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Summary

Previous work has shown that genetic diversity at a neutral locus is affected by background

selection due to recurrent deleterious mutations as though the effective population size N
e
is

reduced by a factor that is calculable from genetic parameters such as mutation rates, selection

coefficients, and the rates of recombination between sites subject to selection and the neutral locus.

Given that silent changes at third coding positions are often subject to weak selection pressures, it

is important to develop similar quantitative predictions of the effects of background selection on

variation and evolution at weakly selected sites. A diffusion approximation is derived that

describes the effects of the presence of a single locus subject to mutation and strongly deleterious

selection on variation and evolution at a partially linked, weakly selected locus. The results are

validated by computer simulations using the Ito pseudo-sampling method. We show that both

nucleotide site diversity and rates of molecular evolution at a weakly selected locus are affected by

background selection as though N
e
is reduced in the same way as for a neutral locus. Heuristic

arguments are presented as to why the change in N
e
for the neutral case also applies with weak

selection. As in the case of a neutral locus, the number of segregating sites in the population is

poorly predicted from the change in N
e
. The potential significance of the results in relation to the

effects of recombinational environment on molecular variation and evolution is discussed.

1. Introduction

There has recently been a great deal of theoretical

work on variation and evolution at loci that are

closely linked to sites that are the targets of selection.

This work has largely been motivated by the ob-

servation of reduced DNA variability in natural

populations of Drosophila at loci situated in regions

where genetic recombination is relatively infrequent,

compared with regions where it occurs at normal

frequencies (reviewed by Aguade! & Langley, 1994;

Aquadro et al., 1994; Moriyama & Powell, 1996).

Similar patterns have recently been detected in Mus

(Nachman, 1997), Aegilops (Dvorak et al., 1998) and

Lycopersicon (Stephan & Langley, 1998). In addition,

the level of codon bias in D. melanogaster is lower in

* Corresponding author. Telephone: ­1 (716) 275 009. Fax: ­1

(716) 275 2070. e-mail : stephan!troi.cc.rochester.edu.

regions of reduced recombination, suggesting that

selection at weakly selected sites is less effective when

recombination is infrequent (Kliman & Hey, 1993).

These observations can be explained by (i) ‘ selective

sweeps’ of favourable mutations, which result in the

fixation of adjacent chromosomal regions (Maynard

Smith & Haigh, 1974; Kaplan et al., 1989; Stephan et

al., 1992; Stephan, 1995), (ii) ‘background selection’,

in which neutral or nearly neutral variants are lost as

a result of linkage to strongly deleterious mutant

alleles that are destined to be rapidly eliminated from

the population (Charlesworth et al., 1993, 1995;

Charlesworth, 1994, 1996; Hudson, 1994; Hudson &

Kaplan, 1994, 1995; Nordborg et al., 1996), (iii)

temporally varying selection pressures, which can

cause linked variants to be brought close to loss or

fixation (Gillespie, 1994, 1997; Barton, 1995).

In this paper we will be concerned solely with the

effects of background selection. Previous work on this

problem has concentrated on the properties of neutral
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variants linked to loci under selection. The reduction

in genetic diversity at neutral sites predicted by the

background selection model can be largely understood

in terms of a reduction in effective population size (N
e
)

caused by the fitness effects of the loci under selection

(Charlesworth et al., 1993), and useful formulae for

this reduction have been developed (Hudson, 1994;

Hudson & Kaplan, 1994, 1995; Nordborg et al., 1996;

Santiago & Caballero, 1998). Charlesworth (1994)

derived results for the effects of background selection

on the probabilities of fixation of weakly selected

favourable or deleterious alleles in a non-recombining

genome; Peck (1994) studied the effect of background

selection on the fixation probability of a strongly

selected favourable allele in a non-recombining

genome subject to recurrent deleterious mutations.

Barton (1995) has obtained results for the effect of

recurrent deleterious mutations at a single locus on

the fixation probability of a linked, strongly selected,

favourable mutation.

The results of these calculations suggest that

background selection affects fixation probabilities

through a reduction in N
e
, in a way which is virtually

identical to its effect on diversity in the neutral case.

But no theoretical results on fixation probabilities or

genetic diversity for the effect of background selection

on partially linked, weakly selected loci are available.

(By weak selection, we mean that the product of the

effective population size and the selection coefficient is

of the order of one, so that finite population size

effects can significantly influence the fate of the alleles

in question.) Given the evidence that such weak

selection pressures are important in controlling

patterns of variation and evolution at synonymous

sites in Drosophila (Akashi, 1995, 1996; Akashi &

Schaeffer, 1997), it is clearly important to have a

quantitative theory of the effects of background

selection on weakly selected sites. The purpose of the

present paper is to present some analytical and

simulation results for the effects of the presence of a

single locus subject to mutation and strongly del-

eterious selection on a partially linked, weakly selected

locus. We show that both nucleotide site diversity and

rates of molecular evolution at the weakly selected

locus are affected by background selection as though

N
e
is reduced in the same way as for a neutral locus.

2. The model and its assumptions

We consider a two-locus, two-allele system, in a

population of N diploid, randomly mating individuals.

We assume that N is sufficiently large and selection is

sufficiently strong that the alleles A and a at the first

locus are in an approximate equilibrium, due to

selection against the deleterious mutant allele a.

Following the notation of Nordborg et al. (1996), the

frequency of the wild-type allele A is denoted by p and

that of the mutant allele a by q. Furthermore, we

assume that q'1 ; thus, selection acts primarily

against heterozygous carriers of the mutant allele. Let

u be the mutation rate from A to a, and t be the

product of the dominance coefficient and the

coefficient of selection against mutant homozygotes ;

then q¯ u}t (approximately), according to the classi-

cal formula for equilibrium under mutation and

selection. The second locus is assumed to be under

directional selection; furthermore, it is assumed that

dominance is intermediate, so that Bb and BB

individuals have fitness 1­s and 1­2s, respectively,

relative to a fitness of 1 for bb. (The latter assumption

could be generalized to arbitrary degrees of dominance

without changing the main conclusions of this paper.)

s may be negative or positive. We assume that rsr' t.

Recombination between the two loci is measured by

the recombination fraction, r«.
Since the first locus is assumed to be in equilibrium,

it is convenient to deviate from the standard notation

of two-locus population genetics theory and to

introduce the following variables : x is the frequency

of B among chromosomes carrying allele A, and y is

the frequency of B among chromosomes carrying

allele a. Then the deterministic recurrence equations

for the changes in x and y are (Nordborg et al., 1996)

∆x¯ sx(1®x)®qr(x®y),

∆y¯ sy(1®y)­p(r­t)(x®y),

5

6
7

8

(1)

where r¯ r«(1®t). These equations are exact to O(s)

and O(q). On the boundary, the vector field (defined

by the right-hand side of (1)) is directed towards the

interior of the unit square, except at (0, 0) and (1,1).

In parallel, we consider the corresponding diffusion

process. On the time scale of generations (measured

by τ), the Kolmogorov forward equation for the

probability densities of x and y is (cf. Nordborg et al.,

1996)

¦
¦τ

p(x, y, τ)¯Lp(x, y, τ), (2)

where

L¯
1

4Nq

¦#

¦y#

y(1®y)®
¦
¦y

[sy(1®y)­p(r­t) (x®y)]

­
1

4Np

¦#

¦x#

x(1®x)®
¦
¦x

[sx(1®x)®qr(x®y)]. (3)

Equation (2), with L defined as in (3), is exact to

O(N−", s) ; quadratic and higher-order terms in q are

also neglected in the drift operator. To define the

diffusion problem completely, initial and boundary

conditions have to be specified. With respect to the

initial value, we assume throughout this paper that a

diffusion process which is at (x, y) at time τ has started
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at (ξ, η) at time 0. The definition of boundary

conditions is less clear, because a general theory of

boundary conditions is not available for two-dimen-

sional diffusions. However, it appears that no

conditions can be imposed on the boundary of the

unit square, except for (0, 0) and (1,1). This is because

the boundary of the unit square is not invariant under

the vector field defined by the right-hand side of (1),

except that (0, 0) is mapped onto itself, as is (1,1). The

diffusion will eventually be absorbed at (0, 0) or (1,1).

Therefore, we will be able to impose conditions on the

probability of ultimate fixation of allele B, which we

calculate in Section 4.

3. Approximate solution of the diffusion equation

The diffusion equation (2) cannot be solved exactly

by analytical methods. In this section, we apply an

approximation method that allows us to reduce the

diffusion equation to an exactly soluble one. To

describe this procedure, we start with the deterministic

equations (1). Because we assumed that q'1 and rsr
' t, the dynamics of the deterministic system are such

that the trajectory, starting at some point (ξ, η),

rapidly approaches a quasi-equilibrium state y¯ y(x)

near the diagonal y¯x. After this rapid relaxation

phase, the system moves slowly towards the stationary

solution (i.e. (0, 0) or (1,1)), while staying close to the

diagonal. The fast-relaxing variable is y, because for

initial values ξ1 η its dynamics are mainly determined

by the parameter p(r­t) ; because of our standard

assumptions (q'1 and rsr' t), this parameter is

much larger than the other two parameters of (1),

s and q. This procedure thus leads to an ‘adiabatic ’

elimination of variable y, which varies rapidly on the

time scale of the slowly varying variable x. The two

equations can therefore be decoupled and solved

successively, starting with the equation for y.

Similar elimination procedures have been developed

for diffusion processes. We follow the method of

Gardiner (1990, chap. 6.6.3). This method leads to

more accurate results than the standard approxi-

mation procedure used in population genetics for the

elimination of fast-changing variables (which are in a

quasi-equilibrium) from multidimensional diffusion

equations (e.g. Kimura, 1985; Stephan, 1996). We

first write the diffusion operator L as

L¯ bL
"
­L

#
­L

$
(4a)

where b¯ p(r­t) is the relaxation coefficient of the

fast variable, y, and L
"

describes the diffusion of the

fast variable y (which depends on x) ; thus,

L
"
¯

1

4Nqb

¦#

¦y#

y(1®y)®
¦
¦y 9

s

b
y(1®y)­x®y:. (4b)

Furthermore, the exchange between the

‘subpopulations’ of A and a chromosomes (caused by

recombination and mutation) and the slow movement

along the diagonal y¯x (caused by selection) will be

decoupled as follows:

L
#
¯®a

¦
¦x

(y®y(x)), (4c)

and

L
$
¯

1

4Np

¦#

¦x#

x(1®x)®
¦
¦x

[sx(1®x)®a(x®y(x))],

(4d )

where a¯ qr. We also write p
x
(y) for the stationary

solution of the fast dynamics ; i.e. the solution of

L
"
p
x
(y)¯ 0, (5a)

and the quasi-equilibrium for y is given by

y(x)¯&"

!

yp
x
(y) dy. (5b)

Gardiner (1990) has shown that an approximate

solution of (2) and (3) can be obtained in terms of the

Laplace transform. The Laplace transform of any

function of time f(τ) is defined by

fh(σ)¯&
¢

!

e−στ f(τ) dτ. (6)

The solution, which is accurate to O(N−", s) is then

found as (Gardiner, 1990, eqs. [6.6.83] and [6.6.105])

σν4 (σ)¯ (PL
$
®

1

b
PL

#
L−"

"
(L

#
­[L

$
,P])* ν4 (σ)­ν(0).

(7)

Here we have used the projection operator

Pf(x, y)¯ p
x
(y)&"

!

f(x, y) dy, (8)

where f(x, y) is an arbitrary function. [L
$
, P] is a

commutator defined as [L
$
,P]¯L

$
P®PL

$
. It follows

from (8) that

ν(τ)¯ p
x
(y) p# (x, τ), (9a)

where

p# (x, τ)¯&"

!

p(x, y, τ) dy (9b)

and p(x, y, τ) is the solution of (2) and (3).

We first consider the term PL
$
νh (σ) of (7). Using (9),

we find

PL
$
ν(τ)¯ p

x
(y) ( 1

4Np

¦#

¦x#

x(1®x)®
¦
¦x

¬[sx(1®x)®a(x®y(x))]* p# (x, τ). (10)

The term in curly brackets is the infinitesimal operator

of a diffusion in x which would result if the fast-

changing variable y were eliminated – as is generally

done in population genetic applications of diffusion
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theory – by simply using the deterministic equations

(1). However, as simulation has revealed (results not

shown), this reduction procedure produces poor

results in this case. We therefore evaluate the

remaining terms of (7).

We begin with the operator PL
#
L−"

"
L
#
. A con-

venient expression can be found if we use the identity

(Gardiner, 1990, eq. [6.5.33])

L−"

" 01®P1¯®&
¢

!

eL
"
τ dτ. (11)

Using (11), we immediately find

PL
#
L−"

"
L
#
p
x
(y) pW (x)¯®p

x
(y)&"

!

dy«L
#

¬&
¢

!

eL
"
τ dτL

#
p
x
(y«) pW (x). (12)

To evaluate the integrals, we need an explicit

expression for p
x
(y), which is defined by (5a). Equation

(5a) can be written in the form

1

2

¦#

¦y#

y(1®y) p
x
(y)®

¦
¦y

[αy(1®y)®β(1®x)y

­βx(1®y)] p
x
(y)¯ 0, (13)

where we use the abbreviations α¯ 2Nqs and β¯
2Nqb. The form of (13) is well known (e.g. Ewens,

1979, chap. 5.6) ; its solution is

p
x
(y)¯C

x
y#

βx−"(1®y)#β("−x)−" e#αy, (14)

where C
x

is a normalization constant. Furthermore,

we need the partial derivative

¦
¦x

p
x
(y)¯ p

x
(y) 9ln y

1®y
®E

ss0ln y

1®y1:, (15a)

where E
ss
(…) denotes the expectation with regard to

the stationary solution p
x
(y). Since the diffusion

process is expected to stay close to the quasi-

equilibrium y¯ y(x) after the short initial phase, we

may expand the function in the square brackets into a

Taylor series about y¯y(x) :

¦
¦x

p
x
(y)¯ 2βp

x
(y)

¬( 1

y(x)(1®y(x))
[y®y(x)]®

1

2

1®2y(x)

(y(x)(1®y(x))#

¬9(y®y(x))#®E
ss
((y®y(x)#)):­O(y®y(x))$*

(15b)

Thus, using (15b) with terms up to second order in

y®y(x), we can write

PL
#
L−"

"
L
#
p
x
(y) pW (x)

¯®a#p
x
(y)

¦
¦x (®D

!
(x)

dy(x)

dx
­D

"
(x)

¬9 ¦
¦x

­β
1®2y(x)

(y(x)(1®y(x))#
E

ss
((y®y(x)#):­2βD

#
(x)

¬
1

y(x)(1®y(x))
®βD

$
(x)

1®2y(x)

(y(x)(1®y(x))#* pW (x), (16)

where

D
n
(x)¯&"

!

dy«(y«®y(x))

¬&
¢

!

eL
"
τ dτ(y«®y(x))n p

x
(y«), n& 0. (17)

D
n
(x) can be computed in a straightforward way

(Appendix, Section (i))

D
n
(x)¯ 91­

s

b
(1®2y(x)):Ess

((y®y(x))n+"), (18)

which is O(s). The stationary moments can also be

calculated to a sufficient degree of accuracy (Appendix,

Section (ii)). Using the formulae for the moments

(A.7–A.10), (16) leads to

®
1

b
PL

#
L−"

"
L
#
ν(τ)¯ p

x
(y) ( 1

4N
q

r#

(r­t)#

¦#

¦x#
* pW (x, τ).

(19)

This equation is O(N−", s). Quadratic terms in q have

also been neglected.

Finally, we have to evaluate the operator

PL
#
L−"

"
[L

$
,P], where (Gardiner, 1990, eq. [6.6.106])

we have

[L
$
,P] ν(τ)¯ p

x
(y) (rx(y)

¬9 1

4Np

¦
¦x

x(1®x)®[sx(1®x)®a(x®y(x)):
­s

x
(y)

1

4Np
x(1®x)* pW (x, τ), (20a)

and

r
x
(y)¯

(¦p
x
(y))}¦x

p
x
(y)

, s
x
(y)¯

(¦#p
x
(y))}¦x#

p
x
(y)

. (20b)

A straightforward calculation yields

1

b
PL

#
L−"

"
[L

$
,P] ν(τ)¯ p

x
(y) (® 1

2N
q

r

r­t

¦#

¦x#

x(1®x)

­sq
r

r­t

¦
¦x

(x(1®x)* pW (x, τ). (21)

Adding (10), (19) and (21), and using (7), results in a
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diffusion equation that describes the dynamics of the

slow variable x :

¦
¦τ

p# (x, τ)¯
1

4N 01­q
t#

(r­t)#1
¦#

¦x#

x(1®x)

¬p# (x, τ)®s
¦
¦x

x(1®x) p# (x, τ). (22)

Again, this equation is O(N−", s), and neglects quad-

ratic and higher-order terms in q. It has the same form

as a one-dimensional diffusion equation with di-

rectional selection. The additional factor (in front of

the diffusion operator) indicates that the effective

population size is reduced by 1®qt#}(r­t)#. The same

reduction in N
e
has been found by Hudson & Kaplan

(1994, 1995) and Nordborg et al. (1996) in their

analysis of the effects of background selection and

recombination on neutral variation.

4. Applications of the results

(i) Fixation probability and the rate of molecular

e�olution

Equation (22) shows that the distribution of allele

frequencies among the A-carrying chromosomes is

described by the standard forward diffusion equation

of population genetics (Kimura, 1964, 1983), with a

simple modification to the effective population size,

N
e
, which describes the sampling variance of allele

frequency over a single generation. Since the forward

equation can, in principle, be used to obtain all

properties of interest, including fixation probabilities

and sojourn times in specified intervals of gene

frequency (Kimura, 1964, 1983), this result can be

used to obtain the relevant formulae, by substituting

this expression for N
e
into standard equations.

We first provide an approximate formula for the

fixation probability of a weakly selected mutant. To a

good approximation, it should be legitimate to

consider only the distribution of B among A

chromosomes, as in (22), since (1) imply that fixation

of B in this class essentially guarantees fixation in the

population as a whole, and is certainly required for

fixation. Using standard results (Kimura, 1964, 1983),

the probability of fixation, U(ξ), of a mutant allele B

with initial frequency ξ becomes

U(ξ)¯
1®e−%Nfsξ

1®e−%Nfs
, (23a)

where

f¯1®q
t#

(r­t)#
. (23b)

For large Nfs, (23a) for the case of a favourable

mutation present as a single copy (ξ¯1}2N )

approaches Barton’s (1995) (17c) :

U0 1

2N1¯ 2sf. (23c)

On the assumption that long-term evolutionary

change results from the fixation of new mutations that

occur as unique events, the rate ofmolecular evolution,

k, is given by the rate of input of new mutations into

the population, multiplied by their probability of

fixation (Kimura, 1983, chap. 3). Thus, in the present

case we have

k¯ 2NµU0 1

2N1, (24)

where µ denotes the mutation rate with respect to the

segment of the genome under consideration.

(ii) Sojourn times and nucleotide site di�ersity

Using (23) and (4.24) from Ewens (1979), we

immediately obtain a formula for the sojourn time

density for our one-dimensional diffusion, which

describes the expected time that the allele B with

initial frequency ξ spends between frequencies x and

x­dx among the chromosomes carrying A :

t(x, ξ)¯U(ξ)
1®e%Nfs(x−")

sx(1®x)
, ξ%x%1. (25)

As discussed by Charlesworth et al. (1993) and

Charlesworth (1994), under the infinite sites model

with unidirectional mutations from b to B arising in

each generation, the average nucleotide diversity, π,

within the A class contributed by such variants,

relative to the classical neutral value, π
!
, is given by

π

π
!

¯ "

#
H, (26a)

where

H¯&"

!

2x(1®x) t(x, ξ) dx

¯ 2
U(ξ)

s 01®
1®e−%Nfs

4Nfs 1. (26b)

For sU 0, H converges to 4Nfξ ; with ξ¯1}2N, we

obtain the familiar result π}π
!
¯ f for the effect of

background selection on neutral variants (Hudson &

Kaplan 1994, 1995; Nordborg et al., 1996).

If q is small, as we have assumed, the overall

diversity in the population is overwhelmingly de-

termined by the diversity within the A class (Nordborg
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et al., 1996), and so (26) should provide an excellent

approximation for the diversity in the population as a

whole; i.e. Nf can be used to replace N
e

in the

standard equation for diversity at weakly selected sites

(Kimura, 1983, p. 45; Charlesworth, 1994). We would

not, however, expect this to be true of the number of

segregating sites maintained in the population under

drift–selection–mutation equilibrium, since this is

proportional to the expected sojourn time of a variant

in the whole population (Ewens, 1979, p. 238). Unless

the population size is extremely large, the time to loss

of a B mutation that is associated with a is not greatly

different from that for a neutral allele, so that the

presence of a alleles does not have as marked an effect

on the persistence of B variants as on the net diversity,

to which a contributes little (Charlesworth et al.,

1993). This applies to both neutral and weakly selected

B variants.
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Fig. 1. The effect of background selection on fixation probability (A and C ) and nucleotide site diversity (B and D) of
advantageous (A and B) and deleterious (C and D) variants with rNs r¯ 0±02. The x-axis indicates the recombination
fraction between the locus experiencing recurrent deleterious mutation and the locus of interest. In each figure,
simulation results are given by continuous lines (with standard errors) and the values predicted by theory are given by
dotted lines. For the cases shown, N¯ 2000, q¯ 0±1, u¯10−$, t¯10−# and each point represents the average of
1±6¬10) replications.

5. Simulation results

(i) Simulation methods

In order to examine the validity of the analytical

approximations derived above, we have performed

simulations of the fate of novel mutants in small

populations (N¯ 2000 diploid individuals). The above

system of two loci with two alleles was simulated. At

the A locus, a constant frequency of the strongly

deleterious allele a (with heterozygous selection

coefficient t¯ 0±02) was maintained at the deter-

ministic equilibrium of q¯ 0±1 (where q¯ u}t), while

novel mutations (b to B) of intermediate dominance

(h¯1}2) were introduced as single copies at the

B locus, separated from the first by recombination

fraction r«. The effects of selection and drift on

variants on chromosomes carrying A are independent
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Fig. 2. The effect of background selection on fixation probability (A and C ) and nucleotide site diversity (B and D) of
advantageous (A and B) and deleterious (C and D) variants with rNs r¯ 0±2. The other variables are as in Fig. 1.

of the effects on a chromosomes (although a variant

may move between classes by recombination). The

sampling process for each is performed separately,

assuming population sizes of Np and Nq, respectively.

In a generation when the number of the rarer allele

at the B locus in either class with respect to the A locus

was less than 15, a random number was drawn from

a Poisson distribution whose mean was equal to the

number of copies of the allele in the parental

generation, after the deterministic forces had changed

allele frequencies according to (1). This was used to

generate the number of alleles of the rarer type

(ancestral or mutant) in the next generation. To

increase the speed of the simulations, the Ito pseudo-

sampling method was employed when the number of

alleles of each type was greater than 15 (Li, 1980;

Charlesworth et al., 1995). In the Ito method, the

change in frequency of an allele is approximated by a

stochastic difference equation

∆x¯Mδx
³oVδx

, (27)

which has a deterministic component Mδx
due to

selection and a stochastic element (due to drift)

represented as a random walk of magnitude oVδx

(where Vδx
is the variance in change in gene frequency

due to drift). Uniform random numbers are drawn to

decide the sign of the change in gene frequency at the

B locus, such that negative and positive increments

occur with equal frequency. For the A class, we have

Vδx
¯x(1®x)}2Np, and for the a class, Vδy

¯
y(1®y)}2Nq.

The frequencies of loss and fixation, the times to

loss and fixation, and the sum of the heterozygosities

for each generation over the sample path for a variant

were followed for many replicate introductions (at

least 8¬10(). These statistics were then compared

with values for mutations with the same selection

coefficient when there is no background selection, and

with the values predicted by the analytical methods

presented in this paper.

At the suggestion of Dr John Gillespie, multi-

dimensional diffusion simulations were also performed

to investigate the effects of stochastic variation in

frequency at the locus experiencing recurrent del-

eterious mutation. This was achieved by modelling the

system under mutation–selection–drift equilibrium for
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Fig. 3. The effect of background selection on fixation probability (A and C ) and nucleotide site diversity (B and D) of
advantageous (A and B) and deleterious (C and D) variants with rNs r¯ 0±5. Each point represents the average of 8¬10)

(advantageous) or 1±6¬10) (deleterious) replications. The other variables are as in Fig. 1.

both loci simultaneously and calculating the expected

heterozygosity and frequency of the preferred allele at

the weakly selected locus in a sample from the

population every 10N generations, after an initial

period of 10N generations to reach mutation–

selection–drift equilibrium. Samples separated by 10N

generations should be largely independent (Li, 1987).

Each generation, the frequencies of the four alleles

AB, Ab, aB and ab were altered first by selection

(according to the formulae in Hill & Robertson,

1966), then by mutation, and finally drift. When every

allele was present in at least 20 copies, the Ito pseudo-

sampling method was used to simulate the change in

frequency due to drift (for the implementation of the

Ito scheme in a multidimensional situation see Li,

1980). When any one allele was present in fewer than

20 copies, multinomial sampling was used to obtain

the number of copies of the three least frequent allele

types.

Simulations were carried out for different values of

the selection coefficient at both the weakly selected

locus and the locus experiencing recurrent deleterious

mutation; dominance was intermediate (h¯1}2) for

both loci. The mutation rate at the A locus was

adjusted to give an expected frequency of the

deleterious allele, a, at mutation–selection balance of

0±1 (using q¯ u}t), except when the selection

coefficient was zero (at which point the expected

frequency is 1). A much lower reverse mutation rate (a

to A) was also included (10−') to prevent permanent

fixation of the a allele when it is under weak selection.

The rates of forward and reverse mutation at the

weakly selected locus (B) were both 10−&, and a

population size of N¯1000 was used. Only cases of

complete linkage between the two lociwere considered.

(ii) Simulation results

The results for both negative and positive selection on

newly introduced alleles at the B locus are displayed in

Figs. 1–3, for various magnitudes of Ns. Nucleotide

site diversities and fixation probabilities are plotted
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Fig. 4. The discrepancy between the simulation results and the values predicted for the effect of background selection (as
modelled by a change in N

e
), for fixation probability, nucleotide site diversity and the number of segregating sites in the

population for advantageous (A) and deleterious (B) variants with rNs r¯ 0±2. Parameter values are the same as in Fig. 2.
The expected number of segregating sites was calculated from the expected sojourn time in each frequency class, given
the reduction in N

e
, due to background selection. These values were corrected for a small difference (1%) in the average

time to loss or fixation between simulations and numerical estimates in the absence of background selection.

against the recombination fraction r«, as the ratio of

the observed values to those expected under the same

selection model with no background selection. The

theoretical values and simulation results are displayed

on each plot. Fig. 4 displays results for the fixation

probability, nucleotide site diversity and number of

segregating sites on the same graph.

The agreement between theory and simulation for
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Table 1. Summary of simulation results to examine the effects of background selection on completely linked,

weakly selected �ariants, when there is stochastic �ariation in allele frequencies at both loci

Ns at
weakly
selected
site

Nt at
linked
site

Nµ at
linked
site

Average
frequency
preferred
allele (F )a

Expected
F}F

!
F}F

!

b

Average
expected
heterozygosity

Expected
H}H

!
H}H

!

0 0 2 0±502³0±007 — 0±03796³0±00012 —
2 0±2 0±500³0±004 0±998³0±016 0±03571³0±00037 0±939³0±012

10 1 0±491³0±005 0±980³0±017 0±03441³0±00016 0±905³0±008
20 2 0±507³0±007 1±000 1±011³0±020 0±03456³0±00008 0±900 0±904³0±010

0±2 0 2 0±679³0±003 0±03673³0±00027 —
2 0±2 0±670³0±004 0±987³0±007 0±03380³0±00030 0±920³0±011

10 1 0±656³0±003 0±966³0±006 0±03324³0±00025 0±905³0±009
20 2 0±656³0±005 0±975 0±967³0±009 0±03322³0±00038 0±909 0±904³0±012

0±5 0 2 0±858³0±003 0±03000³0±00031 —
2 0±2 0±843³0±002 0±982³0±004 0±02866³0±00030 0±955³0±014

10 1 0±839³0±003 0±977³0±005 0±02784³0±00023 0±928³0±012
20 2 0±842³0±003 0±974 0±981³0±005 0±02842³0±00026 0±940 0±947³0±013

a Each figure is the average across 10 rounds of simulation, each of which consists of 10% samples, one taken every 10N
generations. F is the average frequency of the preferred allele, H is average expected heterozygosity. F

!
and H

!
are the values

observed in the absence of background selection. Expected values are calculated from diffusion theory assuming the infinite
sites model.
b Standard errors calculated by the delta technique.

diversities and fixation probabilities is generally

excellent for all values of s and r, except for the

probabilities of fixation when the selection coefficient

is very small. This is probably due to the increased

influence of stochastic forces when the selection

coefficient is low (in this case for rNs r! 0±1). Given

that there is no consistent deviation between the

simulated and analytical results, the observed dis-

crepancies are unlikely to be due to the approximation

procedure of the analytical results. The agreement

between the predicted and observed diversities is

excellent for all values of s. In sum, the effects of

background selection on these aspects of the behaviour

of weakly selected, linked variants can be accurately

approximated as a change in N
e
, as in the case of

linked neutral variants (Charlesworth et al., 1993),

and for completely linked, weakly selected variants

(Charlesworth, 1994). As expected from the argument

in Section 4(ii), the total sojourn times are not well

predicted by substituting N
e
into the standard diffusion

equation formulae, as was previously found in the

neutral case (Charlesworth et al., 1993) (Fig. 4).

The results of the simulations which modelled

mutation–selection–drift equilibrium at both loci are

shown in Table 1. For rNt r&1, the average frequency

of the deleterious allele at the A locus is in close

agreement with the value expected from the deter-

ministic formula q¯ u}t (data not shown). Fur-

thermore, the observed variance in frequency of the

deleterious allele at the A locus is very close to that

expected from diffusion theory for rNt r&1. It is not

then surprising to find that the effect of background

selection on the average heterozygosity at the linked,

weakly selected locus (B) is in agreement with the

results shown previously, when rNt r&10 at the A

locus. That is, for the case of no recombination, the

effect of background selection on weakly selected

linked variants can be accurately modelled as a

change in N
e
. We expect that this should also apply

for recombination rates greater than zero. The

approximation does not hold only when rNt r¯ 2 at

the A locus.

The effect of background selection on the average

frequency of the preferred allele is also consistent with

the predictions of the above theory. For rNs r¯ 0 at

the weakly selected locus, background selection has

no effect on the average frequency (always 0±5). For

rNs r" 0 at locus B, there is a reduction in the average

frequency of the preferred allele when rNt r" 0 at the

A locus. This is in close agreement with the value

expected from the reversible mutation model of

selection and drift, using the predicted value of N
e
(Li,

1987; Bulmer, 1991). It is worth noting that the

predicted effect of a change in N
e
on heterozygosity is

of a greater relative magnitude than on the average

frequency of the favoured allele.

6. Discussion

The general conclusion from the results we have

presented is that background selection caused by a

single locus affects nucleotide site diversity and fixation

probabilities at linked sites subject to weak selection

as though effective population size is reduced by the

factor f of (23b). The same factor has been shown to

apply to nucleotide site diversity at neutral sites
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(Hudson & Kaplan, 1994, 1995; Nordborg et al.,

1996), and to the probability of fixation of a relatively

strongly selected favourable mutation (Barton, 1995).

Santiago & Caballero (1998) have pointed out,

however, that the formula for f is inexact for large r as

far as neutral diversity is concerned (the reduction

below 1 is underestimated by a factor of 2 for free

recombination). The discrepancy is, however, very

hard to detect in the case of background selection at

a single locus, where the reduction in N
e
is extremely

small for large recombination fractions. For this

reason, we have confined our simulations to re-

combination fractions of 10% or less.

The following heuristic argument suggests a reason

for the similarity between the neutral and weakly

selected cases. In general, under a diffusion model, the

effect of drift on the transition from one generation to

the next at a locus can be described completely by the

sampling variance of allele frequencies at this locus, in

the generation under consideration. As shown by

Ethier & Nagylaki (1980), weak selection of intensity

s at the locus perturbs the sampling variance from the

neutral value by a term of order s relative to its value

in the absence of such selection. Such a locus should

thus behave very similarly to a neutral one as far as

the sampling variance due to drift in any one

generation is concerned.

It is known that the effects of selection at linked loci

on the sampling variance experienced by alleles at a

given locus in an arbitrary generation can be described

by a sum of cumulative terms involving the effects on

this variance of the variance in fitness caused by

randomly generated associations with genotypes at

the selected locus or loci, over 1, 2, 3…generations

previously (Robertson, 1961 ; Santiago & Caballero,

1998). In the case of background selection due to a

single locus, the sum of these terms for a neutral locus

converges rapidly, to yield an asymptotic value for the

factor by which N
e
is reduced. This is identical to f in

(23b), provided that r is not too large. As shown by

Nordborg et al. (1996) and Santiago & Caballero

(1998), this asymptotic value is sufficient to provide an

accurate approximation for the neutral nucleotide site

diversity, which is primarily determined by variants

that have persisted for some time in the population.

The above argument on the effect of weak selection on

the sampling variance implies that this result should

also hold true as a good approximation for loci

subject to weak selection; i.e. their nucleotide site

diversity is determined by the standard formula for a

weakly selected locus (Kimura, 1983, p. 45), replacing

N by Nf.

It is not immediately obvious why this reduction in

N
e
should also apply to the probability of fixation of

a new weakly selected mutant allele, since the fate of

a rare variant is strongly affected by stochastic events

occurring in the first few generations after its origin.

But, as noted by Kimura (1983, p. 229), there is a

negligible effect of selection on a rare allele on its

distributional properties under drift, since the relevant

term is of the order of the product of selection

coefficient s and the allele frequency (see the first terms

in (1a) and (1b)). Thus, the effect of weak selection at

the B locus on the probability of fixation of a variant

at this locus will not become manifest for many

generations after its origin by mutation. Combining

this result with the argument used above implies that

the asymptotic value of N
e
derived for the neutral case

should apply as a good approximation for the fixation

probability of a weakly selected allele. It is remarkable

that the branching process analysis of Barton (1995)

for the case when Ns(1 also yields a similar result

(see (23c)).

If these heuristic arguments are correct, then it

should be possible to extrapolate the conclusions on

fixation probabilities and nucleotide diversities at

weakly selected sites to multiple loci contributing to

background selection, at least if their fitness effects

combine multiplicatively, by an extension of the

arguments of Nordborg et al. (1996) and Santiago &

Caballero (1998). It should thus be feasible to extend

analyses of the effects of regional differences in

recombination rate on nucleotide diversity at neutral

sites in the D. melanogaster genome (Hudson &

Kaplan, 1995; Charlesworth, 1996) to weakly selected

sites. In addition, it should also be possible to develop

quantitative predictions of the effect of background

selection on weak selection for preferred codons, by

including sites subject to both favourable and del-

eterious variants in the same model (cf. Li, 1987;

Bulmer, 1991). This will enable us to explore the

extent to which the observed relation between re-

combination and codon bias in D. melanogaster

(Kliman &Hey, 1993) can be explained by background

selection.

One caveat should be noted, however. The results

discussed here assume that simultaneous weak selec-

tion at multiple sites in the genome has no effects on

variation and evolution at individual sites, and that

departure from single-locus expectations is caused

solely by strong selection at loci linked to the sites in

question. But if linkage among weakly selected sites is

tight, the Hill–Robertson effect of mutual interference

among linked loci under selection (Hill & Robertson,

1966) will also reduce the efficacy of selection (Li,

1987). The likely magnitude of such effects requires

further study.

As discussed in Section 4(ii), and confirmed by

the simulation results displayed in Fig. 4, we do

not expect as large an effect of background selection

on the number of segregating sites in the population

as on the statistics already described. Santiago &

Caballero (1998) have described a method for

numerically determining the effect of background
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selection on the number of segregating sites for the

neutral case. This requires the use of a formula for the

probability that a neutral variant remains segregating

an arbitrary number of generations after its in-

troduction into the population (Voronka & Keller,

1975) as well as expressions for the effects of

background selection on the effective population sizes

at these times. It is possible to use Kimura’s (1955)

solution of the forward diffusion equation with genic

selection to obtain results for the probability of

segregation of a weakly selected variant, but we have

not pursued this approach. This is because the number

of segregating sites in a sample from a population is

much more closely related to the diversity per site than

to the number of segregating sites in the population,

since rare variants have a low probability of inclusion

in a sample. It is hard, therefore, to detect any effect

of background selection on the shape of the allele

frequency distribution in samples of reasonable size

(Hudson & Kaplan, 1995; Charlesworth et al., 1995).

It should be noted that the order in which the

deterministic and stochastic elements of the Ito

method were carried out had an important effect on

the fit between theory and simulation. The results

shown are for the case where the deterministic portion

is evaluated first, which gives excellent agreement with

the theory. This also holds for the purely neutral case.

When the stochastic element is evaluated first, there is

strong disagreement between theory and simulation,

particularly at high recombination fractions (where

the effect of background selection should be weakest).

Biologically, the procedure of carrying out the

deterministic changes first is more realistic, since it

assumes that the next generation of adults (with a

fixed finite population size) is formed by sampling

from an infinite pool of gametes, whose composition

is controlled by the effects of the deterministic forces

on the genotype of the adults of the previous

generation (Ethier & Nagylaki, 1980; Nagylaki, 1990).

Inspection of (1) suggest that the reason for this

discrepancy is the possibility of a significant effect of

the terms in x®y on the allele frequencies in the initial

generations after introduction of a variant, before

recombination has reduced the value of x®y. The

terms in question are likely to be small relative to the

stochastic changes in x or y if r is small (since q and t

are assumed to be small), but may be comparable to

the stochastic changes if r is large. For example, if a B

mutation is introduced initially into the a class, x¯ 0

and y¯1}(2Nq) in the first generation. Hence, the

deterministic changes in x and y are dominated by

r}(2N ) and p(r­t)}(2Nq), respectively. If random

sampling is applied after these deterministic changes,

the corresponding stochastic changes have standard

deviations of approximately r!±
&}(2N ) and 1}(2Nq).

These measure the expected magnitude of the stoch-

astic changes. If random sampling is applied before

the deterministic changes, the standard deviations are

0 and (approximately) 1}(2Nq), respectively. There is

thus a significantly larger probable stochastic effect on

x in the first case. A similar argument applies to the

stochastic effects on y when a B mutation is introduced

initially into the A class.

This raises the question of why the diffusion

equation approximations seem to work so well, since

formally they require the expected effects of the

deterministic forces to be sufficiently small that

second-order terms in them and their product with the

sampling variance in allele frequencies can be neglected

in comparison with first-order terms (Ewens, 1979,

chap. 4). Inspection of (1) indicates that, while this

condition can easily be met for the frequency x of B

among A chromosomes by making q sufficiently

small, this is not necessarily true for the frequency y of

B among a chromosomes. If r and t are sufficiently

small, this condition can be met for (1b) (assuming

that s is small), but it is not necessarily met if either of

these is large, unless rx®y r is small compared with y.

For recombination fractions of more than a few per

cent, the diffusion approximation is thus likely to be

inaccurate in the initial generations, before rx®y r is

reduced to a small value by recombination. For this

reason, caution should be exercised in using (22) for

situations in which r is more than a few per cent. The

practical effect of this is likely to be small, however,

since the effect of background selection with t values

of realistic magnitude decreased rapidly as r increases

(Figs. 1–3).

Appendix

(i) Deri�ation of equation (18)

We note that eL
"
τ(y®y(x))n®p

x
(y) is the solution of

the equation

¦
¦τ

f(y, τ)¯Lf(y, τ) (A 1)

with the initial condition

f(y, 0)¯ (y®y(x))n p
x
(y). (A 2)

Hence,

eL
"
τ(y®y(x))n p

x
(y)¯&"

!

dy« p(y, τ r y«, 0)

¬(y«®y(x))n p
x
(y«), (A 3)

and

D
n
(x)¯&

¢

!

dτ&"

!

dy« dy(y®y(x)) p(y, τ r y«,0)

¬(y«®y(x))n p
x
(y«). (A 4)
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The integral over y produces the trajectory of the

first moment. We obtain an appropriate expression by

integrating the ordinary differential equations cor-

responding to (1). These can be written as

d

dτ
(y®y(x))¯®(y®y(x))®

s

b
x(1®x)­

s

b
y(1®y).

(A 5)

Linearizing y(1®y) about y¯ y(x), taking the ex-

pectation, and using the formulae (A 7) and (A 8) for

the first and second stationary moments from Section

(ii) of the Appendix, we find for the time-dependent

first moment near the quasi-equilibrium y¯ y(x)

d

dτ
E(y®y(x)¯®01®

s

b
(1®2y(x))1

¬E(y®y(x))­O00sb1
#

,
s

b

1

β1. (A 6)

Integrating this ODE with the initial condition

y«®y(x), and carrying out the remaining integrations

in (A 4) leads to (18).

(ii) The stationary moments

The stationary moments can be computed by

linearizing the exponential function in (14) (because

α'1) and by repeatedly exploiting the well-known

property of the gamma function, Γ(z­1)¯ zΓ(z).

The resulting formulae are relatively simple, since β(
1 (or, equivalently, 2Nu(1) may be assumed for

most biological applications (Nordborg et al., 1996).

The lowest-order terms of the stationary moments are

E
ss
(y)¯ y(x)¯x­

s

b
x(1®x), (A 7)

E
ss
((y®y(x))#)¯

1

2β
x(1®x), (A 8)

E
ss
((y®y(x))$)¯

1

2β#

x(1®x)(1®2x), (A 9)

and

E
ss
((y®y(x))%)¯

3

4β#

x#(1®x)#. (A 10)
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