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Abstract. A strong submeasure on a compact metric space X is a sub-linear and bounded
operator on the space of continuous functions on X. A strong submeasure is positive
if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure
is the supremum of a non-empty collection of measures whose masses are uniformly
bounded from above. There are many natural examples of continuous maps of the
form f : U → X, where X is a compact metric space and U ⊂ X is an open-dense
subset, where f cannot extend to a reasonable function on X. We can mention cases
such as transcendental maps of C, meromorphic maps on compact complex varieties,
or continuous self-maps f : U → U of a dense open subset U ⊂ X where X is a
compact metric space. For the aforementioned mentioned the use of measures is not
sufficient to establish the basic properties of ergodic theory, such as the existence of
invariant measures or a reasonable definition of measure-theoretic entropy and topological
entropy. In this paper we show that strong submeasures can be used to completely
resolve the issue and establish these basic properties. In another paper we apply strong
submeasures to the intersection of positive closed (1, 1) currents on compact Kähler
manifolds.
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1. Introduction
In dynamical systems and ergodic theory, measures play a crucial role. At least since
Henri Poincaré, the first fundamental step for studying the dynamics of a continuous
map f : X → X of a compact metric space X is to construct invariant probability
measures, that is, those measures μ for which f∗(μ) = μ, and in particular those with
measure entropy equal to the topological entropy. A way to construct invariant measures
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is to start from a positive measure μ0, and then to consider any cluster points of the
Cesaro average (1/n)

∑n
j=0(f∗)j (μ0). To this end, a crucial property is that we can

push forward a probability measure by a continuous map and obtain another probability
measure, and that this pushforward is linear on the space of measures. There is also
the fundamental result [14, 15], called the variational principle, which relates measure
entropies of invariant measures of a compact metric space and the topological entropy of
the map. When we work with compact complex varieties, usually it is very difficult to
construct dynamically interesting holomorphic maps f : X → X, and one must be willing
to deal with dominant meromorphic maps f : X ��� X in order to go forward. We can still
define a notion of entropy for meromorphic maps, and whenX is Kähler the paper by Dinh
and Sibony [11] relates this topological notion to geometrical/cohomological information
(called dynamical degrees) of the map. However, so far only in very special cases are
ideas from dynamics of diffeomorphisms of compact Riemann manifolds applicable to
the study of meromorphic maps. For these special meromorphic maps, one can construct
very special invariant measures μ with no mass on proper analytic sets, which can be
pushed forward. (Here, we recall this pushforward for the reader’s convenience. Let μ
be a probability measure with no mass on proper analytic subsets of X. Then we define
f∗(μ) as the extension by zero of the probability measure (f |X\I (f ))∗(μ), where I (f )
is the indeterminacy set of f and hence f is holomorphic on X\I (f ).) For the majority
of meromorphic maps, however, there is no obvious such special invariant measure, and
one faces difficulty in constructing interesting invariant measures by the Cesaro average
as above, since the cluster points of these measures (even if the starting measure μ0

has no mass on proper analytic subsets) are not guaranteed to have no mass on proper
analytic subsets. The problem is then that we really do not know how to push forward, in
a reasonable way, a measure with support in the indeterminacy set I (f ) of f , and stay in
the space of measures. For example, if x0 ∈ I (f ), then typically its image under the map
f will be of positive dimension, and there is no reasonable way to define the pushforward
f∗(δx0), of the Dirac measure at x0, as a measure. Still, we can ask the following questions.
Can we define instead the pushforward f∗(δx0) as something else more general than a
measure? More importantly, can we hope to obtain some analog of the fundamental results
mentioned above for all meromorphic maps?

Besides the construction using Cesaro’s average as above, whenX is Kähler, there is one
other approach to constructing invariant measures, closely related to special properties of
compact Kähler manifolds, by intersecting dynamically interesting special positive closed
currents (so-called Green’s currents). Intersection of positive closed currents, in particular
those of bidgree (1, 1), is an interesting topic itself with many applications in complex
geometry and complex dynamics, and has been intensively studied. The methods employed
so far by most researchers in this topic are local in nature, and the resulting intersections
are supposed to be positive measures. These local methods also usually provide answers
which are not compatible with intersection in cohomology, and the latter is a consideration
one needs to take into account in order for the definition to be meaningful. However, again
here not much is known about what to do if the currents to intersect are too singular. For
example, is there any meaning to assign to self-intersection of the current of integration
on a line L ⊂ P

2? For an even more interesting example, is there any meaning to assign
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to self-intersection of the current of integration on a curve C in a compact Kähler surface
whose self-intersection in cohomology is {C}.{C} = −1?

One key question is whether, for dynamics of dominant meromorphic maps, we should
take more account of the indeterminacy set of the map as well as of its iterates (the latter
point has so far not been very much pursued in the literature). Likewise, in considering
intersection of positive closed currents, should we look more closely at the singular parts of
the currents involved, instead of throwing them away (as in the local approaches mentioned
above)?

All the maps mentioned above belong to a more general class of maps of the form: f :
U → X, where X is a compact metric space, U ⊂ X is open-dense, and f is a continuous
map. Some natural examples of maps of this kind are transcendental maps f : C → C,
such as f (z) = ez, where we chooseU = C andX = P

1 as the preferable compactification
of U . A generalization of the latter maps are continuous maps f : U → U , where U
is a non-compact metric space with a preferable compactification X. In this paper we
give applications of strong submeasures, a classical but largely overlooked notion, to
the dynamics of maps of these maps. Submeasures can also be applied to the question
of intersection of positive closed currents on compact Kähler manifolds, which we will
address in a separate paper.

To ease the presentation of the paper, we give a formal definition of the above class of
maps.

Definition 1.1. LetX and Y be topological spaces. By an open-dense defined map between
X and Y we mean that there exist an open-dense subset U of X and a map f : U → Y .
We emphasize that f does not need to be defined on the whole of X. We denote such a
map by f : X ��� Y .

Moreover, if the map f : U → Y above is continuous, then we say that f is a continuous
open-dense defined map between X and Y . In this case, we denote by OpenDom(f ) the
largest such subset U , and by OpenIm(f ) the image f (OpenDom(f )). We also define the
indeterminacy set of f to be I (f ) = X\OpenDom(f ).

We next define strong submeasures in detail. Let X be a compact metric space.
Denote by ϕ ∈ C0(X) the sup-norm ‖ϕ‖L∞ = supx∈X |ϕ(x)|. We recall that a functional
μ : C0(X) → R is sub-linear if μ(ϕ1 + ϕ2) ≤ μ(ϕ1)+ μ(ϕ2) and μ(λϕ) = λμ(ϕ) for
ϕ1, ϕ2, ϕ ∈ C0(X) and a non-negative constant λ. A strong submeasure is then simply a
sub-linear functional μ : C0(X) → R which is also bounded, that is, there is a constant
C > 0 so that for all ϕ ∈ C0(X) we have |μ(ϕ)| ≤ C‖ϕ‖L∞ . The least such constant C
is called the norm of μ and is denoted by ‖μ‖. A strong submeasure μ is positive if it is
non-decreasing, that is, for all ϕ1 ≥ ϕ2 we have μ(ϕ1) ≥ μ(ϕ2). It is easy to check that a
strong submeasure is Lipschitz continuous, |μ(ϕ1)− μ(ϕ2)| ≤ ‖μ‖ × ‖ϕ1 − ϕ2‖L∞ , and
convex, μ(t1ϕ1 + t2ϕ2) ≤ t1μ(ϕ1)+ t2μ(ϕ2) for t1, t2 ≥ 0. We denote by SM(X) the set
of all strong submeasures on X, and SM+(X) the set of all positive strong submeasures
on X.

By the Riesz representation theorem (see [18]), on X a measure of bounded mass μ is
the same as a linear operatorμ : C0(X)→R, that is,μ(λ1ϕ1 + λ2ϕ2)= λ1μ(ϕ1)+ λ2(ϕ2)
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for all ϕ1, ϕ2 ∈ C0(X) and constants λ1, λ2. It is bounded (|μ(ϕ)| ≤ C‖ϕ‖L∞ for a
constant C independent of ϕ ∈ C0(X)) and positive (μ(ϕ) ≥ 0 whenever ϕ ∈ C0(X) is
non-negative). Note that we can then choose C = μ(1) (the mass of the measure μ) and
by linearity the positivity is the same as having

μ(ϕ1) ≥ μ(ϕ2) (1.1)

for all ϕ1, ϕ2 ∈ C0(X) satisfying ϕ1 ≥ ϕ2. For later reference, we denote by M(X) the
set of signed measures on X and by M+(X) the set of positive measures on X. Note that
M(X) ⊂ SM(X) and M+(X) ⊂ SM+(X).

The first main idea of this paper, to deal with the pushforward of a positive strong
submeasure, is as follows. If U ⊂ X is an open-dense set as above, then for any bounded
continuous function ψ : U → R, there is a canonical way to extend it to a bounded
upper-semicontinuous function E(g) : X → R. Now, if f : U → Y is a continuous
function (where Y is an another compact metric space) and μ is a positive finite Borel
measure onX, then we can define a pushforward f∗(μ) as a positive strong submeasure on
X in the following manner. If ϕ : X → R is a continuous function, then f ∗(ϕ) : U → R

is a bounded continuous function, and hence we have the canonical extension E(f ∗(ϕ))
which is a bounded upper-semicontinuous function on X. Then we define

(f∗μ)(ϕ) := μ(E(f ∗(ϕ))).

Details are given in §2 where we show that the right-hand side of this definition gives
rise to a strong positive submeasure and does not depend on the choice of U . Hence, this
operator is well defined for continuous open-dense defined maps. The same idea can be
applied to define more generally the pushforward of positive strong submeasures.

When f : X ��� X is a meromorphic map of a compact complex variety, we can choose
U to be any open-dense set of X on which f is a genuinely holomorphic function. In
this case, because of Hironaka’s resolution of singularities, one usually prefers to work
with a desingularity of the graph of f . This is helpful in defining operations such as the
pullback or pushforward of smooth closed forms resulting in currents. It will be shown that
the definition given above for the pushforward of measures can also be made using these
desingularities of graphs, and hence illustrates that our definition is reasonable.

When the map f : U → Y as above has dense image and is a covering map onto
its image and of finite degree d (for example, if this map is induced from a dominant
meromorphic map between two compact complex spaces of the same dimension, and when
U is chosen appropriately), we can also define similarly the pullback of a positive strong
submeasure. In Theorem 2.10 we prove some fundamental properties of these pushforward
and pullback operators on positive strong submeasures. We extract here some interesting
properties.

THEOREM 1.2. Let X, Y be compact metric spaces, U ⊂ X a dense open set, and f :
X ��� Y be a continuous open-dense defined map.
(i) If μn ∈ SM+(X) weakly converges to μ, and ν is a cluster point of f∗(μn), then

ν ≤ f∗(μ). If f is holomorphic, then limn→∞ f∗(μn) = f∗(μ).
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(ii) For any positive strong submeasure μ, we have f∗(μ) = supχ∈G(μ) f∗(χ), where
G(μ) = {χ : χ is a measure and χ ≤ μ}.

(iii) For positive strong submeasures μ1, μ2, we have f∗(μ1 + μ2) ≥ f∗(μ1)+ f∗(μ2).

In Example 2 in §2.2 we show that strict inequality can occur in part (i) in general. It
also shows that, in contrast to the case of a continuous map (see §4) part (ii) does not hold
in general if we replace G(μ) by a smaller set G (still satisfying μ = supχ∈G χ). We also
remark that several results in Theorem 2.10 (such as parts (1)–(3)) can easily be extended
to meromorphic correspondences.

Before going further, let us calculate explicitly one simple but interesting example.

Example 1. Let π : Y → X be the blowup of X at a point p, and V ⊂ Y the exceptional
divisor. Let δp be the Dirac measure at p. Then for any continuous function ϕ on Y , we
have

π∗(δp)(ϕ) = max
y∈V ϕ(y).

Therefore, π∗(δp) is not a measure. In particular, if A ⊂ Y is a closed set then
π∗(δp)(A) = infϕ∈C0(X,≥1A) π

∗(δp)(ϕ) is δp(π(A ∩ Y )).
Proof of Example 1. By definition,

π∗(δp)(ϕ) = inf
ψ∈C0(Y ,≥π∗(ϕ))

δp(ψ) = inf
ψ∈C0(Y ,≥π∗(ϕ))

ψ(p).

Since π : Y\V → X\{p} is an isomorphism, it is easy to check that π∗(ϕ)(p) =
maxy∈V ϕ(y). Therefore, for any ψ ∈ C0(Y , ≥ π∗(ϕ)), we have ψ(p) ≥ maxy∈V ϕ(y).
Hence, by definition, π∗(δp)(ϕ) ≥ maxy∈V ϕ(y). On the other hand, for any ε > 0, choose
a small neighborhood Uε of p so that

sup
y∈π−1(Uε)

ϕ(y) ≤ ε + max
y∈V ϕ(y).

It follows that supUε π∗(ϕ) ≤ ε + maxy∈V ϕ(y). Since π∗(ϕ) is continuous on X\{p},
it follows by elementary set-theoretic topology that we can find a continuous function ψ
on X so that ψ ≥ π∗(ϕ) and supUε ψ ≤ ε + maxy∈V ϕ(y). It follows that π∗(δp)(ϕ) ≤
ε + maxy∈V ϕ(y). Since ε is an arbitrary positive number, we conclude from the above
discussion that π∗(δp)(ϕ) = maxy∈V ϕ(y). Similarly, we can show that π∗(δp)(A) =
δp(π(A ∩ Y )).

Given f : X ��� Y a dominant meromorphic map between compact complex varieties
and μ a positive strong submeasure on X, we can assume without loss of generality that X
is smooth, by using Hironaka’s resolution of singularities. By part (ii) of Theorem 1.2 and
its proof, to describe f∗(μ) it suffices to describe π∗(μ) where π : Z → X is a blowup at
a smooth center and μ is a measure. The following result addresses this question.

THEOREM 1.3. Let π : Z → X be the blowup of X at an irreducible smooth subvariety
A ⊂ X. Let ϕ ∈ C0(Z). Let μ be a positive measure on X, and decompose μ = μ1 + μ2

where μ1 has no mass on A and μ2 has support on A. Then π∗(μ1) is a positive measure
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on Z, π∗(ϕ)|A is continuous, and we have

π∗(μ)(ϕ) = π∗(μ1)(ϕ)+ μ2(π∗(ϕ)|A).
Moreover, an explicit choice of the collection G in part (2) of Theorem 2.1 for π∗(μ) will
be explicitly described in the proof.

The second main idea of this paper, to deal with invariant positive strong submeasures,
is as follows. One can start from a positive strong submeasure μ0, and perform Cesaro’s
process on the pushforward iterates (f∗)n(μ0). The cluster points μ∞ are now in general
not invariant (as in the case of continuous selfmaps of compact metric spaces), the reason
being that the pushforward of continuous open-dense defined selfmaps f : X ��� X on
positive strong submeasures is not continuous, as mentioned in the previous paragraph. It
turns out, however, there is a canonical way, using a type of min-max principle, to assign
to any such cluster point μ∞ an invariant positive strong submeasure. Here is the main
result.

THEOREM 1.4. Let f : X ��� X be a continuous open-dense defined map on a compact
metric space X. Let 0 �= μ0 ∈ SM+(X).
(1) Let μ0 be a positive strong submeasure on X, and μ a cluster point of Cesaro’s

averages (1/n)
∑n
j=0(f∗)j (μ0). Then f∗(μ) ≥ μ.

(2) If f∗(μ0) ≤ μ0, then the set {μ ∈ SM+(X) : μ ≤ μ0, f∗(μ) = μ} is non-empty
and has a largest element, denoted by Inv(≤ μ0). Moreover, Inv(≤ μ0) =
limn→∞(f∗)n(μ0).

(3) If f∗(μ0) ≥ μ0, then the set {μ ∈ SM+(X) : μ ≥ μ0, f∗(μ) = μ} is non-empty
and has a smallest element, denoted by Inv(≥ μ0).

Assume that f : X ��� X is a continuous open-dense defined selfmap. To study
further dynamical properties, we need to be able to compose f with itself any finite
number of times, in analogy to holomorphic maps or dominant meromorphic maps.
Here we follow the idea of S. Friedland. We look at the closure 
f ,∞ of the graph of
f : OpenDom(f )→ X in the compact metric space XN.

Definition 1.5. Let f : X ��� Y be a continuous open-dense defined map. We say that f
is good with respect to iterates if the set �f ,∞ := {x ∈ OpenDom(f ) : f n(x) /∈ I (f ) for
all n ∈ N} is dense in X and I∞(f ) = X\�f ,∞ is nowhere dense.

Note that this notion applies to dominant meromorphic selfmaps of compact complex
varieties, as well as to continuous maps f : U → U where U ⊂ X is open-dense.

In this case, we can define the infinity graph 
f ,∞ as the closure in XN (with product
topology) of {(x, f (x), f 2(x), f 3(x), . . .) : x ∈ �f ,∞}. By Tikhonov’s theorem, XN is
compact Hausdorff; moreover, it is a compact metric space with the metric

d((x1, x2, . . .), (y1, y2, . . .)) :=
∞∑
i=1

d(xi , yi)/2i ,
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where d(xi , yi) is the given metric on X. Hence 
f ,∞ is itself a compact metric space. On
XN there is a natural shifting map σ(x1, x2, x3, . . .) = (x2, x3, . . .), which is continuous.
It is easy to check that σ(
f ,∞) = 
f ,∞, and we denote σf := σ |
f ,∞ : 
f ,∞ → 
f ,∞.
We can reduce several questions about f to questions about σf , for example by defining
htop(f ) := htop(σf ) where the right-hand side is the usual definition of the topological
entropy for a continuous map on a compact metric space. By the variational principle, the
topological entropy of σf can be determined from knowledge on invariant measures of σf .
As an application of the results obtained so far, in §3 we show that there are some close
relations between invariant submeasures of σf and of f .

The plan of this paper is as follows. In §2 we collect some basic properties of strong sub-
measures. In particular, we define and prove properties of the pushforward and pullback of
positive strong submeasures for open-dense defined maps. In §3 we prove the existence and
some properties of invariant positive strong submeasures. In the final section we give some
applications to dynamics of dominant meromorphic maps of compact Kähler surfaces.

2. Strong submeasures
In this section we collect some basic properties of strong submeasures on a compact metric
space X which are needed to establish basic ergodic properties, and their pushforward
by continuous maps f : U → Y , where U ⊂ X is a dense open subset and Y is another
compact metric space. If f is a proper covering map of finite degree to its image f (U), we
can also define a pullback operator on positive strong submeasures.

2.1. Strong submeasures. Let X be a compact metric space. We recall the notation from
the introduction: M(X) the set of signed measures on X, M+(X) the set of positive
measures on X, SM(X) the set of strong submeasures on X and SM+(X) the set of
positive strong submeasures on X.

By a simple application of the Hahn–Banach extension theorem (see [17]) and Riesz
representation theorem (see [18]), we have the following characterization, whose proof is
omitted, of strong submeasures and positive strong submeasures.

THEOREM 2.1. Let X be a compact metric space, and μ : C0(X) → R an operator.
(1) μ is a strong submeasure if and only if there is a non-empty collection G

of signed measures χ = χ+ − χ− where χ± are measures on X so that
supχ=χ+−χ−∈G χ±(1) < ∞, and

μ(ϕ) = sup
χ∈G

χ(ϕ), (2.1)

for all continuous functions ϕ.
(2) μ is a positive strong submeasure if and only if there is a non-empty collection G of

(positive) measures on X so that supχ∈G χ(1) < ∞, and

μ(ϕ) = sup
χ∈G

χ(ϕ), (2.2)

for all continuous functions ϕ.

The next paragraphs discuss the natural topology on the space of strong submeasures.
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Definition 2.2. We say that a sequence μ1, μ2, . . . ∈ SM(X) weakly converges to
μ ∈ SM(X) if supn ‖μn‖ < ∞ and

lim
n→∞ μn(ϕ) = μ(ϕ) (2.3)

for all ϕ ∈ C0(X). We use the notation μn ⇀ μ to denote that μn weakly converges to μ.

If μ1, μ2 : C0(X) → R, we define max{μ1, μ2} : C0(X) → R by the formula
max{μ1, μ2}(ϕ) = max{μ1(ϕ), μ2(ϕ)}. Theorem 2.3 shows that submeasures also have
properties similar to measures, such as weak compactness.

For later use, we recall that for a compact subset A ⊂ X, we have [12]

μ(A) = inf
φ∈C0(X,≥1A)

μ(φ). (2.4)

Here 1A : X → {0, 1} is the characteristic function of A, that is, 1A(x) equals 1 if x ∈ A
and equals 0 otherwise, C0(X) is the space of continuous functions fromX into R, and for
any bounded function g : X → R we use the notation

C0(X, ≥ g) = {φ ∈ C0(X) : φ ≥ g}. (2.5)

Moreover, for any open set B ⊂ X we have [12]

μ(B) = sup
A compact⊂B

μ(A). (2.6)

Like measures, positive strong submeasures give rise naturally to set functions. On a
compact metric spaceX, recall that a function g : X → R is upper-semicontinuous if there
is a sequence of continuous functions gn on X decreasing to g; see [2]. Hence, if μ is a
measure, we have by Lebesgue and Levi’s monotone convergence theorem in integration
theory that

μ(g) = lim
n→∞ μ(gn) = inf

ϕ∈C0(X,≥g)
μ(ϕ).

Inspired by this and (2.4), if μ is an arbitrary strong submeasure, we define for any
upper-semicontinuous function g on X the value

E(μ)(g) := inf
ϕ∈C0(X,≥g)

μ(ϕ) ∈ [−∞, ∞). (2.7)

Then for a closed set A ⊂ X, we define μ(A) := E(μ)(1A) where 1A is the characteristic
function of A. If μ is positive, we always have μ(A) ≥ 0. Then, for an open subset B ⊂ X,
following (2.6) we define μ(B) := sup{μ(A) : A compact ⊂ B}. Theorem 2.4 proves
some basic properties of this operator, similar to those of submeasures.

If we have a positive strong submeasure μ, and define for any Borel set A ⊂ X

the number μ̃(A) = inf{μ(B) : B open, A ⊂ B}, then we see easily from part (4) of
Theorem 2.4 that: (i) μ̃(∅) = 0, (ii) μ̃(A1) ≤ μ̃(A2) for all Borel sets A1 ⊂ A2, and
(iii) μ̃(A1 ∪ A2) ≤ μ̃(A1)+ μ̃(A2). Such μ̃ are known in the literature as submeasures
(see, for example, [19]), and hence it is justified to call our objects μ positive strong
submeasures.
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We have the following basic properties of strong submeasures, whose proof is easy and
hence omitted.

THEOREM 2.3. Let X be a compact metric space.
(1) Weak-compactness. Let μ1, μ2, . . . be a sequence in SM(X) such that supn ‖μn‖ <

∞. Then there is a subsequence {μn(k)}k=1,2,... which weakly converges to some μ ∈
SM(X). If, moreover, μn ∈ SM+(X), then so is μ.

(2) If μ ∈ SM+(X), then ‖μ‖ = max{|μ(1)|, |μ(−1)|}.
(3) If μ1, μ2 ∈ SM(X) then max{μ1, μ2} and μ1 + μ2 are also in SM(X). If μ1, μ2 ∈

SM+(X) then max{μ1, μ2} and μ1 + μ2 are also in SM+(X).

The next result is the main technical result to deal with the pushforward of measures
by a map defined only on a dense open set. Denote by BUS(X) the set of all bounded
upper-semicontinuous functions on X.

THEOREM 2.4. LetX be a compact metric space andμ ∈ SM(X). LetE(μ) : BUS(X) →
[−∞, ∞) be defined as in (2.7). Assume that E(μ)(0) is finite.
(1) For all ϕ ∈ BUS(X), the value E(μ)(ϕ) is finite. Moreover, E(μ)(0) = 0 and

E(μ)(−1) ≥ −μ(1).
(2) Extension. If μ is positive, then for all ϕ ∈ C0(X) we have E(μ)(ϕ) = μ(ϕ).
(3) Moreover, E(μ) satisfies the following properties.

(i) Sub-linearity. E(μ)(ϕ1 + ϕ2) ≤ E(μ)(ϕ1)+ E(μ)(ϕ2) and E(μ)(λϕ) =
λE(μ)(ϕ) for ϕ1, ϕ2, ϕ ∈ BUS(X) and a non-negative constant λ.

(ii) Positivity.E(μ)(ϕ1) ≥ E(μ)(ϕ2) for all ϕ1, ϕ2 ∈ BUS(X) satisfying ϕ1 ≥ ϕ2.
(iii) Boundedness. There is a constant C > 0 so that for all ϕ ∈ BUS(X) we have

|E(μ)(ϕ)| ≤ C‖ϕ‖L∞ . The least such constant C is in fact ‖μ‖.
(4) If A1, A2 are closed subsets of X then μ(A1 ∪ A2) ≤ μ(A1)+ μ(A2). Likewise, if

B1, B2 are open subsets of X then μ(B1 ∪ B2) ≤ μ(B1)+ μ(B2).

Proof of Theorem 2.4. (1) We first observe that, for all ϕ ∈ C0(X, ≥ 0), we have
μ(ϕ) ≥ 0. (Note that, as observed in §1, this fact alone does not imply that μ is a positive
strong submeasure.) In fact, otherwise, there would be ϕ0 ∈ C0(X, ≥ 0) so thatμ(ϕ0) < 0.
Then by the definition of E(μ) and sub-linearity of μ we have

E(μ)(0) ≤ inf
n∈N μ(nϕ0) = inf

n∈N nμ(ϕ0) = −∞,

which contradicts the assumption that E(μ)(0) is finite.
Therefore, if ϕ ∈ C0(X, ≥ 0), we obtain

0 ≤ inf
ψ∈C0(X,≥ϕ)

μ(ψ) ≤ μ(ϕ).

Therefore, for these functions ϕ we have that E(μ)(ϕ) is a finite number. In particular,
0 ≤ E(μ)(1) ≤ μ(1).

Next, we observe that if ϕ1, ϕ2 ∈ BUS(X) such that either E(μ)(ϕ1) or E(μ)(ϕ2)

is finite, then the proof of (3)(i) is still valid and gives E(μ)(ϕ1 + ϕ2) ≤ E(μ)(ϕ1)+
E(μ)(ϕ2). Applying this sub-linearity to ϕ1 = ϕ2 = 0, we obtain E(μ)(0) = E(μ)(0 +
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0) ≤ 2E(μ)(0), which implies E(μ)(0) ≥ 0. On the other hand, E(μ)(0) ≤ μ(0) = 0.
Therefore, E(μ)(0) = 0.

Since E(μ)(1) is finite, applying the above sub-linearity for ϕ1 = 1 and ϕ2 = −1, we
obtain 0 = E(0) = E(μ)(1 + (−1)) ≤ E(μ)(1) + E(μ)(−1). Therefore, E(μ)(−1) ≥
−E(μ)(1) ≥ −μ(1).

Finally, applying the proof of part (3)(iii), we deduce that for all ϕ ∈ BUS(X), the
number E(μ)(ϕ) is finite.

(2) Let ϕ ∈ C0(X), and choose any ψ ∈ C0(X, ≥ ϕ). Since μ is positive, we have by
definition that μ(ψ) ≥ μ(ϕ). Since ϕ is itself contained in C0(X, ≥ ϕ), it follows that

E(μ)(ϕ) = inf
ψ∈C0(X,≥ϕ)

μ(ψ) = μ(ϕ).

(3) Let ϕ, ϕ1, ϕ2 ∈ BUS(X).
(i) If ψ1 ∈ C0(X, ≥ ϕ1) and ψ2 ∈ C0(X, ≥ ϕ2) then ψ1 + ψ2 ∈ C0(X, ≥

ϕ1 + ϕ2). Therefore, by sub-linearity of μ,

E(μ)(ϕ1 + ϕ2) = inf
ψ∈C0(X,≥ϕ1+ϕ2)

μ(ψ) ≤ μ(ψ1 + ψ2) ≤ μ(ψ1)+ μ(ψ2).

We can choose ψ1 and ψ2 so that μ(ψ1) is arbitrarily close to E(μ)(ϕ1)

and μ(ψ2) is arbitrarily close to E(μ)(ϕ2), and from that obtain the desired
conclusion E(μ)(ϕ1 + ϕ2) ≤ E(μ)(ϕ1)+ E(μ)(ϕ2). The other part of (i)
is easy to check.

(ii) If ϕ1 ≥ ϕ2 then C0(X, ≥ ϕ1) ⊂ C0(X, ≥ ϕ2). From this the conclusion
follows.

(iii) We observe that we can find ψ ∈ C0(X, ≥ ϕ) so that ‖ψ‖L∞ = ‖ϕ‖L∞ ,
simply by defining ψ = max{min{ψ0, ‖ϕ‖L∞}, −‖ϕ‖L∞} for any ψ0 ∈
C0(X, ≥ ϕ). Then

E(μ)(ϕ) ≤ μ(ψ) ≤ ‖μ‖ × ‖ψ‖L∞ = ‖μ‖ × ‖ϕ‖L∞ .

By the positivity of E(μ) in (ii), we have

E(μ)(ϕ) ≥ ‖ϕ‖L∞E(μ)(−1),

and hence |E(μ)(ϕ)| ≤ max{|E(μ)(−1)|, ‖μ‖} = ‖μ‖. In the last equality
we used that (1) and positivity imply −μ(1) ≤ E(μ)(−1) ≤ E(μ)(0) = 0.

(4) By definition, we have for closed subsets A1, A2 ⊂ X,

μ(A)=E(μ)(1A1∪A2) ≤ E(μ)(1A1+1A2) ≤ E(μ)(1A1)+ E(μ)(1A2)=μ(A1)+μ(A2).

In the first inequality we used 1A1∪A2 ≤ 1A1 + 1A2 and the positivity of E(μ). In the
second inequality we used the sub-linearity of E(μ).

If B1, B2 are open subsets of X and A ⊂ B1 ∪ B2 is closed in X, then since X is
compact metric we can find closed subsets A1, A2 of X so that A1 ⊂ B1, A2 ⊂ B2 and
A1 ∪ A2 = A. To this end, for each x ∈ A, we choose an open ball B(x, rx) (in the
given metric on X) where rx > 0 is chosen as follows: if x ∈ B1 then the closed ball
B(x, rx) belongs to B1, if x ∈ B2 then the closed ball B(x, rx) belongs to B2, and if
x ∈ B1 ∩ B2 then the closed ball B(x, rx) belongs to B1 ∩ B2. Since A is compact, there
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are a finite number of such balls covering A: A ⊂ ⋃m
i=1 B(xi , ri). Then the choice of

A1 = A ∩ (⋃xi∈B1
B(xi , ri)) and A2 = A ∩ (⋃xi∈B2

B(xi , ri)) satisfies the requirement.
Then from the above sub-linearity of μ for compact sets and the definition, we have also
sub-linearity for open sets μ(B1 ∪ B2) ≤ μ(B1)+ μ(B2).

2.2. Pushforward of positive strong submeasures. Throughout this subsection we let
f : X ��� Y be a continuous open-dense defined map, where X and Y are compact metric
spaces. In this subsection we discuss several results concerning the pushforward of positive
strong submeasures on X by f . The key to this is the next result, whose proof is simple
and hence is left to the reader.

PROPOSITION 2.5. Let X be a compact metric space, U ⊂ X an open-dense set, and
g : U → R a bounded upper semicontinuous function. Define E(g) : X → R as follows.
If x ∈ U then E(g)(x) := g(x), and if x ∈ X\U then

E(g)(x) := lim sup
y∈U , y→x

g(y).

Then:
(1) E(g) is a bounded upper-semicontinuous function, and E(g)|U = g. In other words,

E(g) is a bounded upper-semicontinuous extension of g.
(2) If g is continuous on U , U1 ⊂ U is another open-dense set of X and g1 = g|U1 , then

E(g1) = E(g).
(3) Moreover, E(g1 + g2) ≤ E(g1)+ E(g2) for any g1, g2 : U → R bounded upper-

semicontinuous functions.

Remark. On the other hand, if g is not continuous on U then it is easy to construct
examples for which the conclusion of part (2) in the proposition does not hold. Let

f ⊂ X × Y be the closure of the graph {(x, f (x)) : x ∈ OpenDom(f )}. Then, with the
induced topology fromX × Y , 
f is a compact metric space itself. We have two canonical
projections πX, πY : X × Y → X, Y , whose restrictions to 
f are denoted πX,f , πY ,f . If
we letU ⊂ OpenDom(f ) be any open-dense subset, and since V = π−1

X,f (U), then V is an
open-dense subset of 
f and we see that πV ,f := πX,f |V : V → U is a homeomorphism.

Definition 2.6. Using Proposition 2.5, we define (πX,f )∗(φ), where φ ∈ C0(
f ), to be
the upper-semicontinuous function E((πV ,f )∗(φ)) on X. We emphasize that it is globally
defined on the whole of X, and is not changed if we replace V (or U ) by one open-dense
subset of it.

Finally, we have a canonical definition of the pullback of continuous functions by f :
X ��� Y .

Definition 2.7. Let ϕ ∈ C0(Y ). We denote by f ∗(ϕ) the above upper-semicontinuous
function (πX,f )∗(π∗

Y ,f (φ)).

Note that when X, Y are smooth complex varieties, f : X ��� Y a meromorphic map,
and ϕ is a continuous quasi-plurisubharmonic function on Y (for example, if ϕ is a

https://doi.org/10.1017/etds.2020.132 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.132


298 T. T. Truong

C2 function), then our definition of the pullback f ∗(ϕ) above is the standard one in [16].
In this case, any continuous function ϕ is a uniform limit of a sequence of C2 functions.
This observation and the following proposition, whose simple proof is omitted, justify our
Definition 2.7.

PROPOSITION 2.8. Let f : X ��� Y be a continuous open-dense defined map as at the
beginning of this section. Assume that ϕn is a sequence of continuous functions on Y
uniformly converging to a continuous function ϕ. Then {f ∗(ϕn)} converges uniformly to
f ∗(ϕ).

Using Proposition 2.5 and the above upper-semicontinuous pushforward of functions,
we can finally define, following Theorem 2.4, the following pullback operator π∗

X,f :
SM+(X) → SM+(
f ):

π∗
X,f (μ)(ϕ) := inf

ψ∈C0(X,≥(πX,f )∗(ϕ))
μ(ψ). (2.8)

Then, as in the case of continuous maps g : X → Y between compact metric spaces,
we define f∗(μ), for a positive strong submeasure μ, by the formula f∗(μ) =
(πY ,f )∗π∗

X,f (μ).

Definition 2.9. For convenience, we write here the final formula for pushing forward a
strong submeasure by our maps f : X ��� Y :

f∗(μ)(ϕ) := inf
ψ∈C0(X,≥(πX,f )∗(π∗

Y ,f (ϕ)))
μ(ψ). (2.9)

Here is the main result of this subsection. In its proof we use the pullback of positive
strong submeasures by the projection π , via pushforward by its inverse π−1. For more
general details about the pullback of positive strong submeasures, see the next subsection.

THEOREM 2.10. Let X, Y be compact metric spaces, and f : X ��� Y a continuous
open-dense defined map.
(1) We have f∗(SM+(X)) ⊂ SM+(Y ). Moreover, if μ ∈ SM+(X), then f∗(μ)(±1) =

μ(±1). In particular, ‖f∗(μ)‖ = ‖μ‖.
(2) Assume that g : Y ��� Z is another continuous open-dense defined map, and there

is an open-dense set U ⊂ OpenDom(f ) such that f (U) ⊂ OpenDom(g). For all
μ ∈ SM+(X), we have g∗f∗(μ) ≥ (g ◦ f )∗(μ). If f and g are continuous on the
whole of X and Y , then equality happens.

(3) If μn ∈ SM+(X) weakly converges to μ, and ν is a cluster point of f∗(μn), then
ν ≤ f∗(μ). If f is continuous on the whole of X, then limn→∞ f∗(μn) = f∗(μ).

(4) If μ is a positive measure without mass on I (f ), then f∗(μ) is the same as the usual
definition.

(5) For any positive strong submeasure μ, we have f∗(μ) = supχ∈G(μ) f∗(χ), where
G(μ) = {χ : χ is a measure and χ ≤ μ}.

(6) For every positive strong submeasure μ1, μ2, we have f∗(μ1 + μ2) ≥ f∗(μ1)+
f∗(μ2).
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Proof of Theorem 2.10. (1) Let μ ∈ SM+(X). We show that f∗(μ) ∈ SM+(Y ). Let
ϕ, ϕ1, ϕ2 ∈ C0(Y ) and 0 ≤ λ ∈ R.

First, we show that f∗(μ)(±1) = μ(±1). In fact, it follows from the definition that
(πX,f )∗π∗

Y ,f (±1) = ±1, and hence

f∗(μ)(±1) = inf
ψ∈C0(X,≥±1)

μ(ψ) = μ(±1).

Second, we show the positivity of f∗(μ). If ϕ1 ≥ ϕ2, then it can be seen
from the definition that (πX,f )∗π∗

Y ,f (ϕ1) ≥ (πX,f )∗π∗
Y ,f (ϕ2). Therefore C0(X, ≥

(πX,f )∗π∗
Y ,f (ϕ1)) ⊂ C0(X, ≥ (πX,f )∗π∗

Y ,f (ϕ2)), and hence it follows by definition that
f ∗(μ)(ϕ1) ≥ f ∗(μ)(ϕ2).

Next, we show that f∗(μ) is bounded and, moreover, that ‖f∗(ν)‖ = deg(f )‖μ‖. By
positivity of f∗(μ), we have f∗(μ)(−‖ϕ‖L∞) ≤ f∗(μ) ≤ f∗(μ)(‖ϕ‖L∞). Hence f∗(ν) is
bounded, and we conclude by Theorem 2.3.

Finally, we show the sub-linearity. The equality f∗(μ)(λϕ) = λf∗(μ)(ϕ), for λ ≥ 0,
follows from the fact that (πX,f )∗π∗

Y ,f (λϕ) = λ(πX,f )∗π∗
Y ,f (ϕ) and properties of the

infimum. We now prove that f∗(μ)(ϕ1 + ϕ2) ≤ f ∗(μ)(ϕ1)+ f ∗(μ)(ϕ2). In fact, from
Proposition 2.5 we have

(πX,f )∗π∗
Y ,f (ϕ1 + ϕ2) ≤ (πX,f )∗π∗

Y ,f (ϕ1)+ (πX,f )∗π∗
Y ,f (ϕ2),

and hence if ψ1 ∈ C0(X, ≥ (πX,f )∗π∗
Y ,f (ϕ1)) and ψ2 ∈ C0(X, ≥ (πX,f )∗π∗

Y ,f (ϕ2)) then
ψ1 + ψ2 ∈ C0(X, ≥ (πX,f )∗π∗

Y ,f (ϕ1 + ϕ2)). Hence, by definition,

f∗(μ)(ϕ1 + ϕ2) ≤ μ(ψ1 + ψ2) ≤ μ(ψ1)+ μ(ψ2).

In the second inequality we used the sub-linearity of μ. If we choose ψ1 and ψ2 so that
μ(ψ1) is close to f∗(μ)(ϕ1) and μ(ψ2) is close to f∗(μ)(ϕ2), then we see that f∗(μ)(ϕ1 +
ϕ2) ≤ f∗(μ)(ϕ1)+ f∗(μ)(ϕ2) as desired.

(2) By definition, we have

(g ◦ f )∗(μ)(ϕ) = inf
ψ∈C0(X,≥(g◦f )∗(ϕ))

μ(ψ).

Here we recall that (g ◦ f )∗(ϕ) is the upper-semicontinuous pullback of ϕ by g ◦ f .
On the other hand,

g∗f∗(μ)(ϕ) = inf
ψ1∈C0(Y ,≥g∗(ϕ))

f∗(μ)(ψ1) = inf
ψ1∈C0(Y ,≥g∗(ϕ))

inf
ψ2∈C0(X,≥f ∗(ψ1))

μ(ψ2).

Then it follows by the proof of part (2) of Proposition 2.5 that whenever ψ1 ∈ C0(Y , ≥
g∗(ϕ)) and ψ2 ∈ C0(Y , ≥ f ∗(ψ1)), we have ψ2 ∈ C0(X, ≥ (g ◦ f )∗(ϕ)). From this, we
get g∗f∗(ϕ)(ν) ≥ (g ◦ f )∗(μ)(ϕ).

When f and g are continuous on the whole ofX and Y and ϕ is continuous, we have that
g∗(ϕ), f ∗(g∗(ϕ)) and (g ◦ f )∗(ϕ) are all continuous functions. Then, using the positivity
of μ, we can easily see that

(g ◦ f )∗(μ)(ϕ) = μ(f ∗g∗(ϕ)) = f∗(μ)(g∗(ϕ)) = g∗f∗(μ)(ϕ).
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(3) It is enough to show that, for all ϕ ∈ C0(Y ),

lim sup
n→∞

inf
ψ∈C0(X,≥f ∗(ϕ))

μn(ψ) ≤ inf
ψ∈C0(X,≥f ∗(ϕ))

μ(ψ).

If we choose ψ0 ∈ C0(X, ≥ f ∗(ϕ)) so that μ(ψ0) is close to f∗(μ)(ϕ), then from
μn(ψ0) → μ(ψ0) we obtain the conclusion.

If f is continuous on the whole of X, then f ∗(ϕ) is itself a continuous function. Then
it is easy to see that limn→∞ f∗(μn)(ϕ) = f∗(μ)(ϕ).

(4) The upper-semicontinuous pullback f ∗(ϕ) of a function ϕ ∈ C0(Y ) is continuous
on the open set U = X\I (f ). Therefore, by choosing a small open neighborhood U1 of
I (f ) and a partition of unity subordinate to U and U1, it is easy to find for any U2 ⊂⊂ U a
ψ ∈ C0(X, ≥ f ∗(ϕ)) so that ψ |U2 = f ∗(ϕ)|U2 . From this and the assumption that μ has
no mass on I (f ), the conclusion follows.

(5) As mentioned before the statement of the theorem, since πX,f : 
f \π−1
X,f (I (f )) →

X\I (f ) is a homeomorphism, we can define the pullback of a positive strong submeasure
on X (as a positive strong submeasure on 
f ) as the pushforward of the continuous
open-dense defined map π−1

X,f : X ��� 
f . We have for any positive strong submeasure
μ that f∗(μ) = (πY ,f )∗π∗

X,f (μ). It is easy to check that the conclusion holds for πY ,f ,
and hence to prove the result it suffices to prove that π∗

X,f (μ) = supχ∈G(μ) π∗(χ).
Since π∗

X,f(μ)≥π∗
X,f (χ) for all χ ∈G(μ), it follows that π∗

X,f (μ)≥ supχ∈G(μ) π∗
X,f (χ).

Now we will prove the reverse inequality. To this end, it suffices to show that, for any
measure χ ′ ≤ π∗(μ), there is a measure χ ≤ μ so that χ ′ ≤ π∗(χ).

We first show that (πX,f )∗π∗
X,f (μ) = μ. In fact, if ϕ ∈ C0(X) then π∗

X,f (ϕ) ∈ C0(Z)

and ϕ = (πX,f )∗π∗
X,f (ϕ). Hence, by definition,

(πX,f )∗π∗
X,f (μ)(ϕ) = π∗

X,f (μ)(π
∗
X,f (ϕ)) = μ((πX,f ) ∗ π∗

X,f (ϕ)) = μ(ϕ).

Hence (πX,f )∗π∗
X,f (μ) = μ as desired.

Now if χ ′ is any measure on Z, then χ = (πX,f )∗(χ ′) is a measure on X. If, moreover,
χ ′ ≤ π∗

X,f (μ), then

χ = (πX,f )∗(χ ′) ≤ (πX,f )∗π∗
X,f (μ) = μ.

To conclude the proof, we will show that π∗
X,f (χ) ≥ χ ′. To this end, let ϕ ∈ C0(Z). We

will show that π∗
X,f (χ)(ϕ) ≥ χ ′(ϕ). By definition, the value of the positive strong submea-

sure π∗
X,f (χ) at ϕ is defined as π∗

X,f (χ)(ϕ) = infψ∈C0(X,≥(πX,f )∗(ϕ)) χ(ψ), and since χ =
(πX,f )∗(χ ′) the right-hand side is equal to infψ∈C0(X,≥(πX,f )∗(ϕ)) χ

′(π∗
X,f (ψ)) ≥ χ ′(ϕ).

The latter follows from the fact that χ ′ is a positive strong submeasure and that for all
ψ ∈ C0(X, ≥ (πX,f )∗(ϕ)) we have π∗

X,f (ψ) ≥ ϕ.
(6) Let ϕ be a continuous function on X. We then have by part (5), using G(μ1)+

G(μ2) ⊂ G(μ1 + μ2), that

f∗(μ1 + μ2)(ϕ) = sup
ν∈G(μ1+μ2)

inf
ψ∈C0(≥f ∗(ϕ))

ν(ψ)

≥ sup
ν1∈G(μ1),ν2∈G(μ2)

inf
ψ∈C0(≥f ∗(ϕ))

(ν1 + ν2)(ψ)
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≥ sup
ν1∈G(μ1),ν2∈G(μ2)

[ inf
ψ∈C0(≥f ∗(ϕ))

ν1(ψ)+ inf
ψ∈C0(≥f ∗(ϕ))

ν2(ψ)]

= f∗(μ1)(ϕ)+ f∗(μ2)(ϕ).

Example 2. Let J : P2 ��� P
2 be the standard Cremona map given by J [x0 : x1 : x2] =

[1/x0 : 1/x1 : 1/x2]. It is a birational map and an involution: J 2 = the identity map.
Let e0 = [1 : 0 : 0], e1 = [0 : 1 : 0] and e2 = [0 : 0 : 1], and �i = {xi = 0} (i = 0, 1, 2).
Let π : X → P

2 be the blowup of P
2 at e0, e1 and e2, and let E0, E1 and E2 be

the corresponding exceptional divisors. Let h = f ◦ π : X → P
2. Then h is a holo-

morphic map. Moreover, π−1(e0) = E0 and h(E0) = �0. More precisely, we have
h−1(�0\{e1, e2}) ⊂ E0. From this, we can compute, as in Example 1 in the introduction
and in the proof of part (2) of Proposition 2.5, that for all ϕ ∈ C0(X) and for δe0 the Dirac
measure at e0,

J∗(δe0)(ϕ) = sup
�0

ϕ.

It follows that J∗(δe0) ≥ max{δe1 , δe2}, where δe1 is the Dirac measure at e1 and δe2 is the
Dirac measure at e2. Therefore, by the positivity of J∗ we obtain

J∗J∗(δ0)(ϕ)≥J∗(max{δe1 , δe2})(ϕ)≥ max{J∗(δe1(ϕ)), J∗(δe2(ϕ))}= max{sup
�1

ϕ, sup
�2

ϕ}.

On the other hand, J ◦ J is the identity map, and hence (J ◦ J )∗(δe0) = δe0 . Hence the
inequality in part (2) of Theorem 2.10 is strict in this case.

This example also shows that the inequality in part (3) of Theorem 2.10 is strict in
general. In fact, let {pn} ⊂ X\I (f ) be a sequence converging to a point p = e0 and
{J (pn)} converges to a point q ∈ �0. Let μn = max{δp1 , . . . , δpn}. It can be checked
easily that μn is an increasing sequence of positive strong submeasures, with J∗(μn) =
max{δJ (p1), . . . , δJ (pn)} for all n. Then the weak convergence limit μ = limn→∞ μn =
supn δpn exists. In particular, μ ≥ δe0 , and hence from the above calculation we find
J∗(μ) ≥ supx∈�0

δx . On the other hand, ν = limn→∞ J∗(μn) = supn δJ (pn). It is clear
that if x ∈ �0\{q}, then ν cannot be compared with δx . Therefore, we have the strict
inequality J∗(μ) > ν in this case.

If we choose a sequence of points {pn}n=1,2,... ⊂ X\{e0, e1, e2} converging to e0 and
such that qn = J (pn) converges to a point q0 ∈ �0, then it can be seen that for μ =
supn δpn we have J∗(μ) > supn J∗(δpn). Hence part (5) of Theorem 2.10 does not hold
in general if we replace G(μ) by the smaller set G = {δpn}n.

2.3. Pullback of positive strong submeasures. Let f : X ��� Y be a continuous
open-dense defined map, so that there is an open-dense subset U ⊂ X such that f (U)
is open-dense in Y and fU = f |U : U → f (U) is a proper covering map of finite degree.
In this subsection we will define the pullback of positive strong submeasures on Y for such
maps.
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To this end, we note that for each ϕ ∈ C0(X), the function

(f |U)∗(ϕ)(y) =
∑

x∈(f |U )−1(y)

ϕ(x)

is a continuous function on f (U). Therefore, using Proposition 2.5 we can define the
following upper-semicontinuous function on Y :

f∗(ϕ) := E((f |U)∗(ϕ)).
Then, similarly to the previous subsection, we can define for ν ∈ SM+(Y ) and ϕ ∈ C0(X),

f ∗(ν)(ϕ) := inf
ψ∈C0(Y ,≥f∗(ϕ))

ν(ψ).

We have the following relation between pullback and pushforward, whose simple proof
is omitted.

THEOREM 2.11. Let f : X ��� Y be a continuous open-dense defined map. Assume that
there is an open-dense set U ⊂ OpenDom(f ) so that f : U → f (U) is a homeomor-
phism. Let f−1 : Y ��� X be the inverse open-dense defined map of f . Then for all
ν ∈ SM+(Y ) we have f ∗(ν) = (f−1)∗(ν).

The proof of the following result is similar to that of Theorem 2.10.

THEOREM 2.12. Let X, Y be compact metric spaces, and f : X ��� Y a continuous
open-dense defined map so that there is an open-dense subset U ⊂ X such that f (U) is
open-dense in Y and fU = f |U : U → f (U) is a proper covering map of finite degree. Let
g : Y ��� Z be another continuous open-dense defined map so that there is an open-dense
subset V ⊂ Y such that g(V ) is open-dense in Y and gV = g|V : V → g(U) is a proper
covering map of finite degree.
(1) We have f ∗(SM+(Y )) ⊂ SM+(X). Moreover, if ν ∈ SM+(Y ), then f ∗(ν)(±1) =

deg(f )ν(±1). In particular, ‖f ∗(ν)‖ = deg(f )‖ν‖.
(2) For all ν ∈ SM+(Y ) we have f ∗g∗(μ) ≥ (g ◦ f )∗(ν). If f and g are continuous on

the whole of X and Y , and g is homeomorphic on an open-dense subset V of Y , then
equality happens.

3. Invariant positive strong submeasures
In the previous section we defined for each continuous open-dense defined map
f : X ��� Y an operator f∗ : SM+(X) → SM+(Y ). Here we apply this to the case where
X = Y to produce invariant positive strong submeasures by combining Cesaro averages
with a min-max principle, as stated in Theorem 1.4. We then study further the case where
f is good with respect to iterates (Definition 1.5).

We now discuss some properties of invariant positive strong submeasures. We note that
in the case where f is a continuous map and μ is a measure, then f∗(μ) = μ if and only
if either f∗(μ) ≥ μ or f∗(μ) ≤ μ. In the general case we are concerned with here, the
properties f∗(μ) = μ, f∗(μ) ≥ μ and f∗(μ) ≤ μ are in general not the same. However,
these properties are very much related. For example, it can be checked that ifμ is a measure
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and f∗(μ) ≤ μ, then f∗(μ) = μ. On the other hand, we will see that positive strong
submeasures μ having the property that f∗(μ) ≥ μ appear very naturally in dynamics.
If we apply Cesaro’s average procedure for meromorphic maps, we obtain positive strong
submeasures μ with f∗(μ) ≥ μ. Likewise, if we have a positive strong submeasure μ̂ on

f ,∞ which is σf -invariant, then μ = (π1)∗μ̂ satisfies f∗(μ) ≥ μ. Using this, we obtain
canonical invariant positive strong submeasures to those μ which satisfy either f∗(μ) ≥ μ

or f∗(μ) ≤ μ in Theorem 1.4. We next detail proofs of these claims.

Proof of Theorem 1.4. (1) We note that for μn = (1/n)
∑n
j=0(f∗)j (μ0), by part (6) of

Theorem 2.10 we have

f∗(μn)− μn = f∗
(

1
n

n∑
j=0

(f∗)j (μ0)

)
− 1
n

n∑
j=0

(f∗)j (μ0)

≥ 1
n

n∑
j=0

(f∗)j+1(μ0)− 1
n

n∑
j=0

(f∗)j (μ0)

= 1
n
(f∗)n+1(μ0)− 1

n
μ0,

and the latter converges to 0 in SM(X). Therefore, if μ = limj→∞ μnj , then any cluster
point of f∗(μn,j ) is greater than or equal to μ. Hence, by part (3) of Theorem 2.10 we have
f∗(μ) ≥ μ.

(2) Since μn = (f∗)n(μ0) is a decreasing sequence, it has a limit which we denote
by Inv(≥ μ0), which is an element of SM+(X). Moreover, the sequence f∗(μn) = μn+1

also converges to Inv(≥ μ0). We then have that f∗(Inv(≥ μ0)) ≥ Inv(≥ μ0) by part (3)
of Theorem 2.10. On the other hand, since Inv(≥ μ0) ≤ μn for all n, it follows that
f∗Inv(≥ μ0) ≤ f∗(μn) for all n, and hence f∗Inv(≥ μ0) ≤ limn f∗(μn) = Inv(≥ μ0).
Combining all inequalities, we obtain f∗(Inv(≥ μ0)) = Inv(≥ μ0).

To finish the proof, we will show that if μ ≤ μ0 and f∗(μ) = μ, then μ ≤ Inv(≥ μ0).
In fact, under the assumptions about μ we have

μ = (f∗)n(μ) ≤ (f∗)n(μ0)

for all positive integers n. Hence, by taking the limit we obtain that μ ≤ Inv(≥ μ0).
(3) We can assume that the mass of μ0 is 1. The set G := {μ ∈ SM+(X) : μ ≥

μ0, f∗(μ) = μ} is non-empty because supx∈X δx is one of its elements.
Now let H = {ν ∈ M+(X) : ν ≤ μ, ∀μ ∈ G}. Note that H is non-empty because if

ν ≤ μ0, then ν ∈ H. We define Inv(≥ μ0) = supν∈H ν. Then Inv(≥ μ0) is in SM+(X),
and it is the largest element of SM+(X) which is smaller than μ for all μ ∈ G. Moreover,
by construction we see easily that Inv(≥ μ0) ≥ μ0.

We now finish the proof by showing that f∗(Inv(≥ μ0)) = Inv(≥ μ0). First, we show
that Inv(≥ μ0) ≥ f∗(Inv(≥ μ0)). In fact, it is easy to check that if ν ∈ M+(X) is so that
ν ≤ Inv(≥ μ0), then ν ∈ H. Hence, by part (5) of Theorem 2.10 we have that for allμ ∈ G,

f∗(Inv(≥ μ0)) = sup
ν∈H

f∗(ν) ≤ f∗(μ) = μ.
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Therefore, by the definition of Inv(≥ μ0), we get that f∗(Inv(≥ μ0)) ≤ Inv(≥ μ0).
Therefore, by part (2) above, we have that if μ∞ is the limit point of μn = (f∗)n(Inv(≥
μ0)), then f∗(μ∞) = μ∞. Moreover, Inv(≥ μ0) ≥ μ∞.

On the other hand, from the fact that Inv(≥ μ0) ≥ μ0 and f∗(μ0) ≥ μ0 we have

μn = (f∗)n(Inv(≥ μ0)) ≥ (f∗)n(μ0) ≥ μ0,

for all n. Taking the limit, we obtain μ∞ ≥ μ0, that is, μ∞ ∈ G. Hence, by definition
μ∞ ≥ Inv(≥ μ0).

From the above two inequalities, we deduce that Inv(≥ μ0) = μ∞, which implies that
Inv(≥ μ0) is the smallest element of G.

Now we consider the case where f is good with respect to iterates; see Definition 1.5.
We use the same notation 
f ,∞, σf : 
f ,∞ → 
f ,∞ and π1 : 
f ,∞ → X as in the
paragraph after Definition 1.5. The next results relate invariant submeasures of f and those
of σf .

PROPOSITION 3.1. If μ̂ is a positive strong submeasure on 
f ,∞, then

f∗(π1)∗(μ̂) ≥ (π1)∗(σf )∗(μ̂).

In general, we have that f∗(π1)∗(μ̂) �= (π1)∗(σf )∗(μ̂), even if μ̂ is a measure.

Proof of Proposition 3.1. By part (ii) of Theorem 1.2 and the fact that σf and π1 are
continuous maps, we need consider only the case where μ̂ is a positive measure. We need
to show that for all ϕ ∈ C0(X),

f∗(π1)∗(μ̂)(ϕ) ≥ (π1)∗(σf )∗(μ̂)(ϕ).

By definition,

f∗(π1)∗(μ̂)(ϕ) = inf
ψ∈C0(X,≥f ∗(ϕ))

(π1)∗(μ̂)(ψ) = inf
ψ∈C0(X,≥f ∗(ϕ))

μ̂(π∗
1 (ψ)).

Let U = X\I (f ). Then U is an open-dense subset of X and π−1
1 (U) is an open-dense

subset of 
f ,∞. Note that π∗
1 ◦ f ∗(ϕ) = σ ∗

f π
∗
1 (ϕ) on π−1

1 (U). Moreover, note that the
function σ ∗

f π
∗
1 (ϕ) is continuous on the whole 
f ,∞. Therefore, for every ψ ∈ C0(X, ≥

f ∗(ϕ)), we have that π∗
1 (ψ) ≥ σ ∗

f π
∗
1 (ϕ). This implies that

f∗(π1)∗(μ̂)(ϕ) ≥ μ̂(σ ∗
f π

∗
1 (ϕ)) = (π1)∗(σf )∗(μ̂)(ϕ).

If we choose an example f : X ��� X having a point x ∈ I (f ) such that f∗(δx) is not
a measure, then for any x̂ ∈ 
f ,∞ so that π1(̂x) = x and μ̂ = δx̂ , we have f∗(π1)∗(μ̂) �=
(π1)∗(σf )∗(μ̂), since the left-hand side is not a measure while the right-hand side is a
measure.

THEOREM 3.2. Let f : X ��� X be a continuous open-dense defined selfmap of a
compact metric space, which is good with respect to iterates. Let 0 �= μ0 ∈ SM+(X).
(1) Let μ̂ be a σf -invariant positive strong submeasure. Then μ = (π1)∗(μ̂) satisfies

f∗(μ) ≥ μ.
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(2) If f∗(μ0) = μ0, then there exists a non-zero measure μ̂0 on 
f ,∞ so that
(σf )∗(μ̂0) = μ̂0, ‖μ̂0‖ = ‖μ0‖ and (π1)∗(μ̂0) ≤ μ0. Moreover, the set {μ̂ ∈
SM+(
f ,∞) : (π1)∗(μ̂) ≤ μ, (σf )∗(μ̂) = μ̂} has a largest element, denoted by
Inv(π1, μ).

Proof. (1) This follows immediately from Proposition 3.1.
(2) Choose any non-zero measure ν0 on 
f ,∞ so that (π1)∗(ν0) ≤ μ0. Then by

Proposition 3.1 we have

(π1)∗(σf )∗(ν0) ≤ f∗(π1)∗(ν0) ≤ f∗(μ0) = μ0.

Hence any cluster point ν of Cesaro’s averages (1/n)
∑n
j=0(σf )∗(ν0) will satisfy

(π1)∗(ν) ≤ μ. Now to construct one that has the same mass as μ, we choose a sequence of
positive measures μn with the property μn ≤ μ and ‖μn‖ → ‖μ‖. For each μn, construct
a corresponding νn on 
f ,∞ as above. Then any cluster point μ̂0 of νn will satisfy the
properties in line 1 of part 2 of the statement of Theorem 3.2.

Since σf is continuous, it follows that (σf )∗(ν) = ν. If we define Inv(π1, μ) =
sup{μ̂ ∈ SM+(
f ,∞) : (π1)∗(μ̂) ≤ μ, (σf )∗(μ̂) = μ̂}, then it is also an element of
SM+(
f ,∞). Moreover, since σf is continuous, we can check easily that Inv(π1, μ) is
σf -invariant.

In summary, we have several canonical ways to associate invariant positive strong
submeasures on X or 
f ,∞. If μ̂ is an invariant positive strong submeasure on 
f ,∞, then
we obtain an invariant positive strong submeasure Inv(≥ (π1)∗(μ̂)) onX. Conversely, if μ
is an invariant positive strong submeasure onX, then we obtain an invariant positive strong
submeasure Inv(π1, μ) on 
f ,∞. If μ is any positive strong submeasure on X and μ∞ is
any cluster point of Cesaro’s average (1/n)

∑n
j=0(f∗)j (μ∞), then we obtain an invariant

positive strong submeasure Inv(≥ μ∞).

4. Applications
In this section we provide some applications of the previous sections. Firstly, we will
consider a general dominant meromorphic selfmap. Then we consider in more detail
dominant meromorphic selfmaps in dimension 2. Finally, we consider the case of
transcendental maps of C and C

2.

4.1. Dominant meromorphic maps. Let X be a compact complex variety and f :
X ��� X a dominant meromorphic map. Then, from the topological viewpoint, f is an
open-dense defined selfmap which is good with respect to iterates. Therefore, we can
define the pushforward of a positive strong submeasure by f , as well as the notions of
topological entropy.

We can also define the pullback of positive strong submeasures by f , following
the description in §2.3. We end this section describing in detail the pushforward by
meromorphic maps on positive strong submeasures. The next result about a good choice
of ψ ∈ C0(X, ≥ ϕ) for some special bounded upper-semicontinuous functions will be
needed for that purpose.
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LEMMA 4.1. Let X be a compact metric space, A ⊂ X a closed set and U = X\A. Let
ϕ be a bounded upper-semicontinuous function on X so that χ = ϕ|U is continuous on
U and γ = ϕ|A is continuous on A. For any U ′ ⊂⊂ U an open set and ε > 0, there is a
function ψ ∈ C0(X, ≥ ϕ) so that:
(i) ψ |U ′ = χ;
(ii) supA |ψ |A − γ | ≤ ε; and
(iii) supX |ψ | ≤ supX |ϕ| + ε.

Proof. Let ε1 > 0 be a small number to be determined later. Since ϕ is upper-
semicontinuous, for each x ∈ A, there is rx > 0, which we choose so small that
U ′ ∩ B(x, rx) = ∅, so that

sup
y∈U∩B(x,rx)

χ(y) ≤ γ (x)+ ε1.

Since γ is continuous on A, by shrinking rx if necessary, we can assume that

sup
x′∈A∩B(x,rx)

|γ (x′)− γ (x)| ≤ ε1.

Hence we obtain

sup
y∈U∩B(x,rx)

χ(y) ≤ inf
x′∈A∩B(x,rx)

γ (x′)+ 2ε1.

The function γ |A∩B(x,rx) can be extended to a continuous function γx on B(x, rx). We can
assume, by shrinking rx for example, that

sup
x′,x"∈B(x,rx)

|γx(x′)− γx(x")| ≤ ε1.

Now, since A is compact, we can find a finite number of such balls, say B(x1, r1), . . . ,
B(xm, rm), which cover A. We choose another open subset U ′′ of X so that U ′ ⊂⊂
U" ⊂⊂ U and so that U ′′, B(x1, r1), . . . , B(xm, rm) is a finite open covering of X. Let
τ , τ1, . . . , τm, be a partition of unity subordinate to this open covering. Then the function

ψ(x) = τ(x)γ (x)+
m∑
i=1

τi(x)[γxi (x)+ 4ε1],

with 4ε1 < ε, satisfies the conclusion of the lemma.

Proof of Theorem 1.3. Let B ∈ Z be the exceptional divisor of the blowup. Then π :
B → A is a smooth holomorphic fibration, whose fibres are isomorphic to P

r−1 where r
is the codimension of A. As in Example 1, it can be computed for x ∈ A that π∗(ϕ)(x) =
supy∈π−1(x) ϕ. Therefore, from what was said about the map π : B → A, it follows that
π∗(ϕ)|A is continuous. Then it is easy to see that the upper-semicontinuous function π∗(ϕ)
satisfies the conditions of Lemma 4.1. It is easy to check that π∗(μ1) is a positive measure
on Z. Hence, by the conclusion of Lemma 4.1, it is easy to see that

π∗(μ)(ϕ) = π∗(μ1)(ϕ)+ μ2(π∗(ϕ)|A). (4.1)
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Now we provide an explicit choice of the collection G associated to π∗(μ) in part (2)
of Theorem 2.1. From equation (4.1), it suffices to provide such a G for μ2, since then the
corresponding collection for μwill be π∗μ1 + G. Therefore, in the remainder of the proof,
we will assume that μ = μ2 has support on A.

Define ψ(ϕ) = π∗(ϕ)|A. It then follows that ψ(ϕ) ∈ C0(A), and

π∗(μ)(ϕ) = μ(ψ(ϕ)).

We now present an explicit collection G of positive measures on X so that

μ(ψ(ϕ)) = sup
χ∈G

χ(ϕ).

To this end, let us, for each finite open cover {Ui}i∈I of A, a partition of unity {τi}
subordinate to the finite open cover {Ui} of A, and local continuous sections γi : Ui →
π−1(Ui), consider the following assignment on B:

χ({Ui}, {τi}, γi)(ϕ) = μ(H(ϕ)),

where H(ϕ) ∈ C0(A) is the function

H(ϕ)(x) =
∑
i∈I

τi(x)ϕ(γi(x)).

Since H(ϕ) is linear and non-decreasing in ϕ, it is easy to see that χ is indeed a measure.
Moreover, since |H(x)| ≤ maxB |ϕ|, it follows that ‖χ‖ ≤ ‖μ‖.

We let G be the collection of such positive measures. We now claim that, for all ϕ ∈
C0(Z),

μ(ψ(ϕ)) = sup
χ∈G

χ(ϕ).

We show first that μ(ψ(ϕ)) ≥ χ(ϕ) for all χ ∈ G. In fact, since γi(x) ∈ π−1(x) for all
x ∈ A, it follows by definition that

H(ϕ)(x) ≤ sup
π−1(x)

ϕ = ψ(ϕ)(x),

for all x ∈ A. Hence μ(ψ(ϕ)) ≥ χ(ϕ).
Now we show the converse. Let ϕ be any continuous function on Z. Then for any ε > 0

we can always find a finite open covering {Ui}i∈I of X, depending on ϕ and ε, so that for
all x ∈ Ui we have ∣∣∣∣ϕ(γi(x))− sup

π−1(x)

ϕ

∣∣∣∣ ≤ ε.

It then follows that correspondingly |H(x)− ψ(ϕ)(x)| ≤ ε for all x ∈ A. Therefore, for
this choice of χ ∈ G,

|μ(ψ(ϕ))− μ(H)| ≤ ε,

and hence letting ε → 0 concludes the proof.
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4.2. Meromorphic maps in dimension 2. In this subsection we mention an application
to dynamics of meromorphic maps. Let f : X ��� X be a dominant meromorphic map of
a compact Kähler surface. The study of dynamics of such maps is very active. It is now
recognized that maps which are algebraic stable (those whose pullback on cohomology
groups is compatible with iterates, that is, (f n)∗ = (f ∗)n on H 1,1(X) for all n ≥ 0)
have good dynamical properties. An important indication of the complexity of such maps
is dynamical degrees defined as follows. Let λ1(f ) be the spectral radius of the linear
map f ∗ : H 1,1(X) → H 1,1(X) and let λ2(f ) be the spectral radius of the linear map
f ∗ : H 2,2(X) → H 2,2(X). There are two interesting large classes of such maps: those
with large topological degree (λ2(f ) > λ1(f )) and those with large first dynamical degree
(λ1(f ) > λ2(f )). The dynamics of the first class is shown in our paper [9] to be as nice as
expected. For the second class, the most general result so far belongs to [5–7], who showed
the existence of canonical Green (1, 1) currents T + and T − for f , and who used potential
theory to prove that the dynamics is nice (in particular, the wedge intersection T + ∧ T −
is well defined as a positive measure) if the so-called finite energy conditions on the Green
currents are satisfied. While these conditions are satisfied for many interesting subclasses,
it is known that in general they are false [4]. On the other hand, since it is known that
T + has no mass on curves [7], it follows that the least negative intersection �(T +, T −)
defined in [20] is a positive strong submeasure (see the proof therein). In summary, we
obtain the following result.vspace-1.5pt

THEOREM 4.2. Let f : X ��� X be a dominant meromorphic map of a compact Kähler
surface which is algebraic stable and has λ1(f ) > λ2(f ). Let T + and T − be the
canonical Green (1, 1) currents of f . Then the least negative intersection�(T +, T −) is in
SM+(X).

At the moment we do not know whether f∗(�(T +, T −)) = �(T +, T −). (In fact, from
Buff’s examples mentioned above, we do not expect this to be true in general.) However, by
the discussion in the previous sections, we can consider cluster points of Cesaro’s average
(1/n)

∑n
j=1(f∗)j (�(T +, T −)), and then obtain the associated invariant positive strong

submeasures μ. From such a μ, we then can construct associated invariant measures of
σf . The significance of these invariant positive strong submeasures and measures, together
with their entropies, will be pursued in a future work. (The cluster points of Cesaro’s
average can be worked out explicitly when we work with a transcendental holomorphic
map of C1 and start with a probability measure μ on P

1. In this case, thanks to Picard’s
theorem for essential singularities, the only dynamically interesting invariant positive
strong submeasure we can obtain is supx∈P1 δx . The computations are left to the interested
reader to carry out.)

Remark. We note a parallel between the least negative intersection and the tangent
currents in this situation. Under the same assumptions as in Theorem 4.2, it was shown
in our joint paper [8] that the h-dimension (defined in [10]) between T + and T − is 0, the
best possible.

Remark. In this paper we only treat existence of invariant strong submeasure for
open-dense defined maps. Applications to finer invariants such as topological entropy will
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be pursued in a future paper. For related classical works, see [1, 13]. For some recent
related works, see [3, 21].
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