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SOME PROPERTIES OF GENERALIZED EULER 
NUMBERS 

D. J. L E E M I N G AND R. A. MACLEOD 

1. Introduction. We define infinitely many sequences of integers 
En

{k)}n=o, one sequence for each positive integer k ^ 2 by 

i £ o w = 1 

, h { E +Ui ] = l o , « > o 
where {a>/fc)}5=i are the &-th roots of unity and (E{k))n is replaced by 
En

{k) after multiplying out. An immediate consequence of (1.1) is 

(1.2) Enw = 0 n & 0(mod k). 

Therefore, we are interested in numbers of the form E,k
{k) (s = 0, 1, 

2, . . . ; * = 2 , 3 , . . . ) . 
Some special cases have been considered in the literature. For k = 2, 

we obtain the Euler numbers (see e.g. [8]). The case k = 3 is considered 
briefly by D. H. Lehmer [7], and the case k = 4 by Leeming [6] and 
Carlitz ([1] and [2]). 

2. General properties of the number sequences {£sfc
(fc)}^L0. There 

are some interesting properties shared by all sequences {EsJc
{k)} defined by 

(1.1) which we present as a series of theorems. 

THEOREM 2.1. For k = 2, 3, . . .; n = 0, 1, . . . we have 

<w § (S)*-" - {J: 
n = 0 
n > 0. 

Proof. We have defined Esk™ (fe = 2, 3, . . .; s = 0, 1, . . .) by (1.1). 
Since £0

(fc) = 1, the result is true for n = 0. For the case n > 0, 

j = l 5 = 0 \ 5 / 

Using (1.2), this reduces to 

;=1 s=0 \Sfe/ 
(fc) / {k)\nk—sk / {K)\1tK—SIC /-v 
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Since («/*>)"*-** = 1 (j = 1, 2, . . ., k; s = 0, 1, . . .), we have 

t {^)E„^,"Y'- - g (£)«.-». (» > 0) 
independent of j . Therefore, 

and (2.1) follows. 

THEOREM 2.2. EJk> = l(mod 2), k = 2, 3, . . .; 5 = 0, 1, 

Proof. From (2.1) we have 

£„<» = !, £*<*>=-!, £««>= ( 2 / ) - l , 

and since 

•)-*(v) ' 2 i f e l 

£2*(A> is odd. Proceeding by induction, we assume £(«_))* is odd for some 
fixed value of k. Using (2.1) we have 

(2.2) Ejk) = - 1 "'- ' -(?)(*"•+*£•")-5(S)*-" -'sk 

Now £^(fc) = — 1 and by our inductive assumption E{^_i)k is odd so the 
second term in the right hand member of (2.2) is even. Now we need 
only show that 

§(:*) 7? ^ 

is even. There are two cases to consider. 
Case 1. (n odd). Then we have 

s(i*)£,,».Tfe)a."'+au), 
which is even by our inductive assumption. 

Case 2. (n even). We remove the term with s = n/2 and pair the 
remaining n — 4 terms to obtain 

(2-3) | (*)ES> = U* W , + T (̂ )(E,«> + Eg.rt). 
No w 
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is even, and the second member on the right in (2.3) is even by the 
inductive assumption. Therefore, the left hand member of (2.3) is even. 

This completes the proof of Theorem 2.2. 

THEOREM 2.3. For fe = 2, 3, . . .; s = 0, 1, . . . 

(2.5) Esk
{k)= Z ( - ! ) ' ( b

 Sk J. 
ni>0 

Proof. Define 

A <*) = v - (qk)\ y - / qk \ 

U>0 li>0 

Then, 

Aq,j+l - XJ 2-J 
(qk)\ 

i=i,l+.'^,J.A(3-r)k)\(l1kV....Qik)\-
li>0 

We now show by induction that 

(2.6) £,*<*> = i,(-l)jASii
ik\ 

Let k be fixed (k ^ 2 ) . In the case 5 = 1 

p <*> _ A <fc> _ èl _ 1 
JELlc — —si\,l — — , j ~ — I . 

Proceeding by induction, assume (2.6) is true for some positive integer 5. 
Now from (2.1) we have 

Kn*1^ (*) _ n . 
rk — U, 

so, since £o(A:) = 1, 

h h \ rk / „+.fe,„ ft*)!... WW 
«»>o 

= _ f M ) j v ((s + l)fe)!  
,éT ; £} Ks+l -r )* ] !^*) ! . . .^* ) ! 

i»>0 
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Setting v — j + 1 yields 

£gu = - z (-i)'-^Si,, -1 = z (-1)"̂ ,̂ ., -1 
u=2 

s+l 

3. A generating function for the number sequences {Esk
(k)}^ 

Suppose fix) has the (formal) Maclaurin expansion 

(3.1) /(*) = Z 
ra=0 

Then we have the following result. 

THEOREM 3.1. For k = 2, 3, . . . 

(3.2) ibf(E(k) +x + œj(k)) = */(*). 
* = i 

Proof. 
k k oo 

Z/(£(W + * + «/*') = Z Z «»(£(t) + * + «/*')" 
.7=1 j = l w==0 

= z«»ziz(£a)+^))4WxM-" 
= * «o + Z «»{**- + Z ( z (£w + «/})") (m)xm-n\ 

oo 

= k «o + & Z a»** by (1.1) = £/(*). 
m — l 

COROLLARY 3.1. For k = 2, 3, . . . we have 

(3.3) £ {E(k) + ix + œj(k))}n = £xw 

TVtfte. If « = x = 0, the right hand side is to be read as k. 

We now obtain a generating function for each number sequence 

{£,*<*> }?-<> (* = 2 , 3 , . . . ) . 

THEOREM 3.2. 7w * = 2, 3, . . . 

* * 2 = n"?;T w ^ &(*) = ^ TVMT • 

Prw/ . Set x = 0 and/( / ) = ezt in (3.2). Then/(0) = a0 = 1, and we 
obtain (setting œ = co(A°) 

i.e., 

& # U ) 2 

^ + e + . . . + £ 
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Using the property of the fe-th roots of unity 

i . i , 2 1 , , (fc-i)i / * , / = 0 (mod £) 
1+co + c + . . . + « = \ o , z N O ( m o d * ) 

it is easily shown that 

oo ks 

and the result follows. 

4. Some congruence relations for the number sequences 
{£Sfc

(fc)}?=o. (Note: In this section, we shall drop the superscript (fe).) 
Frobenius [4, p. 477] proved that 

E2n^ 1 - 2 » + 8 ^ ) (mod 16), 

as well as more precise results. Carlitz [1] proved that 

E4* = 1 - 2 » + 8 (2 ) (mod 16). 

We have proven a number of similar results for higher-order sequences, 
and are able to conjecture several more. These are stated in Theorems 4.1 
and 4.2 and Conjecture 4.1. 

THEOREM 4.1. We have the following congruences mod 16. 

(i)E8n = 3 - 4 » + 8 ( W + 1 ) 

(ii) E*n = 3 - 4 » 

( i i i )£ 8 w= 1 -2n + 8\^ 

(iv) EUn = 1 - 2n + s l^j 

(v) EV2n = 3 - 4n. 

THEOREM 4.2. In addition, we have the following congruences 
(i) £3»= ( - l )*(mod 18). 

(ii) Ehn = ( - l ) n ( m o d 250) (250 = 2-53) 
(iii) Een = — 1 (mod 12). 

CONJECTURE 4.1. The following congruences appear to be valid, on the 
basis of considerable numerical evidence. 
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(i) Ein = 7 — 8w(mod 16) 
(ii) Elln = ( - l ) w (mod 2662) (2662 = 2 • I P ) 

(iii) EUn = ( - l ) w (mod 4394) (4394 = 2 • 133) 
(iv) EUn = £7n(mod 16) (= 7 - 8n?) 
(v) Enn = 15(mod 16) 

(vi) E2*n = 1 ~ 2n + 8 ^ ) (mod 16), k = 1, 2, . . . . 

Notes. 1. Parts (i) and (ii) of Theorem 4.1 would disprove a conjecture 
that Emn = Ekn(mod 16), k = 2, 3, . . .. 

2. Theorem 4.2, parts (i) and (ii), and Conjecture 4.1, parts (iii) and 
(iv) might suggest a conjecture of the type Evn = ( —l)w(mod 2^a) for 
some positive a. But £7^ = 4(mod 686) for n — 11 and 13. 

3. There are other conjectures which could be made on the basis of 
numerical studies, but they don't seem to have quite such appealing 
formulas. For example, mod 16, E-on reproduces the following set of 
twelve residues, repeating: 

15, 11, 1,3, 11 ,9 ,7 ,3 , 1, 11,3,9; 

while E9n reproduces the following set of 28 residues, repeating: 

15, 11, 5, 3, 1, 9, 3, 3, 3, 1, 11, 9, 13, 11, 7, 3, 13, 3, 9, 9, 3, 
11, 11, 9, 11, 1, 13, 11. 

In order to prove the two theorems we shall establish several prelimi­
nary results. 

LEMMA 4.1.1. In order to show 

(4.1) E , n s E / ( n ) ( m o d g ( 0 ) , « = 1 , 2 , . . . 

it suffices to prove that this is true for n = 1 and that 

(4-2) g ( j ) / ( * ) - - 1 +/(0)(mod g(t)), n = 2, 3 

Proof. From (4.2) and (2.1) we would have 

Ê fe) {/(*)"£*} =0mod(g(0). 

Thus wre would have 

g feji/W - £ « ! + / ( « ) - E<n - Omod (g(0), 

and (4.1) is now a simple induction on n. 

LEMMA 4.1.2. 

\{n~l)lj\ ( \ 1 j 

<•> S (i+J*H"-jS<" r '<1+- ' , ) ' 
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where «j = e'Hi/i, I a non-negative integer, and j — 1 ^ I. In particular 

(y\ X I ' 1 _ ± X ' I o „„_-. ' . I . „ v.'. T _ ^ ) r * (11) S WW=7§V2cos7/ cos~ 

^Sfe)-^(«-7)Vir 
3n 

(-Dr 

Proof. The first result appears as relation 1.53 in [5], and is easily 
proven from the binomial theorem and properties of primitive roots of 
unity. The terms for r — 0 and r — j are the same. 

LEMMA 4.1.3. For j = 1, 2, . . . we have 

«>S*($-!5($ 

^ £*'($ - T (1 - ») 5 (?) +3jH-nt (*'« 1 • 
Proof. Relation (i) is most readily proved by noting that 

S*($-5'((.?'J-5<--«($ 
so that we have 

In order to prove relation (ii) we note that 

k2 = \k(kj - 1) +\k, 
J J 

so that we have 

tW?)-4.w-i)E(.?'-l)+it*(?). 
*=0 \*7 / j ^ £o \j(n - k)/ j £o \ * / / 

and relation (ii) follows from relation (i). 
In proving relation (iii), we note that 
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so tha t from relation (i) we have 

and relation (iii) follows from relation (ii). 

LEMMA 4.1.4. 

Oii) g (il) = 1126"-1 + (-1)"33B + 1} 

( i v ) £ ( 6 ^ 3 ) = | ( 2 - + ( - i r ^ + l i 

(") i fe) = (-i)"2ïa"1S2*(S)+ 2<K" + 28"" 
8»-5 

i v(1 0 nW^ 

fc=o UU« -f- 0/ .) (. 2 ;=[(5«)/2] \2 / — on I 

I f , /IO»LA 
+ 2 1 5 S - Î é ï \ 2 * / 5 / 

(«)Ëfe)-(-irl|2".f"(«») 
+ |{38*+ 1+ (-l)"26tt + 212'i-1J 

«s (12)-<-^sJL **'(£)£:£) 
k=o \2k/ 

(»)S(16u2) = (-D-2^i: x; W8»-1) 
A-,=0 \ 10/2 / k=0 t=[(k+l)/2] \ Ik J 4g2,(8W-2\ 

£* \ 2k J x\TnZk
2t)+^T,2Tn~^+2^ 
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Proof. These results are all based on Lemma 4.1.2, together with 
evaluations of the appropriate cosines. As examples, we indicate the 
proofs of (iv), (v), (vii), and (x): 

iv) § L6+ 3) 
= l !26" + (•v/3)",(-i)"~1 + 1 + 0 + 1 + (v/3)6B(-i)B~1l; 

6 

- 2 ' - ' + 2"- ' t ( c M f ) (-1)", 
where 

7T y/2 + V 2 3TT \ / 2 - \ / 2 
cos - = , cos — = ; 

(vii) if 6» = TT/5, then 2/9 = TT - 36», so that sin 20 = sin 30, whence 

a l+VE 6 . / ô + V ô 30 V 5 - V 5 
cos 0 = — - — , cos - = y — - — , cos -- = y — - — , 

cos 20 — 7 : 
4 

, v TT V ^ T V Î T ^ 3TT V2 + V 2 - A/2 (x) cos - = , cos - = - , 

c o s _ = 2 f c o s _ = 2 . 

Proof of Theorem 4.1. (i) From Lemma 4.1.1, it suffices to prove 

3 _ « + 8 ( * + 1 ) = 3 - f * + |*', 

A/ 

Since we have 

we must showr 

»s(£)-?5*(5)+!5"(£)-^»>-
From Lemma 4.1.3, this is equivalent to showing 

A (3n\ 6^3 - 2rc2 A fan - 2\ 

h W + 3 h \ sk ) 
9 — Sn + n — n 

= 2 (mod 16). 

https://doi.org/10.4153/CJM-1981-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-049-0


GENERALIZED EULER NUMBERS 615 

By Lemma 4.1.4, parts (i) and (ii), this is equivalent to showing 

9 - 8n + n2 - ns ,^n / iy»2} + 6 ^ ~ 2 ^ \26n~2 + (-1)%-11 
9 9 

= 2 (mod 16), 
or equivalently 

2 3 W _ 1 , 9 (-IY1 , 9 
- y - (« + w2 - 16» - 18) + s~~L (Sn* + \n - I6n + 18) 

= 2 (mod 16), 
or equivalently 

23n-l(w3 + n2 _ 1 6 w _ 18) + (_!)«(_8w3 + 4^2 _ l g n + 18) 

^ 18(mod 16). 

For n = 1, the result is certainly true, while for n è 2, it reduces to 

(-l)n(-Sn3 + 4:ri2 + 2) = 2(mod 16) 

or 

( - l ) w ( - 4 ^ + 2n2 + 1) - 1 = 0(mod 8). 

For n = 2k, the left side is 8( —4&3 + k2), while for n = 2k + 1, it is 
8(4&3 + k2), and we are done. 

(ii). Proceeding as in part (i), we see that it suffices to show7 that, for 
integer n ^ 1, 

^ - y — (26n"x + 1 + (-l)w33n) SEE 2(mod 16) 

or 

(3 - 2n){\ + (-l)w33 n) - 6 = 0(mod 16) 

(3 - 2w)(l + 5n) - 6 ^ 0(mod 16). 

A simple induction argument shows that 16 divides — 10(5n — 1) + Hn, 
and this yields an induction argument to prove the required result. 

(iii), (iv). These are easily checked for n = 1, 2, 3, while for n ^ 4 
the results follow from Lemma 4.1.3 and the appropriate parts of Lemma 
4.1.4. 

(v). Proceeding as in part (i), we see that it suffices to show that, for 
integer n ^ 1, 

3 - 2n 
" 3 ( _ 1 ) hl s \2k) 

+ ^-TT1 (36" + (-l)"26 t t + 1 + 212"-1) = 2(mod 16) 
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or equivalently 

(3 - In) ^--{sSn + 4(33M-X)(62
W) + g 2tt3*"~fc(^) + 26"} 

+ (3 - 2«)|2-— + ^ " Y — + I + ~F-\ - 2(mod. 16) 
or equivalently 

(3 - 2n)(-l)n{3u-1 + 4(33n_2)3w(6n - 1) + 26/l~1| 

+ (3 - 2 n ) | - - ~ - + i + - - - - | s 2(mod 16). 

If we now replace 3* = (4 - l)fc by ( - l ) f c + 4&(- l )* - 1 + Sk(k - 1) 
( —l)fc(mod 16), the result follows readily. 

Proof of Theorem 4.2. (i). From Lemma 4.1.1, it suffices to show 

S \3k) ( -1 )* = 0(mod 18). 

For n = 2m + 1, 

fc=0 

For n = 2m, 

2 ^ /6w + 3\ fc ^ /&» + 3\ _ ^ (Qm + 3\ 

s (sr)<-«* - s (« ) - s («T ») - e»"<-»-, 
by Lemma 4.1.4, parts (iii) and (iv), and for m ^ 1, 18 divides 
(2 )3 3 m - 1 ( - l ) m . 

(ii). As in part (i), it suffices to show 

Since 
s(s)t-»--s(isr)-s(urr«)-«<—»• 
Xhk) - ( 5 1 , - 5 * ) a n d ( f ) is even, clearly we have 

g ( 5
5 » ) ( - ! ) • - 0 ( mod 2). 

Also, by Lemma 4.1.4, parts (vii) and (viii), 

T(10m)-"r( 10m ) _ (~1)m v ( bm W-1 

ti \10* / & \10A + 5/ 25m"2 _ f e ) / a l \2 / - 5m/° ' 
For m = 1, the left side is ( — 250), while for m ^ 2, I — 1 |> 4, and the 
result follows. 
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(iii). By Lemma 4.1.1, it suffices to show that 

g ( S ) ( - 1 ) a s - 2 ( m o d l 2 ) -
By Lemma 4.1.4, part (iii), this is equivalent to showing 

i(26*-i + (_l)«33* - 5) = 0(mod 12). 

For this, it suffices to show 4 divides ( — l)w33w — 5 and 9 divides 26"-1 — 5, 
each of which follows by a simple induction argument. 

THEOREM 4.3. (-l)nEkn > 0, k = 2, 3, . . .. 

Proof. In effect, this is result (10.3) in [3], in which ( — l)nEkn counts 
a certain class of permutations. 
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