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Abstract

Let H = Cn ⊗ E be the tensor product of a Euclidean space Cn and a separable Hilbert space E. Our
main object is the operator G = In ⊗ S + A ⊗ IE, where S is a normal operator in E, A is an n × n matrix,
and In, IE are the unit operators in Cn and E, respectively. Numerous differential operators with constant
matrix coefficients are examples of operator G. In the present paper we show that G is similar to an
operator M = In ⊗ S + D̂ × IE where D̂ is a block matrix, each block of which has a unique eigenvalue.
We also obtain a bound for the condition number. That bound enables us to establish norm estimates
for functions of G, nonregular on the closed convex hull co(G) of the spectrum of G. The functions
G−α (α > 0) and (ln G)−1 are examples of such functions. In addition, in the appropriate situations we
improve the previously published estimates for the resolvent and functions of G regular on co(G). Since
differential operators with variable coefficients often can be considered as perturbations of operators with
constant coefficients, the results mentioned above give us estimates for functions and bounds for the
spectra of differential operators with variable coefficients.
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Keywords and phrases: matrix differential operators, tensor products of operators, operator functions,
resolvent, spectrum perturbations.

1. Introduction and statement of the main result

Throughout this paper E is a separable Hilbert space with a scalar product 〈. , .〉E and
norm ‖.‖E =

√
〈. , .〉E , Cn is the n-dimensional complex Euclidean space with a scalar

product 〈. , .〉n, the Euclidean norm ‖.‖n =
√
〈. , .〉n andH = Cn ⊗ E is the tensor product

of Cn and E. The scalar product inH is defined by

〈h ⊗ y, h1 ⊗ y1〉H = 〈y, y1〉E 〈h, h1〉n (y, y1 ∈ E; h, h1 ∈ C
n)

and the cross norm is ‖.‖H =
√
〈. , .〉H . IH , IE and In are the unit operators inH ,E and

Cn, respectively. From the theory of tensor products we only need the basic definition
and elementary facts which can be found in [5].
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For an operator B, σ(B) denotes the spectrum, ‖B‖ is the operator norm, B∗ is the
adjoint operator, and Dom(B) is the domain.

Throughout this paper S is a normal operator in E and A is an n × n matrix. Our
main object is the operator

G = In ⊗ S + A ⊗ IE. (1.1)

By ‖A‖F we denote the Frobenius norm of A : ‖A‖F := (Trace A∗A)1/2; λ j(A) ( j =

1, . . . ,m; m ≥ 2) are the different eigenvalues of A; µ j is the algebraic multiplicity
of λ j(A). So

δ := min
j,k=1,...,m; k, j

|λ j(A) − λk(A)| > 0 (1.2)

and µ1 + · · · + µm = n. Numerous differential operators with constant matrix
coefficients can be represented as in (1.1). Moreover, various matrix differential
operators with variable coefficients can be considered as perturbations of G (see the
example below).

Two operators A and B acting inH are said to be similar if there exists a boundedly
invertible bounded operator T such that A = T−1BT . The constant κT = ‖T−1‖ ‖T‖
is called the condition number. The condition number is important in various
applications. We refer the reader to [3], where condition number estimates are
suggested for combined potential boundary integral operators in acoustic scattering,
and [24], where condition numbers are estimated for second-order elliptic operators.
Conditions that provide the similarity of various operators to normal and selfadjoint
ones were considered by many mathematicians; see [2, 6, 16–19, 21–23] and
references given therein. In many cases, the condition number must be numerically
calculated; see, for example, [1, 22]. The interesting generalization of condition
numbers of bounded linear operators in Banach spaces was explored in [15]. Bounds
for condition numbers of unbounded operators with Hilbert–Schmidt and Shatten–von
Neumann hermitian components have been established in [10] and [13]. The paper
[12] deals with bounded perturbations of unbounded normal operators.

Let P j be the orthogonal invariant projection of A corresponding to λ j(A):

0 = P0C
n ⊂ P1C

n ⊂ P2C
n ⊂ · · · ⊂ PmC

n = Cn

and P jAP j = AP j ( j = 1, . . . ,m). Put

D̂ =

m∑
j=1

∆P jA∆P j (∆P j = P j − P j−1),

that is, D̂ is the block diagonal matrix each of whose blocks A j j := ∆P jA∆P j has only
one eigenvalue. In the present paper we show that G is similar to the operator

M = In ⊗ S + D̂ ⊗ IE

and obtain a bound for the condition number. That bound enables us to establish norm
estimates for the functions of G, which are nonregular on the closed convex hull co(G)
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of the spectrum of G. The functions G−α (α > 0) and (ln G)−1 are examples of such
functions. In addition, in the appropriate situations we improve the estimates for the
resolvent and functions of G, regular on the co(G); see [14].

The following quantity (the departure from normality) plays an essential role
hereafter:

g(A) :=
[
‖A‖2F −

m∑
k=1

µk|λk(A)|2
]1/2

.

g(A) enjoys the following properties:

g2(A) ≤ 2‖AI‖
2
F (AI = (A − A∗)/2i) and g2(A) ≤ ‖A‖2F − |trace A2|;

see [8, Section 2.1]. If A is normal, then g(A) = 0. In addition, denote

d j :=
j∑

k=0

j!
(( j − k)!k!)3/2 ( j = 0, . . . , n − 2),

θ(A) :=
n−2∑
k=0

dkgk(A)
δk+1 and γ(A) :=

(
1 +

g(A)θ(A)
√

m − 1

)2(m−1)
.

It is not hard to check that d j ≤ 2 j. Now we are in a position to formulate our main
result.

Theorem 1.1. Let the operator G be defined as in (1.1). Then there is a bounded and
boundedly invertible operator T0 acting inH , such that the equality

T−1
0 GT0 = M (1.3)

is valid. Moreover,
κ(T0) := ‖T0‖ ‖T−1

0 ‖ ≤ γ(A). (1.4)

This theorem is proved in the next two sections. Note that we do not assume that
the spectrum consists of simple eigenvalues or M is normal. Theorem 1.1 is sharp: if
A is normal, then we have γ(A) = 1.

2. Auxiliary results

Put Qk = I − Pk, Bk = QkAQk, A jk = ∆P jA∆Pk and Ck = ∆PkAQk ( j, k = 1, . . . ,m).
Represent A, B j and C j in block form as

A =


A11 A12 A13 · · · A1m

0 A22 A23 · · · A2m

. . . · · · .
0 0 0 · · · Amm

 ,

B j = Q jAQ j =


A j+1, j+1 A j+1, j+2 · · · A j+1,m

0 A j+2, j+2 · · · A j+2,m
. . · · · .
0 0 . Amm


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and
C j = ∆P jAQ j = (A j, j+1 A j, j+2 · · · A j,m ) ( j ≤ m − 1).

Since B j is a block triangular matrix, it is not hard to see that

σ(B j) =

m⋃
k= j+1

σ(Akk) =

m⋃
k= j+1

λk(A) ( j = 1, . . . ,m − 1);

see [9, Lemma 2.1]. So due to (1.2),

σ(B j) ∩ σ(A j j) = ∅ ( j = 1, . . . ,m − 1). (2.1)

Under this condition, the equation

A j jX j − X jB j = −C j ( j = 1, . . . ,m − 1) (2.2)

has a unique solution; see, for example, [4]. The following result has been proved in
[9, Lemma 2.2].

Lemma 2.1. Let conditions (2.1) hold and X j be a solution to (2.2). Then

(I − Xm−1)(I − Xm−2) · · · (I − X1) A (I + X1)(I + X2) · · · (I + Xm−1) = D̂. (2.3)

Take
T = (I + X1)(I + X2) · · · (I + Xm−1). (2.4)

It is simple to see that the inverse to I + X j is the matrix I − X j; see [9]. Thus,

T−1 = (I − Xm−1)(I − Xm−2) · · · (I − X1)

and (2.3) can be written as

T−1AT = diag(Akk)m
k=1 = D̂. (2.5)

By the inequalities between the arithmetic and geometric means, we get

‖T‖ ≤
m−1∏
j=1

(1 + ‖X j‖) ≤
(
1 +

1
m − 1

m−1∑
j=1

‖X j‖

)m−1
(2.6)

and

‖T−1‖ ≤

(
1 +

1
m − 1

m−1∑
k=1

‖Xk‖

)m−1
. (2.7)

3. Proof of Theorem 1.1

Lemma 3.1. Let condition (1.2) be fulfilled. Then there is an invertible n × n matrix T ,
such that (2.5) holds with

κT = ‖T‖ ‖T−1‖ ≤ γ(A).
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Proof. Consider the Sylvester equation

ZX − XZ̃ = C, (3.1)

where Z ∈ Cn1×n1 , Z̃ ∈ Cn2×n2 and C ∈ Cn1×n2 are given; X ∈ Cn1×n2 should be found.
Assume that the eigenvalues λk(Z) and λ j(Z̃) of Z and Z̃, respectively, satisfy the
condition.

ρ0(Z, Z̃) := dist(σ(Z), σ(Z̃)) = min
j,k
|λk(Z) − λ j(Z̃)| > 0.

Then Equation (3.1) has a unique solution X [4]. Corollary 6.2 in [11] implies the
inequality

‖X‖F ≤ ‖C‖F
n1+n2−2∑

p=0

1

ρ
p+1
0 (Z, Z̃)

p∑
k=0

(p
k )

gk(Z̃)gp−k(Z)√
(p − k)!k!

and therefore

‖X‖F ≤ ‖C‖F
n1+n2−2∑

p=0

dpĝp

ρ
p+1
0 (Z, Z̃)

, (3.2)

where ĝ = max{g(Z), g(Z̃)}.
Let us return to Equation (2.2). In this case Z = A j j, Z̃ = B j, C = −C j, n1 =

µ j, n2 = dim Q jC
n, and due to (1.2), ρ0(A j j, B j) ≥ δ ( j = 1, . . . ,m). In addition,

µ j + dim Q jC
n ≤ n. Now (3.2) implies

‖X j‖F ≤ ‖C j‖F

n−2∑
k=0

dkĝk
j

δk+1 , (3.3)

where ĝ j = max{g(B j), g(A j j)}. By Schur’s theorem, for any operator A in Cn, there
is an orthogonal normal basis (Schur’s basis) {ek}

n
k=1, in which A is represented by a

triangular matrix; see [7]. That is,

Aek =

k∑
j=1

a jke j with a jk = (Aek, e j) ( j = 1, . . . , n).

So A = DA + VA (σ(A) = σ(DA)) with a normal (diagonal) matrix DA defined by
DAe j = a j je j ( j = 1, . . . , n) and a nilpotent (strictly upper-triangular) matrix VA defined
by VAek = a1ke1 + · · · + ak−1,kek−1 (k = 2, . . . , n),VAe1 = 0. DA and VA will be called
the diagonal part and nilpotent part of A, respectively. Note that Schur’s basis is not
unique. Besides, g(A) = ‖VA‖F . In addition, simple calculations show that the nilpotent
part V j of A j j is ∆P jVA∆P j and the nilpotent part W j of B j is Q jVAQ j. So V j and W j
are mutually orthogonal, and

g(A j j) = ‖V j‖F ≤ ‖VA‖F = g(A), g(B j) = ‖W j‖F ≤ ‖VA‖
2
F = g(A). (3.4)

From (3.3) and (3.4) it follows that

‖X j‖F ≤ ‖C j‖F

n−2∑
k=0

dkgk(A)
δk+1 = ‖C j‖Fθ(A). (3.5)
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It can be directly checked that

‖C j‖
2
F =

m∑
k= j+1

‖A jk‖
2
F

and
m−1∑
i=1

m∑
k=i+1

‖Aik‖
2
F =

m∑
i=1

m∑
k=i

‖Aik‖
2
F −

m∑
k=1

‖Akk‖
2
F = ‖A‖2F −

m∑
k=1

‖Akk‖
2
F .

Since ‖Akk‖F ≥ µk|λk(A)|, we have

m−1∑
j=1

m∑
k= j+1

‖A jk‖
2
F ≤ g2(A),

and consequently,
m−1∑
k=1

‖Ck‖
2
F ≤ g2(A). (3.6)

Furthermore, take T as in (2.4). Then (2.6), (2.7) and (3.5) imply

‖T‖ ≤
(
1 +

1
m − 1

m−1∑
k=1

‖Xk‖F

)m−1
≤

(
1 +

θ(A)
m − 1

m−1∑
k=1

‖Ck‖F

)m−1

and

‖T−1‖ ≤

(
1 +

θ(A)
m − 1

m−1∑
k=1

‖Ck‖F

)m−1
.

But by the Schwarz inequality and (3.6),(m−1∑
j=1

‖C j‖F

)2
≤ (m − 1)

m−1∑
j=1

‖C j‖
2
F ≤ (m − 1)g2(A).

Thus,

‖T‖2 ≤
(
1 +

θ(A)
√

m − 1
g(A)

)2(m−1)
= γ(A)

and ‖T−1‖2 ≤ γ(A). Now (2.5) proves the lemma. �

Lemma 3.2. Let there be a matrix T such that (2.5) holds. Then (1.3) is valid with
T0 = T ⊗ IE.

Proof. Indeed, we have

(T−1 ⊗ IE)(In ⊗ S + A ⊗ IE)(T ⊗ IE) = In ⊗ S + (T−1AT ) ⊗ IE = In ⊗ S + D̂ ⊗ IE.

This proves the result. �

The assertion of Theorem 1.1 follows from Lemmas 3.1 and 3.2. �

https://doi.org/10.1017/S1446788718000058 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000058


[7] Similarity of operators on tensor products of spaces and matrix differential operators 25

4. Applications to operator functions

Let E(s) be the orthogonal resolution of the identity of S defined on σ(S ), such that

S =

∫
σ(S )

s dE(s).

Then the operators G and M defined in Section 1 can be written as

G =

∫
σ(S )

(sIn + A) ⊗ dE(s) and M =

∫
σ(S )

(sIn + D̂) ⊗ dE(s). (4.1)

Let f (z) be a scalar function, regular on σ(G), and

sup
s∈σ(S )

max
j=1,...,m

| f (k)(λ j(A) + s)| <∞ (k = 1, . . . , µ j − 1). (4.2)

Define f (A + sIn) (s ∈ σ(S )) in the usual way via the Cauchy integral [4] and consider
the operator function

f (G) =

∫
σ(S )

f (sIn + A) ⊗ dE(s).

Similarly,

f (M) =

∫
σ(S )

f (sIn + D̂) ⊗ dE(s).

Note that the considerably more general operator functions on tensor products of
spaces have been considered in [20] and references given therein.

By Lemma 3.1, f (sIn + A) = T−1 f (sIn + D̂)T and therefore f (G) = T−1
0 f (M)T0. So

by (1.4) we have ‖ f (G)‖H ≤ κ(T0)‖ f (M)‖H ≤ γ(A)‖ f (M)‖H . It is not hard to see that

‖ f (M)‖H ≤ sup
s∈σ(S )

‖ f (sIn + D̂)‖n.

Since A j j are mutually orthogonal, we have

f (D̂ + sIn) =

m∑
k=1

∆P j f (A j j + sIn) and ‖ f (D̂ + sIn)‖n = max
j
‖∆P j f (A j j + sIn)‖n.

We thus arrive at the following theorem.

Theorem 4.1. Let f (z) be a scalar function, regular on a neighborhood of σ(G), and
let condition (4.2) hold. Then

‖ f (G)‖ ≤ κ(T0) sup
s∈σ(S )

max
j
‖∆P j f (A j j + sIn)‖n.

Due to [8, Corollary 2.7.2], we have

‖ f (A j j + sIn)‖µ j ≤

µ j−1∑
k=0

| f (k)(λ j(A) + s)|
gk(A j j)
(k!)3/2 .
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Taking into account (3.4), we get

‖ f (A + sIn)‖n ≤ γ(A) max
j

µ j−1∑
k=0

| f (k)(λ j(A) + s)|
gk(A)
(k!)3/2 .

Now Theorem 4.1 immediately implies our next result.

Corollary 4.2. Under the hypothesis of Theorem 4.1,

‖ f (G)‖ ≤ γ(A) sup
s∈σ(S )

max
j

µ j−1∑
k=0

| f (k)(λ j(A) + s)|
gk(A)
(k!)3/2 .

In the following examples the operator G is defined by (1.1) (and therefore, by
(4.1)).

Example 4.3. Let α(S ) := sups∈σ(S )<σ(S ) < ∞. Then the semigroup etG of G is
representable by

etG =

∫
σ(S )

e(sIn+A)t ⊗ dE(s), t ≥ 0.

Now Corollary 4.2 implies

‖etG‖ ≤ γ(A)e(α(A)+α(S ))t
µ̂−1∑
k=0

tk gk(A)
(k!)3/2 (t ≥ 0),

where α(A) = maxk< λk(A) and µ̂ = max j µ j.

Example 4.4. Let
ξ0 := inf

j=1,...,m,s∈σ(S )
|λ j(A) + s| > 0.

Define the fraction power by

G−ν =

∫
σ(S )

(sI + A)−ν ⊗ dE(s) (0 < ν < 1).

Here the fraction power of the nonsingular matrix is defined in the standard way; see,
for example, [7]. Since

sup
j=1,...,m;z∈σ(S )

∣∣∣∣∣ dk

dzk

1
(z + λ j(A))ν

∣∣∣∣∣ ≤ ν(ν + 1) · (ν + k − 1)
ξk+ν

0

( j = 1, . . . ,m; k = 1, 2, . . .),

by Corollary 4.2,

‖G−ν‖ ≤ γ(A)
µ̂−1∑
k=0

gk(A)ν(ν + 1) · (ν + k − 1)
ξk+ν

0 (k!)3/2
.

Similarly, one can estimate the function

(ln G)−1 =

∫
σ(S )

(ln(sIn + A))−1 ⊗ dE(s)
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provided the condition ξ0 > 0 holds. The matrix logarithm is defined in that standard
way; see, for example, [4, Section V.1].

Furthermore, it is simple to see that the resolvent of G is representable by

(G − λIH )−1 =

∫
σ(S )

(sIn + A − λIn)−1 ⊗ dE(s) (λ < σ(G)). (4.3)

Theorem 4.1 yields

‖Rz(G)‖H ≤ κ(T0) sup
s∈σ(S )

max
j
‖∆P j(A j j − (λ − sIµ j ))

−1‖µ j .

Due to [11, Theorem 1.1],

‖(A j j − (λ − sIµ j ))
−1‖µ j ≤

µ j−1∑
k=0

gk(A j j)

ρk+1(A j j + sIµ j , λ)
√

k!
,

where ρ(B, λ) denotes the distance between λ ∈ C and the spectrum of an operator
B. Clearly, ρ(A j j + sIµ j , λ) = |λ j(A) + s − λ| ≥ ρ(G, λ) ( j = 1, . . . ,m; s ∈ σ(S )). Now
Corollary 4.2 implies our next result.

Corollary 4.5. We have

‖Rz(G)‖H ≤ γ(A)
µ̂−1∑
k=0

gk(A)

ρk+1(G, λ)
√

k!
(λ < σ(G)).

5. Spectrum perturbations

Corollary 4.5 enables us to investigate spectrum perturbations. Let G and G̃ be
linear operators inH with

Dom(G̃) = Dom(G) and q := ‖G − G̃‖H <∞. (5.1)

Introduce the quantity
svG(G̃) := sup

s∈σ(G̃)
inf

t∈σ(G)
|t − s|

(the spectral variation of G̃ with respect to G). We need the following technical lemma.

Lemma 5.1. Let condition (5.1) hold and

‖Rλ(G)‖ ≤ ψ
( 1
ρ(G, λ)

)
(λ < σ(G)),

where ψ(x) is a monotonically increasing continuous function of a nonnegative
variable x, such that ψ(0) = 0 and ψ(∞) = ∞. Then svG(G̃) ≤ z(ψ, q), where z(ψ, q)
is the unique positive root of the equation qψ(1/z) = 1.
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For the proof see [8, Lemma 8.4.2]. Now let G be defined by (1.1). Then
Corollary 4.5 and Lemma 5.1 imply svG(G̃) ≤ z(A, q), where z(A, q) is the unique
positive root of the equation

qγ(A)
µ̂−1∑
k=0

gk(A)

zk+1
√

k!
= 1.

This equation is equivalent to the algebraic one

zµ̂ = qγ(A)
µ̂−1∑
k=0

gk(A)zµ̂−k−1

√
k!

.

Various estimates for the roots of algebraic equations are well known. For example, if

p(A, q) := qγ(A)
µ̂−1∑
k=0

gk(A)
√

k!
< 1, (5.2)

then, due to [8, Lemma 1.6.1], we have zµ̂(A,q) ≤ p(A,q). So we arrive at the following
result.

Corollary 5.2. Let G be defined by (1.1) and let condition (5.1) hold. Then svG(G̃) ≤
z(A, q). In particular, if condition (5.2) is fulfilled, then svµ̂G(G̃) ≤ p(A, q).

6. Differential operators with matrix coefficients
In this section we apply our results to matrix differential operators. Here E =

L2(0, 1) (the space of scalar square integrable functions defined on [0, 1]) and H =

Cn ⊗ E = L2([0, 1],Cn) (the space of square integrable functions defined on [0, 1] with
values in Cn). On the domain

Dom(G̃0) = {u ∈ H : u′′ ∈ H ; u(0) = u(1) = 0}

consider the operator

G̃0 = −
d
dx

a(x)
d
dx

+ C(x) (x ∈ (0, 1)),

where a(x) is a scalar positive function having a continuous derivative and C(x) is a
variable bounded measurable n × n matrix. Take S = −(d/dx)a(x)(d/dx) with

Dom(S ) = {u ∈ L2(0, 1) : u′′ ∈ L2(0, 1); u(0) = u(1) = 0}.

In addition, G0 = In ⊗ S + IE ⊗ A with some constant n × n matrix A and Dom(G̃0) =

Dom(G0) = Dom(S ⊗ In). Then q = ‖G0 − G̃0‖H ≤ supx ‖C(x) − A‖n and

σ(G0) = {λk(S ) + λ j(A) : k = 1, 2, . . . ; j = 1, . . . ,m}.

Due to Corollary 5.2, svG0 (G̃0) ≤ z(A, q) and z(A, q) can be estimated as in that
corollary. Thus, the spectrum of G̃0 lies in the sets

{µ ∈ C : |µ − (λk(S ) + λ j(A))| ≤ z(A, q) : k = 1, 2, . . . ; j = 1, . . . ,m}.

For example, if a(x) = 1 identically, then λk(S ) = πk2.
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Furthermore, Example 4.3 gives us the norm estimate for the semigroup of −G0,
and the formula

e−G0t − e−G̃0t =

∫ t

0
e−G0(t−t1)(G0 − G̃0)e−G̃0t1 dt1

enables us to estimate the semigroup of −G̃0. Moreover, Example 4.4 gives us a norm
estimate for the fractional powers of G0 and the relations

G−ν0 − G̃−ν0 =
sin(πν)
π

∫ ∞

0
t−ν((G0 + tIH )−1 − (G̃0 + tIH )−1) dt

=
sin(πν)
π

∫ ∞

0
t−ν(G0 + tIH )−1(G0 − G̃0)(G̃0 + tIH )−1 dt

(inf<σ(G0) > 0, inf<σ(G̃0) > 0)

enable us to estimate the fractional powers of G̃0.
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