ON THE PERIODIC RADICAL OF A RING

XIUZHAN GUO

Abstract

Let R be a ring and $P(R)$ the sum of all periodic ideals of R. We prove that $P(R)$ is the intersection of all prime ideals P_{α} such that $\frac{R}{P_{\alpha}}$ contains no nontrivial periodic ideals. We also prove that $P(R)=0$ if and only if R is a subdirect product of prime rings R_{α} with $P\left(R_{\alpha}\right)=0$.

A ring R is called periodic if for each $x \in R$, there exist distinct positive integers m and n such that $x^{m}=x^{n}$. In [1] Bell and Klein showed that any ring R has a maximal periodic ideal $P(R)$, defined as the sum of all periodic ideals; they proved that $\frac{R}{P(R)}$ has no nontrivial periodic ideals. It is our purpose to develop further the theory of $P(R)$.

The symbols Z and Z^{+}will denote the ring of integers and the set of positive integers. For $a \in R$, the symbol (a) will denote the principal ideal generated by a.

We begin with
Lemma 1 [2]. Suppose that for each x in the ring R, there exist a positive integer $n=n(x)$ and a polynomial $p(X)=p_{x}(X) \in Z[X]$ such that $x^{n}=x^{n+1} p(x)$. Then R is periodic.

ThEOREM 1. $\quad P(R)=\bigcap_{\alpha} P_{\alpha}$, where the intersection is taken over the set of prime ideals P_{α} such that $\frac{R}{P_{\alpha}}$ contains no nontrivial periodic ideals (If there are no prime ideals P_{α} such that $\frac{R}{P_{\alpha}}$ contains no nontrivial periodic ideals, we say that the intersection is R).

Proof. If $P(R)=R$ the result is obviously correct. Suppose then that $P(R) \neq R$.
Let P_{α} be a prime ideal of R such that $\frac{R}{P_{\alpha}}$ contains no nontrivial periodic ideals. If $P(R) \nsubseteq P_{\alpha}$, then $\frac{P_{\alpha}+P(R)}{P_{\alpha}}$ is a nontrivial periodic ideal of $\frac{R}{P_{\alpha}}$, which is a contradiction. Thus $P(R) \subseteq P_{\alpha}$, and hence $P(R) \subseteq \bigcap_{\alpha} P_{\alpha}$.

On the other hand, for any $a \in R-P(R),(a)$ is not periodic. Thus, by Lemma 1 there exists b in (a) such that $b^{n}-b^{n+1} p(b) \neq 0$ for all $n \in Z^{+}$and all $p(X) \in Z[X]$. Let $H=\left\{b^{n}-b^{n+1} p(b) \mid n \in Z^{+}, p(X) \in Z[X]\right\}$, and let \mathcal{A} be the set of all ideals P in R with $P \cap H=\emptyset$. Then $\mathcal{A} \neq \emptyset$ since $0 \in \mathcal{A}$, so there exists a maximal element P_{β} in \mathcal{A} by Zorn's lemma.

We claim that P_{β} is a prime ideal of R. Let A, B be ideals of R such that $A \nsubseteq P_{\beta}$ and $B \nsubseteq P_{\beta}$. Since $A+P_{\beta} \neq P_{\beta}, B+P_{\beta} \neq P_{\beta}$, both $A+P_{\beta}$ and $B+P_{\beta}$ meet H, say $b^{m}-b^{m+1} f(b) \in A+P_{\beta}, b^{n}-b^{n+1} g(b) \in B+P_{\beta}$ for some $m, n \in Z^{+}, f(X), g(X) \in Z[X]$. Then $b^{m+n}-b^{m+n+1} h(b)=\left(b^{m}-b^{m+1} f(b)\right)\left(b^{n}-b^{n+1} g(b)\right) \in\left(A+P_{\beta}\right)\left(B+P_{\beta}\right) \subseteq A B+P_{\beta}$, where $h(X)=f(X)+g(X)-X f(X) g(X)$. But $b^{m+n}-b^{m+n+1} h(b) \notin P_{\beta}$, hence $A B \nsubseteq P_{\beta}$. Then P_{β} is prime.

[^0]Next we prove that $\frac{R}{P_{\beta}}$ contains no nontrivial periodic ideals. Let $I \supset P_{\beta}$ be an ideal of R and $\frac{I}{P_{\beta}}$ a nontrivial periodic ideal of $\frac{R}{P_{3}}$. Then, by the maximality of P_{β} there exist an integer $m \in Z^{+}$and a polynomial $f(X) \in Z[X]$ such that $b^{m}-b^{m+1} f(b) \in I$, so there exist distinct positive integers s and t with $s<t$ such that $\left(\left(b^{m}-b^{m+1} f(b)\right)+P_{\beta}\right)^{s}=$ $\left(\left(b^{m}-b^{m+1} f(b)\right)+P_{\beta}\right)^{t}$, and therefore $\left(b^{m}-b^{m+1} f(b)\right)^{s}-\left(b^{m}-b^{m+1} f(b)\right)^{t} \in P_{\beta}$, which contradicts the choice of P_{β} since $\left(b^{m}-b^{m+1} f(b)\right)^{s}-\left(b^{m}-b^{m+1} f(b)\right)^{t}$ can be written in the form $b^{m s}-b^{m s+1} l(b), l(X) \in Z[X]$. Then $\frac{R}{P_{\beta}}$ contains no nontrivial periodic ideals.

Note that $a \notin P_{\beta}$. Then $a \notin \bigcap_{\beta} P_{\beta}$, and hence $a \notin \bigcap_{\alpha} P_{\alpha}$. Then $\bigcap_{\alpha} P_{\alpha} \subseteq P(R)$. This completes the proof of Theorem 1 .

Lemma 2. Let a ring R be a subdirect product of rings R_{α} with $P\left(R_{\alpha}\right)=0$. Then $P(R)=0$.

Proof. Let π_{α} be the natural homomorphism of R onto R_{α}. If $P(R) \neq 0$, then $\pi_{\alpha}(P(R)) \neq 0$ for some α, so $0 \neq \pi_{\alpha}(P(R)) \subseteq P\left(\pi_{\alpha}(R)\right)$, which is a contradiction. Hence $P(R)=0$.

An immediate consequence of Theorem 1 and Lemma 2 is the following
Theorem 2. Let R be any ring. Then $P(R)=0$ if and only if R is a subdirect product of prime rings R_{α} with $P\left(R_{\alpha}\right)=0$.

An alternative way of stating the results of Bell and Klein is that periodicity is a radical property in the sense of Kurosh and Amitsur, and that $P(R)$ is the corresponding radical which we may call the periodic radical of R. Of course, $P(R)$ contains the nil radical $N(R)$; hence it is appropriate to inquire what properties $P(R)$ and $N(R)$ share.

Divinsky [3] defines a class M of rings to be a special class if it satisfies the following three properties:
(1) Every ring in the class M is a prime ring.
(2) Every nonzero ideal of a ring in M is also a ring in M.
(3) If A is a ring of M which is an ideal of some ring K, and if A^{*} is the two-sided annihilator of A in K, then $\frac{K}{A^{*}}$ is in M.
With each special class M there is associated a radical property, and the corresponding radical of a ring R turns out to be the intersection of all ideals P_{α} of R such that $\frac{R}{P_{\alpha}}$ is in M [3, Lemma 80]. Radicals which arise in this way are called special radicals, and the nil radical is known to be a special radical. A trivial modification of the proof of Theorem 65 of [3] shows that the class of prime rings with no nonzero periodic ideals is a special class; and this result, combined with Theorem 1, yields

THEOREM 3. The periodic radical is a special radical.

ACKNOWLEDGEMENT. The author wishes to express his indebtedness and gratitude to the referee for his helpful suggestions and valuable comments.

References

1. H. E. Bell and A. A. Klein, On rings with Engel cycles, Canad. Math. Bull. (3) 34(1991), 295-300.
2. M. Chacron, On a theorem of Herstein, Canad. J.Math. 21(1969), 1348-1353.
3. N. J. Divinsky, Rings and Radicals, University of Toronto Press, 1965.

Department of Mathematics
China University of Mining and Technology
Xuzhou, Jiangsu 221008
China

[^0]: Received by the editors September 22, 1993; revised April 20, 1994.
 AMS subject classification: $16 \mathrm{~N} 60,16 \mathrm{~N} 80$.
 (c) Canadian Mathematical Society 1995.

