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Abstract. Effects of dynamical friction on star orbits in a spherical cluster uniformly rotating with small 
angular velocity about a fixed axis are considered, deformations of the cluster due to the rotation being 
neglected. The test star is supposed to move in a noncircular restricted orbit under the influence of both the 
attraction of the cluster with the smoothed-out distribution of stellar matter and dynamical friction due to 
random encounters of the test star with other stars of the cluster. 

The approximate formula for dynamical friction has been deduced, the encounters being supposed to be 
the binary ones. The differential equations for the osculating elements of the star orbit have been obtained 
for the two cases of the density distribution - the uniform and the exponential ones. The numerical results 
demonstrate the complicated character of dynamical friction effects on the evolution of the orbit. The 
orbit tends to become circular, and its inclination decreases. These effects are proportional to the mass of 
the test star. This leads to the conclusion that dynamical friction contributes noticeably to the concentration 
of massive stars near the center of the cluster. 

1. The Formulation of the Problem 

The field of force in the star cluster may be described as a superposition of the regular 
field defined by the continuous distribution of stellar matter in the cluster and of the 
irregular field defined by chance stellar encounters. When considering the star orbits 
the greatest attention is usually paid to the regular component of the force field, and 
the effect of stellar encounters as a rule, is entirely neglected. On this scheme each star 
follows the determinate trajectory under the sole influence of the smoothed-out 
gravitational field of the potential of the system as a whole, which is a function of the 
space coordinates only, the total energy of the star being unchanged, and the motion 
of the star being uniquely defined by its orbital parameters. 

It is clear, however, that this determinate process of the motion of the star along a 
specified trajectory in the regular field will be disturbed when the test star passes 
close to other stars. Due to the accidental encounters with stars of the cluster an 
additional force arises, the magnitude, the direction and the duration of which 
depend on the initial conditions characterizing each single encounter. The knowledge 
of the position of the star and of the disturbing force acting on the latter at some instant 
of time gives only a certain probability of each possible position at the following 
instant of time. Therefore, the changes of the orbit under the influence of the encoun­
ters are random. 

Relatively distant encounters of the test star with other stars of the cluster occur 
much more often than the close ones, and although the effect of a single distant 
encounter is quite small, the accumulated effect of distant encounters may result fin 
an appreciable change of the star orbit. The negligibly small probability of the close 
encounters also enables us to disregard discontinuities in the behaviour of the stellar 
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velocity as a random function of time and to consider the changes of the stellar 
velocity in the irregular field as a continuous random process. 

As a result of the action of the irregular forces in gravitating systems, in particular, 
dynamical friction appears in the direction against the relative velocity of the test star. 
Dynamical friction in gravitating systems was for the first time investigated in detail 
by Chandrasekhar (1943b), but in his research the test star was assumed to move in a 
straight line in the structureless infinite medium. In real stellar systems the star orbits 
cannot, however, be considered rectilinear and must be restricted in space. 

In this paper we deal with the influence of dynamical friction on the motion of the 
test star in a spherical cluster uniformly rotating with a small angular velocity around 
a fixed axis passing through the center of masses of the cluster. The deformation of the 
cluster caused by its rotation is considered to be neglected, when its influence on the 
test star motion is concerned. Furthermore, we shall assume that there are no external 
forces acting on the motion of the test star. 

2. Dynamical Friction in Stellar Clusters 

If one neglects the probability of the close encounters it is necessary to consider the 
action of the irregular forces in the stellar cluster as a random continuous Markoff 
process (for the fixed state at present, the state of the system in future does not depend 
on its state in the past). In this supposition the force of dynamical friction can be 
expressed as 

F = m(Ay>/At, (1) 

where m is the mass of the test star, (Av}fAt is the average increment of the velocity of 
this star during the time interval At, which is sufficiently long for many encounters to 
occur during this time, but sufficiently short for the velocity of the star not to change 
appreciably (Chandrasekhar, 1943a, b). We shall suppose, as is usually the case 
(Chandrasekhar, 1942), that each encounter may be idealized as an independent two-
body problem. For the sake of simplicity we shall suppose that all the stars in the 
cluster have the same mass, m, and the mass m of the test star, which differs, in general, 
from the mass m, is small as compared with the total mass of the cluster Nm (N is the 
number of stars in the cluster). According to these assumptions the increment of the 
velocity per unit time may be represented in the form (Rosenbluth et a/., 1957) 

(2) 

(3) 

(4) 

where G is the constant of gravitation, L is the maximal encounter parameter in the 
two-body problem, which may be considered as the average distance between the 

<dv>Adt = rg rad / i , 

r=4nG2m2ln\ ** I, 
|_G(ro+m)J 

*W = 
m + m (* ^(v') 

m 1 dv' 
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stars (Chandrasekhar, 1942), a2 is the mean square velocity of the stars in the cluster, 
t̂ (v') is the distribution function of the velocities, dv' is a volume element in the velocity 
space. The dependence of the logarithm on the velocity in (3) is weak, therefore, the 
quantity F may be assumed to be constant. The denominator in (4) represents the 
velocity of the test star relative to an arbitrary cluster star. Equations (2)-(4) are valid 
in any coordinate system, but for the sake of convenience when calculating the func­
tion h(y) the system of coordinates referred to the centroid of the given point is used. 

We shall now suppose that the distribution function of the velocities is Maxwellian: 

/ 3 \3 / 2 / 3v'2\ 

where D denotes the number of stars per unit volume. Substituting (5) in (4) and using 
integral representation, 

+ oo 

Oxp(-|v-v'| !KJ]d{ — - - f 
•(<!; is an auxiliary variable of integration) after some minor rearranging, we find 

,, m + mD r,, x grad/»=—— -3 | > ( s W ( s ) ] v. (6) 

Here 5 is a variable defined by 

s2 = 3v2/2a\ 

and (f>(s) and </>'(s) are respectively the error function and its derivative; 
s 

0(S) = A f exp(-£2)<tf, <£'(*) = -?- exp(-s2). 
0 

Using (2), (3) and (6), we obtain from (1) 

4nG mm(m + m) lG(m + 

2 ' 
-1[<l>{s)-s(t)'(s)']y. 

The function v(s) = </>(s) — s(j)'(s) increases monotonically from zero to unit as s 
changes from zero to infinity. For the sake of simplicity in what follows we shall 
assume that the velocity of the test star is not too different from a. We are interested 
in the approximate estimate of dynamical friction effects for comparatively small 
time intervals at which changes of function v(s) are quite small. Expanding v(s) in 
powers of the deviations of the velocity of the test star from the root mean square 
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velocity of the cluster stars and taking into account only the first term of the expansion, 
we obtain 

F = - F 0 ^ v , (7) 
tr 

where F0 is a constant, which has the form 

F0 = 4nG2mm(m + m) { i n L ^ l } [>(Vf)- V* *'(V*)]-I LG(m+m)_|j 

It must be emphasized here that the right-hand side of (7) does not take into con­
sideration unavoidable fluctuations of the force. The greater the mass of the test star 
and its velocity, the more correct it is to restrict ourselves to the determinate part of F 
given by (7). The estimates below do not claim to be quite accurate but they do reveal 
the main tendency in the evolution of the star orbits, the kinetic energy of which 
exceeds the average kinetic energy of the stars in the cluster. 

3. Dynamical Friction Effects on the Motion of the Star Inside a Rotating Homogeneous 
Spherical Cluster 

Let us consider a spherical cluster with constant density D = D0 and suppose that in a 
certain appropriately chosen fixed frame of reference (x, y, z) with the origin in the 
center of the sphere, the cluster rotates with a uniform angular velocity a> about the 
z-axis. The potential U for the case under consideration takes the form 

U=-frr\ (8) 
where r is the distance of the test star from the center of the cluster, and 

<x=%nGmD0. (9) 

It is well-known that the trajectory of the star in the force field (8) is an ellipse, the 
center of which coincides with the center of the sphere, and the period of the revolution 
of the star T around the center of the sphere in the motion along this ellipse depends 
neither on the dimensions nor on the compression of the latter and is equal to 2n/oLi/2. 
The equation of the trajectory takes the form 

. 2 «■ 
2 

r = i ^ -^T- ' (10) 

where 

r2-r2 

q = rp(\+Ky'\ !€--§—-§, (11) 

where rp and ra are respectively the pericentric and apocentric distances of the test 
star, (p is the angle between the radius vector and the direction to the pericenter. The 
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quantity K characterizes the compression of the ellipse and in many respects is analo­
gous to the eccentricity. 

The undisturbed star orbit in the gravitational field (8) is completely defined by the 
two isolating integrals of the motion: the energy integral (scalar) and the momentum 
integral (vector), which respectively take the form, in terms of peri- and apocentric 
distances, 

r2 + ar2 = a(r* + r;J), 
(12) 

r x r = c, 
where dots denote the derivatives with respect to time. The following designations are 
used in (12): 

sin/ sinQ 
(13) c = c 

r = r 

c = ocl/2rpra — sin i cosQ 
cos/ 

cos u cos Q — sin u sin Q cos / 
cos u sin Q + sin u cos Q cos / 
sinw sin/ 

(14) 

Here, as usual, i is the inclination of the orbit, Q is the longitude of the ascending node, 
u = (p + m, and w is the distance of the pericenter from the node. 

For investigating the disturbed motion of the star in a rotating cluster it is necessary 
to keep in mind that v in (7) is the relative velocity, and it is necessary to calculate it 
according to the formula 

v = r — w, (15) 

where w is the linear velocity of the rotation of the cluster at the test star position. 
To take into account the effects of the disturbing force (7) on the motion defined by 

(8), (10) and (12) we shall now consider rp, ra, /, Q, m to be the osculating variables. It 
means that the space coordinates and the components of the velocity in the disturbed 
motion at each instant of time are calculated according to the formulae of the un­
disturbed motion. We shall compose the differential equations for these variables. 

Using the momentum and the energy integrals of the undisturbed motion (12) and 
the equation of the disturbed motion 

f=gradl/ + F/ro, 

we find the following equations for rp and ra: 

(16) 

rp=-^—2\-p^(rxF)e—^(iF)\ rl-r2
p\_yja.m c can J 

rZ-rj\_<xm Jam c] 
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where 
F n oc = j7iGmD0. 

(rxF)=-'-\^{c-a)[_-ixz-}yz + k(x2 + y2)-]}, 
V (17) 

F D 
(f • F) = ~ [a(r2 + r2

a- r2)-cojoc rpra cosi]. 

Here i, j , k are the unit vectors along the axes, x, y, z. 
Along with the equations for rp and ra characterizing the dimensions and the 

compression of the orbit we find the equations for variables i, Q and w defining the 
orientation of the orbit: 

. (r x F) de/di F0D0cor2 cos2 u sin i 
l= _ (18a) 

mc mcv 
. (r x F) dc/dQ F0DQcor2 sin u cos u sin2 / 

Q = = 3 . (18b) 
mc mcv 

For the change of w we have (Subbotin, 1968): 

m= -(<p)-cosiQ, (19) 

where Q has been defined by relation (18b), and for the first term in the right-hand side 
(19) from the equation of the trajectory and the momentum integral we find: 

W- r 0 A^r^<f * - * * ) - - .2 * + f r - l )=^ l . (20) 
2allzKrprar \_ q m j 

The notation cp in (19) and (20) indicates that the derivative q> should be calculated 
with respect to time entering in the osculating orbital parameters only. For i and q 
according to (13) and (11) we have 

c = ocll2(fpra + rpra), 
2 V / 2 (rpra + rpra)-rpra(rprp + rara) 

q \rl + r*J r2
p + r2

a 

The relations (16), (18) and (19) obtained above are the differential equations of in­
terest for the osculating orbital parameters. 

To estimate the evolution of the orbit under the influence of dynamical friction it is 
necessary to find the changes of the osculating parameters of the orbit for one revolu­
tion of the star around the center of the cluster. Approximate values of these changes 
can be found by integrating the right-hand sides of the above differential equations 
with respect to time. So, for instance, the change of rp for one revolution is found with 
the formula 

T 111 

Arp = rp(T)-rp(0) = j f dt = c~1 J \r2 d<p, (21) 
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where I is the right-hand side of Equation (16) for rp. The changes of the remaining 
elements can be obtained in exactly the same way. While calculating the integrals of 
the type (21) it is necessary to take into account that the integrands are n-periodic 
with respect to (p and, moreover, possess the properties of evenness or oddness. The 
use of these properties enables us to reduce the interval of the integration by a factor 4 
and avoid the calculation of the integrals which are equal to zero. In particular, it turns 
out that 

Am= — cosiAQ. (22) 

It should be mentioned that the right-hand sides of the equations for i and Q keep the 
angular velocity of the rotation of the cluster a> as a factor. If a> is zero, that is, the 
cluster does not rotate, the parameters i and Q are constants, and the motion takes 
place in an invariable plane. The changes rp and ra in this case do not depend on i, Q 
and w. In the general case of the rotating cluster the quantities i, Q and w vary with 
time, and rp, ra depend on i and m, but all these quantities do not depend on Q (the 
problem is an axially symmetrical one). 

The changes of the orbital parameters for one revolution of the star around the 
center of the cluster were obtained by numerical estimation of the integrals of type (21) 
for a number of the values of the parameters i, tu, co/cc1'2 and for different values of the 
ratio m/m in two cases, namely, that of the globular cluster and that of the open cluster. 
To be more definite, we assume that the test star moves at the periphery of the cluster. 
According to the virial theorem we find a2 =0.5GNrhQ~*, where Q denotes the radius 
of the cluster. Besides (Chandrasekhar, 1943a), L = 0.559 36DQ 1/3. As a typical 
example let us take the following values of the main parameters for the globular 
cluster: N = 3x 105, m = mQ, g = 35 pc, rp = 21 pc, rfl = 30 pc. For the open cluster we 
accepted the values Af = 3 x 102, m = mQi g = 3.5 pc, rp = 2.7 pc and rfl = 3 pc. 

The corresponding numerical values of Arp, Ara and Ai are given in Table I for a 
number of variants. Due to lack of space the full volume of data obtained is not 
presented here and we shall restrict ourselves to some qualitative conclusions. The 
computations show some peculiarities in the evolution of the star orbits. First of all 
one notices that rp and ra decrease in all cases under consideration and that ra de­
creases faster than rp. This means that the dimensions of the orbit decrease, and the 
orbit tends to become circular. The changes of rp and ra in the rotating cluster almost 
always surpass the corresponding values for the nonrotating cluster at least in the 
case of the direct motion of the test star (0^ i ̂  jn). In the rotating cluster the greatest 
are the changes of rp and ra in the case i=0, that is, for the motion in the equatorial 
plane of the cluster. The changes of rp and ra depend essentially on the magnitude of 
the ratio m/m of the mass of the test star to the average mass of the cluster stars. When 
the value of this ratio increases the changes of rp and ra increase too. 

Another important peculiarity of the evolution of the orbit in the rotating cluster 
is the decrease of inclination with the passage of time. The velocity of decrease of 
inclination is greatest for the polar orbits (i=jrc), while for the equatorial orbits it 
becomes zero. The magnitude of the change of the inclination is quite significant. As 
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TABLE I 
Changes of orbital parameters rp, ra, i per one orbital revolution of the test star with m = Am due to dy­

namical friction in a cluster (abbreviations: H homogeneous, E exponential, O open, G globular) 

Type of cluster 

HO 
HO 
HO 

HG 
HG 
HG 

EO 
EO 
EO 

EG 
EG 
EG 

of 

0 
0.1 
0.1 

0 
0.1 
0.1 

0 
0.1 
0.1 

0 
0.1 
0.1 

l b 

0 
0 
in 

0 
0 
in 

0 
0 
in 

0 
0 
in 

-(Arp/rp)x\0* 

534 
633 
531 

2.31 
2.87 
2.30 

353 
425 
351 

1.52 
1.84 
1.51 

-(Arjra)x\0* 

660 
810 
653 

2.85 
3.50 
2.82 

575 
677 
573 

2.48 
2.93 
2.47 

-AixlO5 (rad.) 

0 
0 
50.2 

0 
0 
2.17 

0 
0 
133 

0 
0 
0.58 

a The angular velocity of the cluster a> is taken in terms of the mean orbital motion of the test star. 
b For the nonequatorial orbits the argument of pericenter w is taken to be zero. 

a result of such evolution the plane of the orbit tends step by step to coincide with the 
equatorial plane of the cluster. The speed of the change of the inclination depends 
essentially both on the value of the ratio m/m and on the initial value of w. As to the 
changes of Q and w they depend on the quantity w too and in the order of magnitude 
they are comparable with the changes of the inclination. 

The numerical data of Table I show also that the changes of the orbital parameters 
in an open cluster are noticeably greater than in a globular one. 

All this entitles us to draw the following conclusions: Dynamical friction effects 
on the star orbits in a rotating homogeneous spherical cluster contribute to concen­
trating the massive stars both in the vicinity of the center of the cluster and in the 
equatorial plane of the cluster. The spherical spatial distribution of the stars must 
transfer step by step to the ellipsoidal one. 

4. The Motion of the Star in a Rotating Spherical Cluster with the Exponential 
Distribution of the Density 

The observations show that numerous classes of stellar systems, for instance, globular 
systems, are characterized by a considerable gradient of the stellar density from the 
center to the periphery. The numerical experiments (Agekjan and Baranov, 1969; 
Baranov, 1970) also confirm that in the central part of the spherical cluster the density 
is almost unchanged and then sharply falls towards the periphery. In our previous 
papers the distribution of the stellar density is traced as far as the boundary of the 
cluster, where approximately 0.9 of the whole mass of the system is concentrated 
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inside the sphere with the radius 0.1 of the radius of the cluster. Therefore, in the 
motion of stars in such clusters the attraction of the central mass is of crucial signifi­
cance. 

Let us consider a spherical cluster uniformly rotating with a small angular velocity 
around a fixed axis and assume that the distribution of the stellar matter in the system 
is subject to the barometrical formula 

Z) = D0exp(-JR/R0), (23) 
where R is the distance of the test star from the center of the cluster, and D0 and R0 are 
the constants. The potential U corresponding to the barometrical formula (23) is 
easily determined from Poisson's equation: 

U= -4nGmD0R2
0{exp(-R/R0) + (2R0/R) [exp(-K/R0)-l]}- (24) 

In particular, it follows from the formula (24) that for large R the field of force becomes 
similar to the Newtonian one. 

Since in the problem under consideration the main attraction force acting on the 
star moving in the periphery of the cluster is created by its central mass, one can 
conveniently investigate the motion by classical methods of celestial mechanics 
using Kepler's osculating elements a, e, (2, f, m, M0. The differential equations for the 
osculating Kepler's elements are taken in Euler's form. The right-hand sides of these 
equations are expressed by means of the components of the disturbing acceleration 5, 
7 and W, which are the projections of the vector of the disturbing acceleration to the 
directions along the radius-vector, perpendicularly to the radius-vector in the orbital 
plane and along the normal to the orbital plane, respectively. Since these equations 
are well-known (see, for example, Subbotin, 1968), they are not listed here. 

The star orbits lie in the plane passing through the center of the cluster. The orbits 
are not closed and cannot be expressed in the elementary functions. 

Besides the central mass and the disturbing force of dynamical friction the attrac­
tion of the peripheral part of the cluster also influences the star motion. Since we 
assume the distribution of mass in the system to be spherical, the disturbing force due 
to the attraction of the peripheral part of the cluster is directed along the radius-
vector. The attraction of the peripheral part of the cluster may be described as the 
difference between the attraction of the mass bounded by the sphere passing through 
the test star and the attraction of some reference sphere. In the following we assume 
the undisturbed semimajor axis a to be the radius of the reference sphere. The vector 
equation of the motion of the test star takes the form 

ft Gg«(a)R GAmR F 
R3 R3 m 

where 9W(a) is the mass of the sphere of the radius a, AW is the mass of the spherical 
layer between the spheres with radii R and a, F is the vector of the force of dynamical 
friction defined by formula (7). 
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The absolute value of the disturbing acceleration QR due to the attraction of the 
peripheral part of the cluster is determined by the formula 

QR = GAWl/R2, (25) 

where 

Am = -4nmD0R0 {exp( - R/R0) [{R + R0)2 + Kg] -
exp(-a/R0)[(a + R0)2 + R2

0-]}. (26) 

The components 5, T and W of the disturbing acceleration due to the force of 
dynamical friction take the form 

F0D / / /A . 
m v' V \pj 

m i;3 |_ v \py 
(1+e cos/) — a>R cosi (27) 

F0 D W= ~a>R sin/ cos(/ + m), 

where 

- I s ( l+2ecos / + e2)-2 / ( - I ( l+c cos/) coR cos j + 

+ co2i?2[cos2i + sin2icos2(/ + ro)]^ , (28) }"• 
p = a(l— e2\ f is the true anomaly, \i is the product of the constant of gravitation on 
the mass of the central part of the cluster. When deriving (27), the formulae by Fominov 
(1963) were used. In these formulae the absolute value of the disturbing resistance 
force was taken in the form (7). 

Introducing now the eccentric anomaly E as the independent variable into the 
differential equations of the motion according to the formula 

df a 3 / 2 / , m 
^ = 7 1 7 2 ( 1 - ' « « £ ) , 

taking into account the well-known relations 

R cosf=a(cosE — e), 
R sinf = ay/l—e2 sin£, 

and the relations (25), (25)-(28) and integrating numerically the right-hand sides of 
the equations of motion for one revolution of the star around the center of the cluster, 
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we obtain the estimates of the changes of the elements for one revolution. We accept 
a = 30pc, e = 0.2 for the globular cluster and a = 3 pc, e = 0.2 for the open cluster. 
The angular velocity of the rotation is taken to be co = 0.1 n, where n is the mean motion 
of the test star. Some numerical data are given in Table I. 

The results demonstrate the complicated character of dynamical friction effects 
on the evolution of the orbit. One notices that the dimensions of the orbit decrease, 
and the orbit tends to become circular. The changes of rp and ra in the rotating cluster 
surpass the corresponding changes of these elements in the nonrotating cluster. In the 
rotating cluster the greatest deformation is of the orbit of the test star moving in the 
equatorial plane (i=0). 

The changes of the orbital elements increase noticeably when the ratio m/m in­
creases. The changes of the elements in an open cluster are considerably greater than 
in a globular cluster. 

An important peculiarity of the evolution of the orbit in the rotating cluster is the 
decrease of orientation with passage of time. Since the right-hand sides of the equa­
tions of motion for i and Q contain the angular velocity of the rotation of the cluster co 
as a factor, in the nonrotating cluster (co=0) the changes of i and Q are equal to zero, 
that is, the test star moves in an invariable plane. The changes of the dimensions in 
this case are not dependent on i, Q and m. In the general case of the rotating cluster i, 
Q and w vary with time, and rp and ra depend on i, w (the dependence of rp and ra on 
w is quite weak), but all these parameters do not depend on Q. 

In the case under consideration (in quite the same way as in the case of the homo­
geneous cluster) the angles Q and a> are connected by Equation (22). This follows from 
the properties of evenness (oddness) and periodicity of the right-hand sides of the 
equations of motion. 

The change of inclination is greater than the changes of other elements defining 
the orientation of the orbit. The change of i is maximum for the polar orbits (i=i7r), 
while for the equatorial orbits (i=0) it becomes zero. The changes of Q and m are 
comparable in the order of magnitude with the changes of inclination. The changes 
of i, Q and m depend essentially on the initial value of the parameter w. 

Thus the evolution of the orbits in the rotating cluster with the exponential distri­
bution of the density tends to concentrate the massive stars both near the equatorial 
plane of the cluster and near the center of the cluster. 

5. Conclusions 

The estimation of dynamical friction effects on the orbit of the test star under the 
influence of the regular gravitational field and dynamical friction shows that in 
stellar systems with relatively short times of relaxation dynamical friction effects are 
not negligible. Both density distributions in the cluster are considered: the homo­
geneous and the exponential ones. The numerical examples, show that the orbit of 
the test star in the cluster, in general, is subject to complicated variations: the originally 
elliptic orbit tends to become circular and its axis and inclination decrease with pas-
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sage of time. Due to the influence of dynamical friction the massive stars tend to 
concentrate both in the vicinity of the center of the cluster and of the equatorial plane 
of the cluster. 
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DISCUSSION 
R. H. Miller: When inclined orbits tend to decrease their inclinations, approaching the equatorial plane, 
do they approach monotonically, or can they overshoot and approach in a damped oscillation mode? 

A. S. Baranov: They approach monotonically. 
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