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1. These notes are intended to be read in connexion with
Dr A. C. Aitken's paper, Proc. Edinburgh Math. Soc. (2) 1 (1929),
199-203. It is proposed to show (by a simple line of direct
algebraic demonstration which is also applicable to the original
formula) that Aitken's Theorem can be extended to the Everett
types, i.e. the types which include two sets of terms—one set
involving u (0) and the resultant of generalised operations on u (0),
and the other set involving u (1) and the resultant of similar
operations on u (1).

2. Let Ar be an operator which reduces the degree of a poly-
nomial, P{x), by two, and eliminates constants and terms in x.

3. Let A be that form of the inverse operator, A"1, that pro-
duces a P {x) divisible by x and x — 1, i.e. by x (x — 1). This will
be called Condition (^4). Then A.AP{x) will reproduce P{x) as
far as terms in x2, but may differ from P (x) by terms of the form
ax + /3. In practice A will usually be the resultant of two inverse
^-operations, as defined by Aitken, loc. cit., as for example
A = D~x A"1 or =A~*; but A is not necessarily so separable into
two inverse ^-operations.

4. Everett Type I. Here the data are
(1, Xlt Aj Au . . . . down to Xn... .Ax) operating on u (0) and u{\).
P {x) is of degree 2ra + 1. Take the fifth degree as an example.
Put z — x — 1. Consider the following Scheme:

i Value of terms of
j degree < 2.

X = 0 X=l, 2=0.

u {x) — ahx
hJr aix

i+ a3x
3-\- a 2 z 2 + axx + a0 a0 ax + a0

A 1 w ( z ) = b3 x
3+ b2 x

2 + 6j x + 60 60 bt + b0

A2 Ai u(x) — cx x + c0 I c0 Cj + c0
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EXTENSION OF AITKEN'S THEOREM 17

Since co = A2AIw(0) and ct + c0 = A ^ M (]), we have

Cl = A2A, M(1) — \2Ai(w0).

Substituting in A2 \ u (x), we have

XiA1u(z)=c1x + c0 = x{\2X1u(l) — AJJAJMIO)} + A2A1u(O)
= xA2Axw (1) - (x— 1) A2A1M(0) (1)

which is an expression of Everett Type I.

Operate on (1) with A2: then (see (A) above) we have

Aj u (x) = A2. A2 Aj u (x) + ax + P (2)
and similarly

A, u (z) = A2. A2 A, u (z) + az + jS
= A,, . X2 A, U (2) + ax + (a + P) (3)

Put x = 0 in (2); then bearing in mind the definition of A in (A)
we see that (2) reduces to A1w(0) = p. Similarly, putting 2 = 0 in
(3) we get Aj u (1) = a + p. Hence a = A, u (1) — X1 u (0), and

ax + p = x{A1u (1) - Aj w(0)} + AiM(O)
= X A I M ( 1 ) - ( a ; - 1 )A,M(0) , (4)

another expression of Everett Type I.

Substituting from (1) and (4) in (3), we get

X1u{x) = A2{a;A2A1M(l) — (x — 1) A2AX u (0)} + zAj u (1) — (a:—1) Ax w (0)

= a;. A1M(1) + A2a;. A2 X1 u (1) ^

- (a ; - 1)A1M(0) - A 2 ( X - 1 ) . A 3 A 1 M ( 0 ) / ' (5>

which again is an expression of Everett Type I.

5. Operating with A1 on (5) and proceeding as before, we
shall find

u{x) =A1.A1u{x) + xu(\) - (x - 1) M(0) (6)

and finally, substituting from (5) in (6) and collecting terms,

u(x)=xu(l) +A1x.X1u(l)+A1A2x.A2X1u(l) \

- (x-l)u(0)-A1(x-l).X1u(0)-A1A2(x-l).X2X1u(0)iA '

the required expansion for u (x), or P (x), in Everett Type I.

6. It is evident that, beginning always at the bottom and
working upwards line by line, the same process will apply however
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many lines are involved, i.e. whatever the degree of P (x). Thus
the general expansion for a P (x) of degree 2n + 1 is evidently
found by continuing (7) for (n + 1) terms on each line.

As an example, let Ax = A2 = A3 = = d2/dx2 = D2. Then
Ax = xzI 6 -+- Ax, where A is a constant of integration to be fixed in
conformity with Condition (A). This requires A = — 1/6, and so
Ax = x(x2 — l ) / 6 . Similarly

A 2 z = (3a;5 - 10a;3 + 7a-) / 360 = x (x2 - 1) (3x2 - 7)/360.

In this case (but see the general warning in para. 8, infra) we can
get the corresponding values of A (x — 1) and A2 (x — 1) by putting
(x — 1) for x in the values already found. Hence we have the
following formula for u (x) in terms of u(0) and u (1) and their
differential coefficients of even order:

u(x) =xu (1) + x (x2-l) u" (l)/6 + x (x2-l) (3x2-7) uIV(l)/360+ . .
-zu(0)-z(z2-l)u"(0)/6-z(z2-l)(3z2-7)uIV(0)/36C) - . . / ( '

where for compactness z is written for (x — 1).

7. Everett Type II. In this type there is one ^-operator
preceding any number of A-operators, and the data are u (0) and
(6lt A2^!. . . down to A,, X«_i .. A20,) operating on M (0) and st (1). The
degree of P (x) is 2n.

If a Scheme similar to that in § 4 be written down for this
case it will be seen that—except for the top line, which gives
u (x)—the scheme is of the same form as in Type I. Hence 8t (x)
may be expressed as in Type I, by (7). Applying to this expression
for 61 (x) the inverse operator 0 1 = ^1~

1, we shall produce all the
ferms of the top line, u{x), except the constant term, which is
equal to u (0), given in the data. Thus the required expression
for u (x) = P (x) in Everett Type II is as follows :

-©jz . 6xu (O)-0,A2z . X251?t(O)-0

where again z is written for (x — 1).

As an example of Type II , put

0 = d/dz = D; X1=X2= . . =d21dx2 =--- D2.

Apply the last formula to u' (x), then integrate both sides, introducing
the constant u (0). No other constants of integration are needed in
applying the operation 0 = 0-1 = D1 to the R.H.S., because it is a
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condition that Q.P(x), or d~1P(x) is divisible by x. (cf. Aitken,
loc. cit.) We thus get the following formula for u (x) in terms of u (0)
and the odd differential coefficients of u (0) and u (1):

w(0) + x2u'(l)/2l+x2{x2-2)u'"(l)/4:! + xi(xi-5x*+7)uv(l)/6\ + .. "
-x(x-2)u'(0)/2\ -x 2 (a ; -2 ) 2 M'" (0 ) /4 !

- a;2 (a:4 -6a;3 + 10x2 - 8) uv (0) / 6! + . .

8. It must be specially noted that in operating by A1A2 . . Ar

on x and (a; — 1) the condition of divisibility by x(x— 1)—see (̂ 4),
para. 3—must be satisfied at each stage, and separately for the inverse
function of x and x — 1. It must not be assumed that the inverse
function of (x — 1) can necessarily be found by putting (x — 1) for a*
in the corresponding inverse function of x. For example, if A = A2

and A E E A - 2 , A x = x (x - 1) (x - 2) / 3!, but A ( z - l ) will not be
{x- \)(x — 2) ( a ; - 3 ) / 3 ! : it will be

(a;3 - 6a;2 + 5x) / 3! = x (x - 1) (x - 5) / 3!

9. [Added \Uh November 1929.] The correction for Condition
(A) may be found by a simple rule. If P (x), Q{x) and R(x) are
polynomials, and A x P (x), not corrected for Condition (A), is taken as
Q (x) = x (x — 1) R (x) + ax + b, the required value of A . P (x) will be
Q(x) — (ax + b). Now evidently b = Q (0) and ( a + 6 ) = 0(1), or
a = Q (1) — Q (0), and so we have

A.P(x)=Q(x)-x[Q (1) - Q (0)] - Q (0) (11)

We may thus obtain A . P (x) in the form x (x — 1) R (x). Putting
x — 1 for x in this we get (x — 1) (x — 2) R (x — 1); and applying (11)
we find that the adjustment for Condition (̂ 4) is 2 (x — 1) R ( — 1).
This vanishes if R (x) is divisible by (x + 1), i.e. if A . P (x) is divisible
by a;(a;+ 1) (a; - 1).

This condition is satisfied in the example of § 6, but not in the
example of § 8.

Note. Paragraphs 8 and 9 apply equally to Type I and
Type II.
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