;:

PUDS(2) < L) = L) = FL0) - ()] = 2p(12) < Ap(3:2).
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To see that f is not (ULS), first notice that
(7.4) fllan1] € Loy foranyn < w.

Indeed, since £(g | Ligy) = T[ﬁ < 1for every k < w, for every x € [0,az,41]
we have x < L(x) < x + n. In particular, L[Lr411] S [@2n+41, d2ns2 + (n +1)] and
[@2n + 11, zp41] € L[I2y], since Ipp1 € [0, Gp(ni1)1] and I, € [0, az,41]. Hence,

2

2
EL[IZW-H] c §[a2n+la Aops2 + (I’l + 1)]

2 1 1
= g[9”“ LA — (n+1)]
n+4 n+4

+n 9”*1—L]
n+3 n+4

€ [a2n + 1, d2n11] € L[I2n],

(75) c [9" +

where (75) is justified by the inequalities as 9" + —= + n < (9’”rl - i) and

2
3 n+4
2 1 1
79n+1+7+ +1 <9n+1_7,
5 pratnr)s 4
which hold for any n < w. Therefore, f[I5,.1] = L’l[ %L[IZHH]] c LY L[I1,]] = Lan
and (7.4) is proved.

Now, using (7.4), we can see that f is not (ULS). Indeed, for the endpoints y and z

of Ips1, we have p(y,2) = [y — 2| = -2, > 0,as n > o0, and

PO S = L) ~ LD = ) - 1@ = 22 o),

finishing the argument. [ |

By Theorem 3.3, the map from Example 13 must have fixed point while, by Theo-
rem 4.1, the metric p in the example cannot be the standard metric (as, in such case,
(uPC)=(C)=(uLC)). Also, by Theorem 3.2 (i), if f: X — X is as in the example, then
X cannot be compact.

Example 13  There exists a map f:{([0,00),p) — ([0,00),p) from the class
(S)&(LC)&(uPC)&-(uLC), where ([0, o), p) is rectifiable-path connected and topo-
logically equivalent to [0, c0) with the standard metric. The map has a fixed point

£(0) = 0.

Construction Choose a sequence 0 = ag < a; < --- such that if, for every n < w, we
put I, = [ay,, an+1], then each interval I,,,; has length 2. Moreover, the centers ¢, of
intervals I, are chosen to ensure

(7.6) [azk+1> azks2 +2(k+1)] N %[aZ,,H, Aznea +2(n+1)] = @ for every k, n < w.

For example, (7.6) is satisfied when we pick c, = 9"*1.
Choose an increasing sequence {m, : n < w) of positive numbers for which

lim \/1+m?2 =2

n—oo
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/\ il S
eee - - =

t + f + - S
A2n-1 Cn-1 an  f(Azn+1) f(azn+2) Cn—1=aznn n Gzn+2 = Cp +1

P2n+1\(x- y)

IZn+1
N 4 eee

; = is graph of g

Figure 15: Illustration of the graph of g from Example 13 for which the map f is is (S), (uPC),
and (LC), but not (uLC). Notice that f[Ip+1] € Lon.

and define g: [0, 00) — R via formula (see Figure 15)

mydist(x, {azn+1> dan+2}) when x € Iy, for some 1 < w,
g(x) = .
0 otherwise.

Notice that the segments forming the graph of g | I,,,,; are the sides of isosceles trian-
gles (with basis of length 2), which are approaching the sides of an equilateral triangle,
as n — oo,

For each n < w, let p,, be a metric on I,, defined as

pa(xy) = [(x,8(x)) = (3,8

and let p be the metric on [0, oo) from Lemma 7.1 associated with metrics {p,, : n < w}.
Then p is complete and, clearly, rectifiable-path connected.

Define an increasing bijection L: [0,00) — [0,00) as L(x) = £(g | [0,x]). Then
for every n < w,

(7.7) L[Iyp41] € [@2n41 G2nsz +2(n +1) ]
as €(g | Ins1) < 4. Let f:[0,00) — [0,00) be defined as f(x) = L™}( 1L(x)). In
other words, f(x) is the unique point r € [0, 0o) such that
1
(g 10.r]) = Se(g 1[0 x]).
We have
1
(78) L(f(x)) = SL(x).

We claim that f is as needed.
To see this, first notice that, by (7.6) and (7.7), for every k, n < w,

1
flLnn] 0 Lgar = L7 EL[Iszrl] N L[Lka]]

qr !
cL 1[ 5[612”4_1, Aypn+2 + 2(1’1 + 1)] n [a2k+1, Ark4+2 T+ 2(k + 1)]] = .
In particular, for all n < w,

(7.9) f[12n+l] N U L =92.

k<w

The key fact for this construction is the following property.
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() Forevery y € (0,1], the mapping

S IL(cn =x) = L(ca +y)|

0,1]>x
[0.1] pn(Cn—%,cn+y)

achieves its maximum value \/1 + m2 for x = y.
(For the proof, put m, = m. Then

V1+m?(x +y)
V(x+y)2+m?(x - y)?

and 7 has only one critical point, at x = y, as

2m*/1+m2y(y - x) 3
(G )2 v ma(x —y )
This is the maximum by the First Derivative Test.)

Now, for any p, q € L1, p(f(p), f(9)) = |f(p) = f(@)| = [L(f(p)) - L(f(9))],
since, by (7.9), f(p), f(q) € f[I2n+1] € [0, 00) \ Uk<w I2k+1. From this, (7.8), and (»)
we conclude that, for any p, q € I41,

(710)  p(f(p). £(a)) = IL(f(P)) = Lf(@))] = 3IL(P) ~ L(q)| < ¥5"2p(p. ),
with the equation holding when p and g are symmetric with respect to the point

x = ¢y This clearly shows that f is not (uLC), as \/1;'73'
Notice also that (7.10) implies that f | I, is (C) for any n < w. Moreover, for any
n<w, f | I, is (C) with the constant %, since for any numbers y, z € I,

n(x) =

n'(x) =

“n-oo 1

G p(f(2) f0)) < L) - LM = 510 - L] = 3p(2 ).

Therefore, by parts (S) and (LC) of Lemma 7.1, f is (S) and (LC).

Finally, notice that, for any n < w, each f I [azn41,¢q] and f | [cp, a2ns2] is (C)
with the constant 1 since for y and z belonging to one of these intervals, (7.11) holds.
In particular, for any #n < w, f I 1,41 is (uPC) with the constant % So, by (7.11) and
Lemma 71 (uPC), f is (uPC). [ |

Notice that by Theorem 4.1, the metric p in Example 14 cannot be the standard
metric (as, in such case, (uPC)=-(C)=-(LQC)).

3Here is the computation:

T (x — )2 = 2ty ramiemy)
V04 )2+ m2(x - y)? - SRS e (x+ )

n'(x) = V1+m? (x+ )2+ m(x—y)?

Vit m?([(x+y)* + m?*(x = y)*] - [(x + y)* + m*(x? - y*)])
(Ce )7 5 (e y)2)o7
Viemm?[(x-y)? - (x> =y*)] _ 2m’Vi+mPy(y-x)

((r+ )2 +m2(x=p)2)¥2 ((x+p)?+ m2(x - y)?)¥2
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Example 14 There existsamap f: ([0, a], p) = ([0, a], p) from (uPC)&(S)&-(LC),
where a > 0 and ([0, a], p) is a rectifiable-path connected and topologically equivalent
to [0, a] with the standard metric. The map f has a fixed point f(a) = a.

Construction Choose a sequence 0 = ag < a; < --- such that if, for every n < w, we
put I,, = [@n, ans1], then each interval I; has length |I,x| = 272 and each interval
Irk+1 has length %Z"Zk. In particular, a = lim,,_, o, a, is finite.

Po(x%,y)

Figure 16: Illustration of the graph of g from Example 14 for which the map f is (S) and (uPC),
but not (LC).

Define function g: [0, a] - R for every x € [0, a] as

V3dist(x, {az, azes1})  if x € Iy for some k < w,

8(x) = .
0 otherwise.

See Figure 16. Thus, the two segments forming g | I, constitute the sides of an equi-

lateral triangle and so

(712) (g M [x,y])=2]x—y| foreveryx < yfrom Ip.

For each n < w, let p,, be a metric on I,, defined as

pn(xy) = [(x,8(x)) = (1, )]
and let p be the metric on [0,a] from Lemma 71 associated with the metrics
{pn : n < w}. Then p is complete and, clearly, rectifiable-path connected.
Define f:[0,a] — [0, a] as an increasing function mapping linearly each interval
I,, onto I,,41. (So, f(a) = a.) We claim that this f is as required.
Indeed, f is not (LC), as it is not (C) on any open neighborhood of a, since

p(f(azk+1), f(azx)) _ Gk —dokn _ Kk +8
p(a2k415 a2k) Azk+1 — G2k k+9

To see the property (S), notice that f | I, is (S), even (C), for every n < w. Indeed,
by (7.12) and equation

k—oo L

—2(k+1
Ark+3 — Aok+2 2 (k+1) _1k+9
- - >
A2k+2 — G2k+1 %2‘2" 4k+8
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for every x < y from I, we have

(7.13) p(f(x), f(y) < (g 1 [f (%), f(P)]) = 2/f(x) = F(¥)

< i< eyl = p()
To2kegt N TN )
while for every x < y from Iy,
k+8 8
pUf), f()) =1 () = f Dl = gl =yl < 5o p)-

In particular, by Lemma 7.1, f is (S) on every interval [0, a,, ] and so, on their union
[0, a). To finish the argument, it is enough to notice that this implies that f is (S) on
the entire [0, a]. Indeed, choose an x € [0, a). To see that p(x,a) > p(f(x), f(a)),
choose an n < w such that x < a,,. For every m > n, we have

P(an’am) > P(f(an)’f(am))’

so, taking the limit as m — oo, we get p(a,,a) > p(f(an), f(a)). So

p(x,a) = p(x,an) + p(an, a) > p(f(x), f(an)) + p(f(an), f(a)) > p(f(x), f(a))
as needed.

To see that f is (uPC), first notice that the maps f | I, are (uPC) with the same
constant: for odd n with constant % as follows from (7.13), for even n = 2k with
constant %, since for every x < y from the same half of Iy,

p(F() F() = If(x) - F(p)) = 28 ke8]

8
k+9lx—yl— k+95€(gr[x,y])s ﬁp(x,y)-

Thus, by Lemma 71, f | [0, a) is (uPC). To finish the proof, it is enough to prove that
£is (PC) at a, which will be achieved by findinga A € [0,1) such that LG < )
for all x € [0, a). For this, fix an x € I,, ¢ I; U I;;; and notice that
p(a,x) =p(a,ans) +p(an,x) < p(a, ana) +|ans —an| = a—a, < a—axy.
Hence, p(a,x) <a—ay <2¥50 47 = 347k,
Next we will show that there exists an a > 0, independent of k, such that
(714) N(x) =p(a,x) - p(a, f(x)) 2 ad™®  for every x € Ly U Lx,1.
Indeed, if x € I, then we have

N(x) = p(@aks1, %) + p(@2ks1, f(%)) 2 |a2ks1 = X| + |@zke1 = f(x)]

k+
=f(x)—x2>|I = 8272k2§4’k
f(x) eyt

k+9 9
indicating that any « < % works for this case. On the other hand, if

x = Aysz — thpa| € i
for some t € [0,1], then
N(x) > t|Lyen| + [Loksa| — p(f (%), a2k43)

> t{Lks| + | Lksa] = €(g 1 [f (%), a2k+3])

k+8 1 1 8 1 1
=t Y el S R R o R Rl S Rl

1
k+9 4 4 9 4 2 4

47k,
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showing that (7.14) holds with the constant « = i.
Now to finish the proof of (uPC) for f, notice that by (7.14),
P () | plax) ~p(f(a).f() | a4 . 3a

=1- =,
p(a.x) p(a.x) Sk

So,A=1- 3?"‘,withoc = i,is as needed. |

All remaining examples presented in Section 7.2 will be constructed on the space
([0, 00), p) with p obtained using Lemma 7.1 with the family J = {(a,, an+1) : n < w},
where 0 = ag < a; < a; <---and a, =, 00. Moreover, the constructed mappings
f will be non-decreasing and mapping each interval I,, = [a,, a,41] onto I ..

Notice that by Theorem 3.2 (i), if f: X — X is as in Example 15, then X cannot
compact. Also, by Theorem 4.1, the metric p in the example cannot be the standard
metric (as, in such case, (LC)=(uPC)=(C)=-(ULS)).

Example 15  There exists a map f:{([0,00),p) — ([0,00),p) from the class
(LC)&-(ULS) having no periodic point, where ([0, 00 ), p) is rectifiable-path connected
and topologically equivalent to [0, oo ) with the standard metric.

Construction Choose a sequence 0 = ag < a; < --- such that if, for every n < w, we
put I, = [an, du1], then each interval I,, has the length ﬁ when # is even and the
length 2 - when # is odd. This ensures that a, .. 00. Let g:[0,00) — [0,1] be
such that g | I,, = 0 for every even n < w, while, for every odd n < w, the graph of
g I I,, is an upper semicircle with its diameter coinciding with I,,, see Figure 17. Notice
that our choice ensures that £(g | I,,) = -1 for every n < w.

For each n < w, let p,, be a metric on I,, defined as

pa(x:y) = [(x,8(x)) = (3,8

and let p be the metric on [0,00) from Lemma 71 associated with the metrics
{pn : n < w}. Then p is complete and, clearly, rectifiable-path connected.

1 . .
3 5
,'\\ 4 ]I
/ Iy I AV XXIR
e . S ‘/‘_[‘ ) i
ag = az v a,
1 1
2m 3

— isgraphof g

Figure 17: Tllustration of the graph of ¢ from Example 15 for which the map f is (LC), but not
(ULS).
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For every n < w and x € I,, let f(x) be the unique point r € I,,;; such that

e(g H anmor]) - S (g (4, 0]) - 2

In other words f:[0, 00) — [0, c0) maps each I, onto I, linearly, according to the
length £ of g | I, and g ! I,,;;. We claim that this f is as required.

Clearly f has no periodic point as f(x) > x for all x > 0. Notice that the equation
above implies that for any x < y from I,,,

[an’ ])

(7.15) eg M f(x) fD = — (g [, ¥])-

To prove that f is (LC), by Lemma 7.1 (LC), it is enough to prove that f I I, is (LC)
for every n < w. The argument depends on the parity of n. If n < w is even, then f ']
is (C) with A = "*1 . This follows from the fact that, in this case, g | I,, = 0 and, for any
x,y €I, with x P y, by (715) we have

p(f(x), f(») = [{f(x), g(F())) = (f (), (S
<e(g M [f(x), fnD

n+1l

S kgt ) = 2

)

So turn to the case when n < w is odd. We need to refine the argument above,
as in this case, f I I, is only (ULC). To see this, choose an 7 € (1,1.5) such that

2121 < 1. Notice that g I I,, is a semicircle of length = and that there exists an

a € (0, -5) such that p(x,y) > n7'€(g | [x, y]) whenever x < y are from I, and
such that £(g | [x,y]) < « (as % — 1 when p(x,y) - 0). Moreover, there
exists an ¢ > 0 such that (g | [x, ¥]) < a whenever x < y are from I,, and such that

|x — y| < e Then f 1 1, is (£, 2L y)-(ULC): for all x < y from I,, with |x — y| < &, we

2’ n+2

have 7p(x, y) > €(g I [x, y]) and
p(f(x), f(»)) = [{f(x), g(f(x))) - (f(y) g(fU)))H

=g [f(x). fOD) = — (g (%, 7]) < (%,
The function f is not (ULS) since, for all odd indices n > ’”4
1 2
P(f(an)’f(anﬂ)) = p(ans1> ns2) = 12 > Y =p(au,ans1)
and, at the same time, p(ay,, dn41) = ﬁ > 0asn — oo. [ |

41f K is the family of all arcs on g 1 I, of length & and, for every « € K, p(x) is the projection of x
on the x-axis, then the number ¢ is the minimizer of the values of the continuous mapping K > x
2(p(x)) € (0, c0) defined on the compact space K.
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7.2.3 Using Non-rectifiably Path-connected Metrics

The remaining examples on connected spaces will be constructed with the use of
the following lemma, which is extracted from an example given by Hu and Kirk [21,
p. 123]. It is not difficult to see that the metrics from this lemma are not rectifiable-
path connected. In what follows the length of an interval I is denoted as |1].

Lemma 72 Let0< fo < 1 <landlet f be alinear function from Iy = [ag, by ] onto
Iy = [a1,b;]. Foreach i <2let p;:1; - R be defined by a formula

=51\
Pi(x;)’):|li|( |I|y) .
Then p; is a complete metric on I; topologically equivalent to the standard metric. The

map f:(Iy, po) = (I1, p1) is Lipschitz with the constant L = |L|/|I,|. It is also (ULC)
with each constant A € (0,1).

Proof Clearly a sequence in I; is Cauchy with respect to the metric p; if and only if
it is Cauchy with respect to the standard metric on I;. Thus, indeed p; is a complete
metric on I; topologically equivalent to the standard metric.

To see the second part, notice that for every x, y € Iy, the linearity of f implies that

fG)-fDI _ [x—yl
Ty = To)\, Hence
e = yI\A Bl =y A
, = I = —-— I
pi(f(x), f(»)) ‘1|( Lo ) |Io|| 0|( |To| )
L] ¢ |x = y[\PiPo
= — X, *
ol m ) Pl

Thus, the inequality

@( Ix—yl)f‘l“*" Bl
[To| N |To] " |Lo|

implies the Lipschitz condition statement. Also, for every A € (0,1), we have

@( |x—y‘)ﬁrﬁo <
[To| N [Iol -

if and only if

x = yl\ o L]\ 7
PO(x’)’):|IO|( |IO| ) SUO'(HA) .

Therefore, f is (ULC) with a constant A for
1 IRY=n

= ||l =—A

e 2|o|(|11|)

[ |

Notice that, by Theorems 3.2 (i) and 3.3, if f: X — X is as in Example 16, then X
can be neither compact nor rectifiable-path connected. An example of a periodic free
mapping f: X — X from the class (uLC)&-(ULC) is also given in [30, Example 1],
where X is a (non-rectifiable, non-compact) curve of R? considered with the standard
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metric. However, this example is not (S), since for every n < w it maps (n,0) € X to
(n+1,0) € X.

Example 16  There exists a map f:([0,00),p) — ([0,00),p) from the class
(S)&(uLC)&-(ULC) having no periodic point, where ([0, 00), p) is a complete metric
topologically equivalent to the standard metric. Moreover, f satisfies (uLC) with every
contraction constant A € (0,1).

Construction Choose a strictly increasing sequence (8, € (0,1) : n < w) and let
0 = ag < aj < --- be such that each interval I, = [a,, a,41] has the length ﬁ For
every n < w, let p, be a metric on I,, defined by the formula

M—ﬂ)“
1]
and let p be the metric on [0,00) from Lemma 7.1 associated with the metrics
{pn : n < w}. Then p is complete and clearle-path connected. On each interval
I,, define f to be a linear increasing map onto I,,,;. Then f is as needed.

Indeed, by Lemma 7.2, for every n < w the restriction f | I,, is (C) with a constant

“‘;*"‘ = 75, so it is (S). Hence, by Lemma 7.1, f is (S).
Next fixa A € (0,1). Then by Lemma 7.2, for every n < w the restriction f | I,, is
(ULC) with constant A, so it also (uLC) with the same constant. Hence, by Lemma 7.1,
fis (uLC).
Finally, f is not (ULC) since, for every A € (0,1) and ¢ > 0, there is an n < w with

p(f(an), f(ans1)) _ |Tn+1] _n+
p(an, ans1) I,] n+
Clearly, f has no periodic points. [ ]

pu(x.7) = IL|(

1 1
5> A and  p(an, ans) = I = <

Notice that, by Theorem 3.3, if f: X — X is as in Example 17, then X cannot be
rectifiable-path connected. Also, by Theorem 4.2, X cannot compact.

Example 17  There exists a map f:{([0,00),p) — ([0,00),p) from the class
(ULS)&(uLC)&~(S) having no periodic point, where ([0, c0), p} is a complete metric
topologically equivalent to the standard metric. Moreover, f satisfies (uLC) with every
contraction constant A € (0,1).

Construction Choose strictly increasing sequence (8, € (0,1) : n < w) and let
0 = ag < a; < --- be such that if, for every n < w, we put I, = [a,, ay41], then |Io] =1
and |I,| = 1/n for every 0 < n < w. For every n < w, let p,, be a metric on I,, defined
by formula

[ =yl
paxoy) =I5 7)
and let p be the metric on [0,00) from Lemma 7.1 associated with the metrics
{pn :n < w}. Then p is complete and, clearly, path-connected. On each interval I,
define f as a linear increasing map onto I,,,;. Then f is as needed.

To see that f is (ULS), first notice that, by Lemma 7.2, for every n > 0 the map
f M, is (S), as it is (C) with constant -"=. So, by Lemma 71, f | [1,00) is (S). Also,
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by Lemma 7.2, f | Iy is (ULC), so also (ULS) with some constant radius ¢. Thus, f is
(ULS) with the same radius.

To see (uLC), fix A € (0,1) and notice that, by Lemma 7.2, for every n < w the
restriction f | I, is (ULC) with constant A, so it also (uLC) with the same constant.
Hence, by Lemma 71, f is (uLC).

Finally, f is not (S), as p(f(ao), f(a1)) = p(a1, a2) = || =1 = p(ag, a1). Clearly
f has no periodic points. [ ]

Notice that, by Theorem 3.3, if f: X — X is as in Example 18, then X cannot be
rectifiable-path connected. Also, by Theorem 4.2 (that any (LS) map on a compact
space is also (ULS)), X cannot compact.

Example 18  There exists a map f:([0,00),p) — ([0,00),p) from the class
(uLC)&~(ULS) having no periodic point, where ([0, 00), p) is a complete metric topo-
logically equivalent to the standard metric. Moreover, f satisfies (uLC) with every con-
traction constant A € (0,1).

Construction Choose a strictly increasing sequence (8, € (0,1) : n < w) and let
0 = ag < a; < --- be such that if, for every n < w, we put I,, = [a,, a,41], then the
intervals I and I, have length ﬁ for every k < w. For every n < w, let p, be a
metric on I, defined by

M—M)m

paGeon) = Il =7

and let p be the metric on [0,00) from Lemma 7.1 associated with the metrics
{pn :n < w}. Then p is complete and, clearly, path connected. On each interval I,,,
define f as an increasing linear map onto I,,,1. Then f is as needed.

To see this, fix A € (0,1) and notice that, by Lemma 7.2, for every n < w the restric-
tion f | I, is (ULC) with constant A, so it also (uLC) with the same constant. Hence,
by Lemma 7.1, f is (uLC).

At the same time, f is not (ULS) since for every € > 0 there is a k < w with

p(f(azk), f(azks1)) _ Lok 1
= =1 and Az Azk+1) = k| = —— <&
p(azk; azks1) Lk | P2k azicn) = L2 k+1
Clearly, f has no periodic points. [ |

Notice that, by Theorem 3.3, if f: X — X is as in Example 19, then X cannot be
rectifiable-path connected. Also, by Theorem 3.2 (i), X cannot compact.

Example 19  There is a map f from (S)&(LC)&(uPC)&-(uLC) having no periodic
point, where f: ([0, 00), p) = ([0, 00), p) and p is a complete metric on [0, co) topolog-
ically equivalent to the standard metric. Moreover, f satisfies (uPC) with an arbitrary
constant A € (0,1). Also, there exists a perfect unbounded X c R such that p on X is
the standard metric on R and f I X belongs to the same class.

Construction Choose a sequence 0 = ag < a; < --- such that each interval I,, =
[@n, ans1] has length —L=. Define a function h: [0, 00) — [0, c0) approximating f by
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putting, for every x € I,,,
1 ntLs
h(x) = —[(n+1)(x —an)] " +ana.
n+2

Notice that £ is strictly increasing and maps every I,, onto I,,,;. Moreover, the maps

hy, = h | I, are convex, differentiable, and with derivatives h},(a,) = 0 and s, =
h (@ne1) = 22 Tt is important for the construction that

sp=h(aus1) 7 lasn — oo,
Choose a sequence a; = ¢) > ¢{ > -+ converging to ag = 0 such that ¢}, /cf ~ ko0 1,
e.g, cp = 7%, and, for every n,k < w, let ¢} = R (%), where h") = ho---ohis
the n-th iteration of h. Since, as an easy induction on 0 < n < w can show, ONS A

is given for every x € I by a formula h( (x) = ﬁx““ +ay,, where a, = []1; %0'5,
we have

c? o —a,
(7.16) kel R, o1 for every n < w.

Ck— Gn

Indeed, for n = 0 this is ensured by our choice of numbers c{, while, for n > 0, we

have
0o (O Y 0
Ckt1~ 4n n+1(ck+1) o Sk \ *" 1
M —a, L(CO)M L0 koo
k n n+l1\"k k
h(cd) | 5|
slope= sy =2 -,
neht RN
heh) Sy
h(cQ) =15 S
| slope= sy == _—
l'\\ . 7
h(ed) AN '
he T P
T - : ; i >
0 4B d dmm=1 d AR aq=1s
L. y = h(x) _—y = f(x)

Figure 18: Functions h and f from Example 19 restricted to the interval [ao, a.].

For every n, k < w, choose unique b} € (c},,,c}) such that the slope of the seg-
ment joining points (b}, h(c},,)) and (¢}, h(c})) is equal to s,,. The map f is defined
as

h(x) for x = ¢} for some k, n < w,

PO heg) or e (e, b7 forsome ko <

and as a linear function on each interval [b}, ¢} ], see Figure 18.
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To define metric p, choose an increasing sequence (S, € (0,1) : n < w). For every
k,n < w define metric p} on the closure of the interval J; = (b}, c}) by a formula

n n |X ~ )’| P
Pk(x’y) |]k|( |]Z| )
and notice that p} (b}, c}) = |J}| = |b} — c}|- Let p be the metric on [0, c0) from
Lemma 7.1 associated with the metrics {p} : k,n < w}. We claim that f has the
desired properties as a self-mapping of ([0, %), p).

To see this, let U = Uy, < J§ and X = [0, 00)\ U. Notice that f maps X into X and
that p on X is the standard distance. First we prove that f | X is not (uLC). Indeed, for
every A € [0,1) there exists an n < w such that A < s,, and on no open neighborhood
V of a, in X the map f is (C) with constant A, since every such V contains points
by, cj; for some k < w while

F(b3) — f(e)l _

=s,> A
|b% = ¢kl
So, neither f | X nor f is (uLC).
Next we will prove
(717) for every n < w, f | I, is (C) with a constant A = s, € (0,1).

Indeed, for every k < w,both f [[c},,, b} ] and f [ [b}, c}] are (C) with constant s,,: the
first being constant, the second by Lemma 7.2. Hence, by Lemma 71, f | [b}, aps1] is
(C) with constant s, for every k < w, and thus, sois f | (@, d,+1]. This and continuity
of f imply (7.17).

Clearly (717) implies that, for every n < w, f I I, is both (S) and (LC). Hence, by
Lemma 71, f is (S) and (LC).

To finish the proof, choose a A € (0,1). We need to show that f is (uPC) with
constant A. By Lemma 71, it is enough to show that, for every n, f I I, is (uPC) with
constant A. So fix an # < w and notice that, for every k < w, both f | [CZH, b,’:]
and f I [b},c}] are (uPC) with constant A: the first being constant, the second by
Lemma 7.2. Hence, by Lemma 71, f | [b}, au41] is (uPC) with constant A for every
k < w, and thus, so is f | (a,, an41]. Therefore, to finish the proof it is enough to show
that there exist an open V 3 a,, in I,, such that

P S ) _
p(an, x) -

n n
for every x € V, x # a,. But, for every x € [c},,, c} ],

p(f(an), f(x)) _ p(f(@n) f(f)) _ 6™ = ann ¢ —an

> = >k 0
p(an, x) p(anm ct,)) r—a, fo-an

since

o) e

a, i —an

n_
Ck
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and, by (7.16), CZ*“; —-oo 1. Therefore, there exists a kg < w such that

P FED)
p(an>ci,y)

for every k > ko, implying that V = [a,, ¢} ) is as needed.
Clearly, f has no periodic points. [ |

Notice that, by Theorem 3.3, if f: X — X is as in Example 20, then X cannot be
rectifiable path connected. Also, by Theorem 3.2 (i), X cannot compact.

Example 20  'There is a map f from (S)&(uPC)&—-(LC) having no periodic point,
where f:([0,00),p) = ([0,00), p} and p is a complete metric on [0, 0o) topologically
equivalent to the standard metric. Moreover, f satisfies (uPC) with an arbitrary constant
A € (0,1). Also, there exists a perfect unbounded X c R such that p on X is the standard
metric on R and f | X belongs to the same class.

Construction The example is obtained by a slight modification of one described as
Example19. Specifically, the modification is obtained by choosing a sequence sg = tg <
t; <--- converging to 1 and then for every k < w, choosing the unique b9 € (¢}, ,, c})
such that the slope of the segment joining points (b}, h(cY,,)) and (cf, h(c})) is
equal to t. All other parts of the construction from Example 19, including the choice
of points b} for n > 0, remain unchanged. We claim that f has the desired properties
as a self-mapping of ([0, o0), p).

Indeed, as before, we let U = Uy, 4<, /i and X = [0, 00) \ U. Once again, f maps
X into X and p on X is the standard distance. To finish the proof it is enough to show
that f [ X is not (LC) and that f has the remaining two properties.

To see that f I X is not (LC) notice that for every A € (0,1) and every open V
containing 0, there exist k < w such that A < t; and bg, cg € V. Then

0 0
|f(bk3 fo(Ck)| “ > A

|bk - Ck|
So, indeed, f I X is not (LC).

By Lemma 71, to finish the proof it is enough to show that, for every A € (0,1) and
n<w, f I I, is (S) and (uPC) with a constant A = s,, € (0,1). Indeed, for every k < w,
both f I [c},,, by ] and f | [b}, ¢ ] are (S) and (uPC) with a constant A: the first being
constant, the second by Lemma 7.2. Hence, by Lemma 7.1, for every k < w the map
f 1 [b}, ansa] is (S) and (uPC) with a constant A. Therefore, f | (a,,a,41] has the
same property.

To see that f I [a,, ans1] is (S), first notice that the continuity of f implies that,
for every y € (an,dn+1], we have p(f(a,), f(y)) < p(ay,, y). Therefore, for every
x € (an,ans],if y = ¢} = x~ for some k < w, then f(y) = f(x)~ and we have

p(f(an), f(x)) =p(f(an) f(y)) +p(f(¥), f(x)) < p(an,y) +p(y,x) = p(an, x),

proving (S) of f I I,,.
Since f | (ay, ans1] is (uPC) with a constant A, to finish the proof it is enough to
show that there exists an open V' 3 g, in I,, such that W < Aforeveryx eV,
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x # a,. But, for every x € [}, c}],

P(f(an))f(x)) <p(f(an),f(cZ)) cZ“—anH CZ—an

S = - 0
p(ay, x) p(an,ct,,) cf—ay ¢}, —an <

since .
it —any hu(c}) - hu(a,)
kn nil _ Mn kn n\ln o h;(a,,):o
Cp — an Cp — an

an

717
2"17,1 —-oo 1. Therefore, there exists a kg < w such that
A

n
P 1)

p(an’ Ck+])
for every k > ko, implying that V = [a,, c}, ) is as needed. Clearly, f has no periodic
points. [ |

and, by (7.16),

c

rectifiably path-connected rectifiable-path connected

Notice that, by Theorem 3.3, the space X from Example 21 cannot be rectifiable-
path connected. It is shown in Example 28 that such X can be path-connected. How-
ever, it is not clear if X in such an example can be simultaneously compact and con-
nected, see Problem 8.1.

Example 21  ‘There exists a map f:{[0,00),p) — ([0,00),p) from the class
(uPC)&=(LS) having no periodic point, where p is a complete metric on [0, co0) topo-
logically equivalent to the standard metric. Moreover, f satisfies (uPC) with every con-
traction constant A € (0,1).

Construction Choose a strictly increasing sequence (8, € (0,1) : n < w) and let
0 = ag < a; < -~ be such that each interval I, = [a,, a,+1] has length ﬁ For every

n < w, let p, be a metric on I,, defined by p,(x, y) = |L,|( lTI:.}I’l )P and let p be the
metric on [0, 00) from Lemma 71 associated with the metrics {p, : n < w}. Then p
is complete and, clearly, path-connected.

Define an increasing function g: [0, c0) — [0, co0) such that it maps each interval
I,, onto I, linearly (with respect to the standard metric). The map f is a modifica-
tion of g; it coincides with g on [a;, o0), while on I it is defined as follows: choose
a sequence a; = ¢y > €3 > ¢4 > --- converging to ao = 0. For every n < w, put
f(can) = g(can) and let £,:R — R be a line through point (cz,42, f(c2n42)) having
a slope which is half of the slope of g | I. Let cz,41 € (C2n+25C2n) be a solution of
p(€n(x), f(c2n)) = p(x, can ), see Figure 19. Such a solution exists by the Intermedi-
ate Value Theorem, as

o PG () f(€)) _

x=an p(X,Can) p(Cant2s Can) |To]
Define f(cz2n41) = €n(cans1) and on each interval [c,41, ¢, ] extend f linearly. The
function f is as desired.
Indeed, f is not (LS), since any open neighborhood V of 0 contains, for some
n < w, the points ¢, and ¢, that satisfy p(f(cans1), f(c20)) = p(€n(x), f(c2n)) =
p(x,c2n) = p(C2n+15 C2n)-

and P(gn(C2n+2)’f(C2n)) < |Il| <1
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1.5 -

0:(10 ™ Con+2 X = Con41 Con Cq Co=a, =

lo

Figure 19: Illustration of g and f on [c2n+2, c2n | from Example 21.

To see (uPC), choose A € (0,1). By Lemma 72, f is (uPC) with constant A on each
interval I,, for 0 < n < w, and [cy41, ¢4 | for every n < w. Therefore, by Lemma 7.1,
f is (uPC) with constant A on (0, c0). Finally, it is (uPC) with constant A at point 0,

since
pUf(x).f(0)) _ p(g(x).£(0))
p(x,0) = p(x0)
for small enough x, since, by Lemma 7.2, D*g(0) = 0. [ |

7.3 Examples on Disconnected X c R With Standard Distance

Notice that, by Theorem 3.2 (iii), if f: X — X is as in Example 22, then X cannot be
connected. Also, by Theorem 3.2 (ii), such a map must have a periodic point.

Example 22  'There exists a compact set X ¢ R and a map f:X — X from
(ULS)&~(PC) having no fixed point. It has a periodic point, as f*)(0) = 0.

Construction Let X = [0,1] U [2,3] and define: f(x) = 2 + arctanx for x € [0,1]
and f(x) = 0 for x € [2,3], ¢f. Example 1. Such f is as needed. [ |

Notice that by Theorem 3.2 (iii), if f: X — X is as in Example 23, then X cannot be
connected. Also, by Theorem 3.2 (ii), such a map must have a periodic point.
Example 23 Let X = [-2,-1]U[L, 2] and let map f: X — X bedefined as f(x) = rE
Then f is (ULC)&~(S) having no fixed point. But it has a periodic point, as f*) (1) = 1.
|
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Notice that by Theorems 3.2 (i) and 3.5, the space X in Example 24 cannot be com-
pact and it must have infinitely many components.

Example 24  ‘There exists a map f:X — X from (ULC)&-(S) having no periodic
point, where X is an unbounded perfect subset of R.

Construction Let X = U,.,[2n,2n + 1] and define f as f(x) = 2(n +1) for x €
[21,2n+1]. Clearly, f satisfies (ULC) with A = 0. Itisnot (S), as f(2) - f(0) =4-2 =
2 - 0. It has no periodic points since f(x) > x for every x € X. [ ]

Notice that by Theorem 3.2 (iii), if f: X — X is as in Example 25, then X cannot be
connected. Also, by Theorem 3.2 (ii), such a map must have a periodic point.

Example 25 For X = [0,1] U [2,3] there exists a map f:X — X, having no fixed
point, from (ULS)&(PC)&=-(uPC). It has a periodic point, ) (0) = 0.

Construction Let f,:[0,1] = [0,1] be a map from (S)&(PC)&=(uPC) constructed
in Example 2. We define f(x) = fo(x) + 2 for x € [0,1] and f(x) = fo(x - 2) for
x €[2,3]. Such f is as needed. [ ]

Notice that by Theorem 3.2 (iii), if f: X — X is as in Example 26, then X cannot be
connected. Also, by Theorem 3.2 (ii), such a map must have a periodic point.

az

az

N =

ay =

Space Y

Figure 20: Function g:Y — Y for Example 26.

Example 26  There exists a compact perfect set X ¢ R and a map f:X — X from
(ULS)&(uPC)&—(LC) having no fixed point. Such a map must have a periodic point.

Construction Forn < w,leta, = 272" sothata,,; = a’anda, \ 0.Letby = land,
for 0 < n < w, let b, € (ay,,a,-1) be such that the slope of the segment joining points
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(by,a2) and (a,_1,a%_ ;) is1-57". Then the set Y = {0} Upco[@n, bn] is perfect.
Define g:Y — Y by putting g(0) = 0 and g(x) = a? for every x € [a,,b,]. See
Figure 20.

Notice that g is in (uPC) with any constant A € (0,1). It is easy to verify that g is
(S). Also g is not (LC), since for any A € (0,1) and any open V 5 0 in Y, there exists a
non-zero n < w such that b,,,a,_1 € Vand1-57" > A, giving

lg(b) ~ g(ann)| _ a2 —ad| _
|bn_an71| |bn _an—1|

Let X = YU (2 + Y) and define f: X — X by putting f(x) = g(x) +2forx e Y
and f(x) = g(x —2) forx € (2+ Y). It is easy to see that such f is as needed. [ |

1-5"> A\

Notice that by Theorems 3.2 (i) and 3.5, the space X in Example 27 cannot be com-
pact and it must have infinitely many components.

C3
dy
Co
dqf
C1
do]
1 1
16 32
Co d.. el d e Cz dy.... €3
1 + 1 1.1 1 + 1
272 274 278

Figure 2I: Function f: X — X for Example 27.

Example 27  ‘There exists a map f:X — X from (S)&(ULC)&-(C) having no peri-
odic point, where X is an unbounded perfect subset of R.

Construction Let X = U,<,[cx> dn], where we define, by induction, ¢y = 0, d,, =
cn +2°"3) and ¢y = d, + % 42 () = oy p=(ne3) % +27 () The space
X is complete, since ¢, > § # ocoasn — oco. Put f(u) = ¢,y for u € [c,,d,] and
n < w, see Figure 21. Clearly f has no periodic point and is (ULC) with any A > 0

and0 < e < % (since the length of any [c,, d, ] is 27("*3) < %). To see that f satisfies
(S), choose u < v from X. We need to show that |W| < 1. This is obvious,
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when u and v belong to the same interval [c,,d,]. So assume that u € [c,,d,] and
v € [Cnsk> dpsx] for some k > 1. Then, since 2~ ("+K+3) 4 p=(n+k+1) _5=(n+1) 0 e

have
‘ f(V) _f(u)‘ < ‘ Cn+k+1 — Cn+l
v-u - Cutk — dn
) (cnsk 4o (n+k+3) % + 2—(n+k+1)) —(dy + % " 2—(n+1)) »
Cn+k — dn ’
completing the argument. m

Notice that by Theorem 3.3, the space X from Example 28 cannot be rectifiable-
path connected. It is shown in Example 21 that such X can be path-connected. How-
ever, it is not clear if X in such an example can be simultaneously compact and con-
nected, see Problem 8.1.

Example 28  'There exists a compact perfect X c R and a map f:X — X from
(uPC)&—(LS) having no periodic point that satisfies (WPC) with every contraction con-
stant A € (0,1).

Construction In [10, Theorem 1] we presented a perfect compact set X ¢ R and a
differentiable homeomorphism f: X — X which is (uPC) with any A > 0.

All orbits of the map f are dense in X, so f has no periodic points. Hence, by
Theorem 3.2 (i), f is not (LS). |

seeees jsthe set X

Figure 22: Relation among the sequences (a, : n < w), (d, : n < w), and the set X.

5Added at proof stage: The 8 page construction of such example was recently significantly shortened,
to less than 2 pages, by the first author; see http:/www.math.wvu.edu/~kcies/publications.html.
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It is not clear if the space X from Example 29 can be simultaneously compact and
connected, see Problem 8.1. However, X can be [0, co) with the standard metric, as
shown by Example 3.

Example 29  There exists a bijection f: X — X from (PS)&-(PC) having no periodic
point, where X is a compact perfect subset of R considered with the standard metric.
Moreover, we will have f'(x) = 0 for all but one x € X.

Construction Letf: X — X beasin [10, Theorem 1], that s, f is a periodic, point free,
differentiable auto-homeomorphism of a perfect, compact, nowhere dense X ¢ R
such that f'(x) = 0 for all x € X. We will construct an appropriate increasing bijection
g:R — R for which X = g[X] and f = gofo g™": X - X will be as needed.

Translating X, if necessary, we can assume that min X = 0. Now, since f'(0) = 0,
the function A: X — R defined as

[f(x)-f(0)|
N for x # 0,
0 for x =0,

is continuous. In particular, it is an easy task to choose a strictly decreasing sequence
{(an € (0,00) \ X : 1< w) converging to 0 and associated numbers

dy =supA[[0,a,] N X]
such that:

e f[X N0, a0]] is disjoint with [0, ag] (possible, as f(0) > 0 and f is continuous),
i do < 1/2,
e dy < %dn for all n < w. See Figure 22.
Let (b, € (an,du-1) : 0 < n < w) be adecreasing sequence with [b,, a,_;1|nX = @.
Define function g as the identity on the complement of (0, aq ), while, for every 0 <

n<w,putg(x)= %x on [a,, b, ] and extend itlinearly on [b,, a,_1 ], see Figure
23.

Notice that g is indeed increasing, since

(n+2)d,n < (n+2) ldn . (n+1)d,
n+1 n+l 2 n

for all 0 < n < w. Moreover,
(718) g(x)<x forallx >0,
since @ <lforall0<n < w.

To see that f is as desired, first notice that
(7.19) f'(x) =0 for every nonzero x € X.

Indeed, for any such x there exists a nonzero s € X with x = g(s). Choose c € (0, x)
with ¢ < f(x) in the case when f(x) # 0. Then the graph of g I [¢, o0) is a union of a
finite number of segments of positive slope and so, g I ¢, o0) is bi-Lipschitz with some
constant M > 0, thatis, M~'|a-b| < |g(a) —g(b)| < M|a—b| whenever a, b € [c, o).
Choose y € X \ {x} and t € X with y = g(t).
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Figure 23: The thick line is the graph of g from Example 29.

Now if f(x) # 0, then for every d < f(x) and y close enough to x, we have
s, 1, §(s), §(t) € [d, 00), so that
(%) = fOI _ 1g(Gi(s)) - gG(e)I _ MIi(s) —§(O]
[x =l 18(s) = g(1)] M — 1]
as needed for (719). Similarly, for f(x) = 0 and y close enough to x, using (7.18) we
obtain

t—s O)

) -fl - gG@) 5 i) =)
[x =yl 8(s)—g(B)] =~ MTs -t MMs—1]
completing the proof of (7.19).
Clearly, (7.19) implies that f is (PS) at every x € X ~ {0}. To see that f is (PS)
notice that for every y € X n (0, ay), there exists a t € X n (0, ag) such that y = g(¢).

Moreover, t € [a,,b,] for some 0 < n < w and g(f(t)) = f(¢), as g is the identity on
[ag,00) > §(t). Thus

)~ FO) _ g0 - 8GO _ (D) -f0) 15

ly -0l 18(8)] (n+1)d, d, n+l n+l

n

t—s 0,

ensuring (PS) of f at 0.
Finally, to see that f is not (PC) at 0, it is enough to notice that by the definition of
numbers d,,, the inequality < in the last display becomes equality for some € [ay,, b, ].
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(The maximum d, of A on [0, a,] N X must be attained on [a,, b, ], since for any
s€[0,ans1] N X wehave A(s) < dyi1 <dy.) ]

It is not clear if the space X from Example 30 can be simultaneously compact and
connected, see Problem 8.1. However, X can be [0, co) with the standard metric, as
shown by Example 4.

Example 30 There exists a bijection f: X — X from (PC)&-(uPC) having no peri-
odic point, where X is a compact perfect subset of R considered with the standard metric.
Moreover, f'(x) = 0 for all but countably many x € X.

Construction The construction is a variation of one used in Example 29. A diffi-
culty here is that, instead of having just one point x € X with D* f(x) # 0, we will
need to have a sequence of points (a, € X : n < w), with D* f(a,) ~ lasn — oo.

As before, we start with the function f: X — X from [10, Theorem 1], so that f
is a periodic, point free, differentiable auto-homeomorphism of a perfect compact
nowhere dense X ¢ R such thatf'(x) = 0 forall x € X. We also assume that min X = 0.
We will construct an increasing bijection g:R — R for which X = g[X] and f =
gofog X — X areas needed.

Since §(0) > 0, by continuity of f we can find an a_; € X such that f(x) > a_, for
every x € [0,a_;] n X. Choose a sequence f(0) > a_; > ag > a; > --- in X converging
to 0 and such that for every -2 < n < w there exists a ¢,, < a, with (¢,,a,) N X =@
(so ays are isolated from the left, but not from the right).

Notice that, for every n < w, the function A,: X — R defined as

[§(x)=f(an)|
An(x) =] ar Porxdan
0 for x = a,,

is continuous as f'(a,) = 0. By induction on k < w, choose a strictly decreasing
sequence (b} € (au,an-1) \ X : k < w) converging to a, and the associated numbers
df = max A,[[an, b}] 0 X] such that bf < 2a,,d§ < 1,and d},, < d} forallk < w.
Let (c; € (b}, b}_,) : 0 < k < w) be such that [¢}, b}_,] n X = @. Define function g as
the identity, i.e., via g(x) = x, on R\ U<, (a4, bf). Forevery n < w and 0 < k < w,
put g(x) = a,+22d} (x—a,) for x € [b}, c}'], and extend it linearly on each interval
[}, b}_,], see Figure 24.

Notice that g is indeed strictly increasing, since so is g I [an, b§ ] for every n < w:
every line ¢} containing g | [b}, c}] passes through the point (a,,a,) and the slope
:’l—ﬁd,’c’ﬂ of £7 ., does not exceed the slope Z—ﬁd}: <lof &},

Let A = {0} u{a, : n < w}. Notice that, for every n < w, we have g[[a,, by ]| =
(a4, bg ). Thus, the slopes of lines £} being less than one, and that fact that g(x) = x

forall x € R\ U,<o(an, by), imply that
(7.20) lg(t) —g(a)|<|t-a| foreveryaeAandt>a.

To see that g, X = g[X],and f = gofo g7": X — X are as desired, first notice that,
for every n < w, a, = g(a,) € X and D* f(a,) = 2. Indeed, if y € X and |y — a,| <
0, = min{bj§ — an, a, — ¢, }, then there exists a nonzero k < w such that y = g(t) for
some t € [b}, c}]. Then by the definition of g on [b}, c} ], |g(t) — an| = 22d7|t — ay|.

n+l
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Figure 24: The graph of y = g(x) between a,., and a,.

Therefore, as g(f(x)) = f(x) forany x € [0,a,] N X,
[F(8)—F(an)l

&) = flan)l _ [g(G(0) — g(G(an)) _ [{() ~f(an)| _ "Tmal n+1 _n+l
ly = aal 1g(t) — au| Z—ﬁd;‘|t—an| a; n+2 n+2’

since W < d}! by the definition of d. Hence, D* f(a,) < 2*1. Moreover, the

equality holds, since there exists an s € [a,, c} ] with

d]r: _ |]((S) — f(an)| .

s — an|
Also, s ¢ [a,, c},,], since d}l,, <d}. Hence, s € [b}, c}] and
Fg(s)) ~ flan) _ n+1
lg(s) — an| n+2’

proving that D* f(a,) > 2.

The equation D* f(a,) = :—3 proves that f is not (uPC) and that it is (PC) at
every x = a,. So, to finish the proof, it is enough to show that f'(x) = 0 for any
xeX~{a,:n<w}

So choose such x. We consider the following three cases.

Casel: x = 0. Thenx = 0 = g(0) and, for every y = g(t) € X close enough to x,
we have f(y) = g(f(t)) = f(¢). Notice that having b} < 2a, for all n < w, gives us
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g(t) > 2t forall £ > 0. So for y # 0, we obtain
) = fWI _ [1(0) 5] _ [§(0) =F(O)] _,[i(0) = ()]
0=yl gty gt |01
giving f'(0) = 0, as required.
Case?2: x, f(x) ¢ A. Then neither g'(x) nor f(g™'(x)) belongs to A, as g(a) = a
for every a € A. It is easy to see that every z € R \ A admits an open neighborhood

U > z for which the graph of g | U is a union of at most two non-constant linear
functions. In particular, g | U is bi-Lipschitz, that is, there exists an L > 0 such that

(721) LYa-bl<|g(a)-g(b)|<Lla-b| foralla,beU.

>0 2§'(0) =0,

Let Uy and U, be the neighborhoods of g™*(x) and f(g~*(x)), respectively, satisfying
(7.21). Since g and § are homeomorphisms, we can find an open neighborhood V of
x in X such that g7*(V) c Uy and f(g7'(V)) c Uy. Then for every y € V, y # x, we
have

lf() - fOI _ (8™ (x))) - g(i(g™ (»))]
[x =yl 8(g7'(x)) — g7 (M)
Lif(g7 Y (x)) = f(g7! ;o

UG TN i)
Lg™(x) - g7 ()

Since §'(g7!(x)) = 0, we obtain f'(0) = L*j'(g™*(x)) = 0, as required.
Case3: x ¢ Aand f(x) € A. Let a € A be such that f(x) = a and notice that
f(g7'(x)) = g '(f(x)) = g"'(a) = a. Since a is isolated from the left, there exists
an open neighborhood U; of a = §(g™(x)) in X such that U; c [a, c0) and so (7.20)
holds for every t € U;. Moreover, since x ¢ A, we have also g7!(x) ¢ A and so,
there exists an open neighborhood Uy of g™ (x) in X satisfying (7.21). Now as in the

previous case, we can find an open neighborhood V of x in X such that g™}(V) c U,
and §(g7'(V)) c Uy. Then for every y € V, y # x, we have

) =D _ Ig(a) -g(g” DNl __ la-F& ()
[x =yl 8(g7'(x)) — g (YNl ~ L7Mg7 (%) — g7 (y)]
_ g™ (%) — i~ () ‘o
T L) -t T L (g ().
Since f'(g7'(x)) = 0, we obtain f'(0) = Lf'(g™"(x)) = 0, as required.

8 Remaining Open Problems and Remarks

The in-depth analysis of this article, for the most part, presents a clear picture of the
place of fixed and periodic point theorems among classes of functions described in
Definition 2.1, considered in various topological configurations. However, there re-
main a few cases, indicated in the problems below, which “locally” cloud this image.
In particular, the first of these problems, seems to be particularly intriguing, especially
for the classes (PC) and (uPC).
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Problem 8.1 Assume that (X, d) is compact and either connected or path-connected.
If the map f:(X,d) - (X,d) is (PS), must f have either a fixed or a periodic point?
What if f is (PC) or (uPC)?

Note that, for the class (PC), the answer to Problem 8.1 (and Problem 8.2) is affir-
mative when the space (X, d) is rectifiable-path connected, see Theorem 3.4.

Problem 8.2  Assume that (X,d) is compact and rectifiable-path connected. If the
map f:(X,d) - (X, d) is (PS), must f have either a fixed or periodic point?

Notice also that a large number of the examples of functions we discussed are de-
fined on spaces (X, p), where X is an interval and p cannot be the standard metric
from R. However, in all such cases, with the exception of Example 11, it seems to be
unknown if in these examples the space (X, p) can be isometric to a subset of R" for
some n > 1. We believe that in the cases when (X, p) can be rectifiably path connected,
i.e., in Examples 6, 7, 10, 12, 13, 14, and 15, it is indeed possible to find the examples
with (X, p) being isometric to subsets of R’. Verifying this conjecture might be an
interesting project. In the cases when (X, p) cannot be rectifiable-path connected,
i.e., in Examples 16, 17, 18, 19, and 20, the possibility of finding the examples on the
subsets of R” still seems possible, but it is less clear to us. Rakotch [30, Example 1] is
somewhat encouraging; see also our comment preceding Example 16.

We would like to finish here with a few words on what brought us to pursue the
work on this project since, perhaps surprisingly, it was not our interest in the fixed
point theorems. Instead, it stemmed from examining differentiability of the Peano-
like maps g from the subsets X of R onto X2, see [8-10]. It is easy to see that the
differentiability of such g implies that X has Lebesgue measure 0. But, in [8], we gave
an example of an infinitely many times differentiable function g:R — R?* that maps
an unbounded perfect set X c R (clearly of measure 0) onto X. We also showed
that for every continuously differentiable function g:R — R?, X* ¢ g[X] for every
compact perfect set X c R. However, the following problem remains open.

Problem 8.3 Let X c R be compact perfect and let g be a function from X onto X>.
Can g be differentiable? continuously differentiable?

If such a g = (f, h) exists, then f maps X onto X and, as we remarked in [8,
Lemma 3.2], f/(x) = 0 for all x € X except possibly of a first category subset of X.

Can a surjection with such properties exist? What if f'(x) = 0 for all (rather than
“almost” all) x € X? Our (false) intuition was that f with this last property, i.e., being
a map from compact perfect X c R onto X with f’ = 0, cannot exist. In our attempt
to show such a claim, we proved [10, Theorem 9] that for any such f there exists a
perfect X c X such that f = f | X has no periodic points, bringing us to the realm
of fixed point theorems and (uPC) maps. Of course, we eventually discovered (see
[10, Theorem 9] and Example 28) that such a paradoxically behaving function f (see
Figure 25) indeed exists. So one may say that this entire study stems from Example 28.
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GOSH, | SHTUNK tHiS coMpact Set at every poiNt
$0 WHy iS 1t SELL te SaMe?!

x FLx°]

Figure 25: The result of the action of §* = (f, f) on X% = X x X

Finally, notice that the existence of map f seems to indicate that the answer to Prob-
lem 8.3 is affirmative. However, the delicate construction of f has so far defied any
attempts to transform it into the example confirming this indication.
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