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Abstract

Domain adaptation is important in agriculture because agricultural systems have their own individual characteristics.
Applying the same treatment practices (e.g., fertilization) to different systems may not have the desired effect due to
those characteristics. Domain adaptation is also an inherent aspect of digital twins. In this work, we examine the
potential of transfer learning for domain adaptation in pasture digital twins. We use a synthetic dataset of grassland
pasture simulations to pretrain and fine-tune machine learning metamodels for nitrogen response rate prediction. We
investigate the outcome in locations with diverse climates, and examine the effect on the results of including more
weather and agricultural management practices data during the pretraining phase.We find that transfer learning seems
promising to make the models adapt to new conditions. Moreover, our experiments show that adding more weather
data on the pretraining phase has a small effect on fine-tuned model performance compared to adding more
management practices. This is an interesting finding that is worth further investigation in future studies.

Impact Statement

This paper discusses domain adaptation with transfer learning to transfer field-level pasture growing knowledge
between locations with diverse climates for nitrogen response rate prediction in the context of agricultural digital
twins.

1. Introduction

Decision support systems are widely used in agriculture to convert data to practical knowledge (Rinaldi
andHe, 2014; Zhai et al., 2020). A paradigm of decision support systems that has recently found its way to
agriculture is that of digital twins (Pylianidis et al., 2021). Digital twins are expected tomerge the physical
and virtual worlds by providing a holistic view of physical systems, through data integration, continuous
monitoring, and adaptation to local conditions. They have started gaining traction with data architectures
and applications for greenhouses (Howard et al., 2020; Ariesen-Verschuur et al., 2022), conceptual
frameworks for designing and developing them (Verdouw et al., 2021), and case studies in aquaponics
(Ghandar et al., 2021).
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A factor differentiating digital twins from existing systems is their ability to adapt to local conditions
(Blair, 2021). Following the digital twin paradigm, in contrast to generic models that apply global rules
across all systems, we can create a blueprint that contains a high-level view of how a system works. This
blueprint can then be instantiated as a digital twin in several systems, each with diverse local conditions,
and further adjust to them, as more local data and feedback accumulate. In agriculture, adaptation to local
conditions (or domain adaptation) is important because systems are affected bymultiple local factors, and
characterized by high uncertainty, also due to nature’s variability. Decisions have to account for the
variability in weather conditions, soil types, and agricultural management (i.e. fertilization, irrigation,
crop protection actions). Examples of failure to adapt include wrong estimations of yield (Parkes et al.,
2019), failure to detect plant drought stress (Schmitter et al., 2017), and expensive equipment that does not
work the way it is supposed to be (Gogoll et al., 2020).

A challenge to apply domain adaptation techniques in agricultural digital twins lies with data-related
issues. Process-based and machine learning (ML) models comprising the digital twins have difficulties
operating with missing data or available data that do not conform with model requirements. ML models
usually require large amounts of data to be trained, along with labels that are not readily available in
agriculture. Also, it is beneficial for them to have data that cover large variability of the original domain,
but usually the majority of the agricultural field observations are concentrated in a few locations with
similar weather and the same agricultural practices. On the other hand, process-basedmodels require their
inputs to be complete. However, agricultural data are often sparse and noisy. Also, process-based models
are typically numerical models that make predictions in small time intervals (from minutes to days). This
can also be a problem as the prediction horizon is also short, or when those inputs are from future states of
variables (e.g., weather and biophysical factors) and require additional tools to estimate them.

A workaround to data-related challenges is to use surrogate models, often also called metamodels.
Metamodels mimic the behavior of other (typically more complex) models (Blanning, 1975). ML
metamodels combine the advantages of ML models (learning patterns from data, operating with noisy
data) and process-basedmodels (operating based on first principles). Away to developMLmetamodels is
to applyML algorithms to the output of process-based model simulations. In this way, theML algorithms
can use a large corpus of synthetic data and, more importantly, extract the embedded domain knowledge
contained in them. This technique has been proven to work well for instilling domain knowledge of water
lake temperature to models (Karpatne et al., 2017) and working with data of different resolutions and
absence of future weather values in nitrogen response rate (NRR) prediction (Pylianidis et al., 2022).
However, the effectiveness of metamodels has not been investigated in conjunction with domain
adaptation techniques in the context of agricultural digital twins.

Domain adaptation can be achieved with techniques like data assimilation and transfer learning. Data
assimilation refers to the practice of calibrating a numericalmodel based onobservations. This technique has
been applied for grassland management digital twins (Purcell et al., 2022), and digital twins for adaption to
climate change (Bauer et al., 2021). Transfer learning refers to the utilization of knowledge obtained by
training for a task, to solve a different but similar task. To the best of our knowledge, domain adaptation
through transfer learning has not been thoroughly discussed in the context of digital twins for agriculture.An
application we found was for plant disease identification, where the authors used a pretrained version of
ImageNet and then continued training on a dataset containing images of diseased plants (Angin et al., 2020).
However, in other sectors,we find that transfer learning has been considered in several cases for digital twins
(Xu et al., 2019;Voogd et al., 2022; Zhou et al., 2022). Consequently, the applicability of transfer learning as
a domain adaptation practice has not been extensively examined for agricultural digital twins.

In this work, we explore the potential of transfer learning to be used for domain adaptation in digital
twins. To this end, we use a case study of digital twins predicting pasture NRR1 at farm level. We use a
synthetic dataset of grass pasture simulations and develop ML metamodels with transfer learning to
investigate their adaption to new conditions. Our main question is:

1Additional kg/ha of dry matter harvested per kg of nitrogen fertilizer applied.
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• Q: How well can we transfer field-level knowledge from one location to another using transfer
learning?

To answer this question, we examine it from different angles and form the following subquestions:

• Q1: How domain adaptation with transfer learning is affected by including more variability in
agricultural management practices?

• Q2: How domain adaptation with transfer learning is affected by including more variability in
weather data?

• Q3: Howwell does domain adaptation with transfer learning performwhen applied to locations with
different climate from the original one?

2. Methodology

2.1. Overview

To assess how well we can transfer field-level knowledge from one farm to another, we performed a case
study of grass pasture NRR prediction in different locations across New Zealand. We have a dataset of
pasture growth simulations based on historical weather data from sites with different climates (Figure 1),
soil types, and fertilization treatments. Based on these data, we pretrained ML metamodels in an origin

Figure 1. The sites contained in our dataset. With the brown color is the site in the origin climate (Marton,
climate 1), and with the blue the sites in the target climates (Kokatahi and Lincoln, climates 2 and 3,
respectively).
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location and fine-tuned them in a target location to predict NRR and see how tuning affects model
performance in both pretraining and fine-tuning test sets.

To obtain more dependable results, we pretrained in an origin climate and fine-tuned in two target
climates that differ from each other. Also, we experimented with the amount of weather data included in
the models as well as the number of soil types and fertilization levels. We created different setups and
examined their results across several years, and for multiple runs using different seeds.

2.2. Data generation

The simulations comprising our dataset were generated with APSIM (Holzworth et al., 2014) using the
AgPasture module (Li et al., 2011). This module has been proven to be an accurate estimator of pasture
growth in New Zealand (Cichota et al., 2013, 2018). The simulation parameters covered conditions that
are known to affect pasture growth. The full factorial (Antony, 2014) of those parameters was created and
given as input to APSIM. The range of the parameters is shown in Table 1.

2.3. Case study

In our experiments, we considered only the simulationswhere no irrigationwas applied because this scenario
is closer to the actual pasture growing conditions in New Zealand. Additionally, we only considered the
autumn (March, April, andMay) and spring (September, October, and November) months because these are
the months in which agricultural practitioners are most interested in deciding how much fertilizer to apply.

To derive the NRR from the growth simulations, we calculated the additional amount of pasture dry
matter harvested in the 2 months after fertilizer application per kg of nitrogen fertilizer applied.

Regarding the prediction scenario, we assumed to have weather and biophysical data only 4 weeks
prior to the prediction date since pasture is supposed to not have memory beyond that point. Also,
from the prediction date until the harvest date (2 months later), we assumed that no data were
available.

2.4. Experimental setup

Throughout the setup, we create two types of models. The first type is trained on the data of the original
location, and we call it “origin model.” The second type is fine-tuned with the data of the target location, by
using the originmodel as a basis, andwe call it “targetmodel.”We train differentmodels using various setups
which help us answer the sub-questions q1–q3. To answer q1, we considered two setups where variability
comes from the number of agricultural management conditions included in the pretraining datasets:

• one type of soil and two types of fertilization treatments;
• three types of soil and five types of fertilization treatments.

Table 1. The full factorial of the presented parameters was used to generate simulations with APSIM

Parameter Range

Weather Daily weather from eight sites
Soil water capacity 42, 67, 110, and 177 mm of plant-available water
Soil fertility 2, 4, and 6% of carbon concentration
Irrigation Irrigated, nonirrigated
Fertilization year 1979–2018
Fertilization month January–December
Fertilization day 5th, 15th, and 25th of the month
Fertilizer amount 0, 20, 40, 60, 80, and 100 kg N/ha
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To answer q2, we considered two setups where the digital twin blueprint contains training data from:

• 10 years of historical weather;
• 20 years of historical weather.

Consequently, for q1 and q2, there are four setups namely:

• low weather and agromanagement variabilities (s1);
• high weather variability, low agromanagement variability (s2);
• low weather variability, high agromanagement variability (s3);
• high weather and agromanagement variabilities (s4)

containing varying amounts of training data based on soil type, fertilization treatment, and the number of
historical weather years. The details for each setup can be seen in (Figure A3). To answer q3, we
considered three locations from our dataset with diverse climates. The origin location (location 1) where
pretraining takes place, and two target locations. The target locations were selected based on the climate
similarity indexCCAFS (Ramirez-Villegas et al., 2011) to be dissimilar with the origin location to varying
degrees (see Figure A1). Also, weather factors that are known to affect pasture growth were considered,
namely precipitation and temperature. Location 2 is characterized by more frequent rainfall and lower
temperatures than the origin location 1, and location 3 is characterized by less frequent rainfall and awider
range of temperatures than location 1. The respective plots can be seen in Figure A2.

Finally, we took measures to make the results more dependable. To alleviate the effect of imbalanced
sets due to anomalous weather, we examined how transfer learning works across several years by sliding
the corresponding training/validation/test sets across 5 years. Also, to see how robust themodels were, we
trained each one of them five times with different seeds in each setup and sliding year.

2.5. Data processing

The APSIM synthetic dataset was further processed to form a regression problem whose inputs were
weather and biophysical variables as well as management practices. Initially, the NRR was calculated at
2 months after fertilization. Then, data were filtered to contain only simulations for the nonirrigated case.
After that, only daily weather data in a window of 4 weeks prior to the prediction date were retained.
Weather data between the prediction and target dates were also discarded because such data would be
unavailable under operational conditions. Next, simulations with NRR less than 2 were removed as they
were attributed to rare extremeweather phenomena that were not relevant tomodel for this study. From the
remaining data, only the daily weather variables regarding precipitation, solar radiation, and minimum
and maximum temperatures were preserved. From the biophysical outputs of APSIM only above ground
pasture mass, herbage nitrogen concentration in dry matter, net increase in herbage above-ground dry
matter, potential growth if there was no water and no nitrogen limitation soil, and temperature at 50 cm
were preserved because they were considered likely drivers of yield (and known prior to the prediction
date) based on expert knowledge. Additionally, from the simulation parameters, only soil fertility, soil
water capacity, fertilizer amount, and fertilization month were retained to be put to the models as inputs.
The data were then split into training/validation/test sets according to the experimental setup. Z-score
normalization followed, with each test set being standardized with the scaler of the corresponding training
set. The fertilization month column was transformed into a sine/cosine representation.

2.6. Neural network architecture

The selected architecture was a dual-head autoencoder, which proved to be accurate for NRR prediction
tasks in another study (Pylianidis et al., 2022). The architecture consisted of an autoencoder with LSTM
layers whose purpose is to learn to condense the input weather and biophysical time series, and a
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regression head with linear layers whose task is to predict the NRR (Figure 2). The combined loss is
derived by summing the reconstruction loss and the NRR prediction loss.

The hyperparameters of the originmodel were selected based on a preliminary study andwere the same
across all setups and years. For the target model, hyperparameter tuning was performed with gridsearch
for each setup, year, and seed. The hyperparameters of the originmodels and the search space for the target
models can be seen in Tables A1 and A2.

For the part of tuning the network in different climates, no layer was frozen.

2.7. Evaluation

Pretrained and target models were evaluated on the test set of the origin location as well as the target
location. This was done to examine how well they absorbed new information and how fast they were
forgetting old information. The difference in performance between the origin and target models was
measured withR2.R2 was reported as an average across the five seeds, for each setup, and each year. Also,
the standard deviations of R2 between the seeds were examined to see how stable the performance is
across the runs.

3. Results

For both target locations, we observe that fine-tuning increased the average R2 across the runs on the
target location test set for most setups. For s1 and s2, this behavior was consistent in both location
2 (Figure 3) and location 3 (Figure 4). For s3, tuning offered marginal improvements in both locations. In
the case of s4, the results varied between the locations, as in location 2, there was no improvement and
even degradation in years 2004–2005 (Figure 3d), and in location 3minor improvements (Figure 4d). The
standard deviations of the target models on the target location test sets were within the [0.01, 0.08] range
(Figures A4 and A5).

Tuning also increased the average R2 on the origin location test set for s1 (Figure 3a,b) and s2
(Figure 4a,b). However, on s3 and s4, the performance remained stable or deteriorated depending on
the year. The standard deviations of the target models on the origin location test sets were within the

Figure 2. The autoencoder architecture used to pretrain and fine-tune themodels. The numbers on the top
and bottom of the architecture indicate the number of features in the input/output of each component. The
inputs to the encoder were nine time-series variables. The compressed representation of those time-series
(output of LSTM 2) along with five scalars were concatenated and directed to a multi-layer perceptron.
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(a) Setup s1: Low weather and
agromanagement variabilities

(b) Setup s2: High weather variability,
low agromanagement variability

(c) Setup s3: Low weather variability,
high agromanagement variability

(d) Setup s4: High weather and agromanagement
variabilities

Figure 3.R2 for the setups of the origin models (climate 1), and target models in climate 2. The results are
presented as averages across the five seeds for each setup and year. On Figure 3a, the brown and blue
colors indicate which training, validation and test set correspond to each experiment due to the sliding
years. Same colors represent sets of the same experiment. For example, with the brown color the training
set of the origin model included years 1992–2001, validation set 2002–2003, and both test sets years
2004–2005. On the experiment with the blue color the training set included years 1993–2002, validation
2003–2004, and both test sets 2005–2006. The leftmost cell of the results is colored (green, yellow, pink)
as the corresponding set is colored, and has a width equal to the amount of training years included in
it. For the other four sliding years, only the last year of each set is shown with gray color.

(a) Setup s1: Low weather and
agromanagement variabilities

(b) Setup s2: High weather variability,
low agromanagement variability

(c) Setup s3: Low weather variability,
high agromanagement variability

(d) Setup s4: High weather and
agromanagement variabilities

Figure 4. Average R2 for the various setups of the origin models (climate 1), and target models in climate
3. The figures should be read following the pattern of Figure 3a.
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[0.01, 0.3] range. The standard deviation of the target models on the pretraining test sets for s1 and s2
were within the range [0.03, 0.32], and for s3 and s4 [0.02, 0.19].

Another observation is that the R2 of the origin model on s1 was negative in both locations for all years
(Figures 3a, 4a). The corresponding standard deviations were also high as shown in Figures A4a, A5a.

A remark is also the high volatility of R2 depending on the year, of both origin and target models in the
origin and target locations test sets. Performance becomes more stable as more weather and agromanage-
ment variability are added (e.g., s1–s2, s1–s3) but there were years like 2004–2005 in location 2, 2008–
2009 on location 3 where R2 dropped substantially. The standard deviations (Figures A4 and A5) also
became lower across the years as more agromanagement variability was added.

One more finding is that adding more weather variability while keeping the agromanagement
practices unchanged had a negligible (positive) effect on the performance of the target models. This
pattern can be observed for both locations when transitioning from s1 to s2 (e.g., Figure 3a,b), and from
s3 to s4 throughout the years (e.g., Figure 3c,d). Also, in those scenarios, the standard deviations of the
target models on the pretraining test sets did not decrease when extra weather variability was added. On
the other hand, increasing themanagement practices while keeping the sameweather variability seemed
to increase the R2 of both models in both test sets. This can be seen when transitioning from s1 to s3
(e.g., Figure 4a–c), and from s2 to s4 (e.g., Figure 4b–d).

4. Discussion

Starting with some general remarks about model performance, for transfer learning tasks there is usually a
model that works well which then undergoes further training. Here, the first impression is that the
performance of the origin model on s1 and s2 is inadequate. This is potentially due to the selected
architecture and the way training was performed. In those setups, the samples were too few
(see Figure A3), and the architecture had a lot of weights. As a result, the network may not have been
able to extract meaningful features in those cases. Also, the performance increase on the pretraining test
set after tuning may indicate that extra information is included in the tuning training data, but it could also
mean that the worse performance was due to training for too few epochs.

Another remark is that the target models achieve considerably higher R2 on location 2 than on location
3. This behavior could be attributed to the weather conditions of each location. Location 2 is characterized
by more precipitation, reducing in this way the uncertainty of having less water during the period of
60 days that for which we assume that no weather data are available from the prediction to the target date.
As a result, the NRR values concentrate on a narrower range, and models have an easier task explaining
variance.

Regarding fine-tuning, it seems tomake the models able to generalize better in the target locations than
the models which have not seen this extra information before. Especially for setups s1 and s2, the results
indicate that transfer learning adds value when the available soil, and fertilization management data are
limited in quantity. This statement is supported by the consistency of the results which come from several
years, and two diverse locations, suggesting that this behavior is not year or location dependent. For the
same setups, the decrease in the standard deviation after fine-tuning strengthens the claim that the
improved performance is not a coincidence.

On the contrary, when there is sufficient variability in the soil and fertilization management practices,
the role of fine-tuning becomes ambiguous. It may seem that transfer learning increases the generalization
capacity of the models for most of s3 and s4 cases, even though improvements are marginal. However,
these improvements are so small that they get counteracted by the standard deviation of the successive
runs. Also, depending on the year (e.g., 2004–2005 for location 2) fine-tuning may be harmful as it
decreases R2 further than the standard deviation of the five runs. Performing more runs with different
seeds or testing in different years could potentially yield different results than those observed. Conse-
quently, we cannot assess the merits of fine-tuning in those cases.

Moving on to the effect of adding more weather variability in the origin models, we saw that the
differences in performance were small. This pattern was observed for both target locations, and the
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reasons behind its appearance may vary. We could presume that adding weather variability does not help
the models enough to extract information relevant to NRR prediction. This could be the case if in those
extra years the weather was very different from the weather of the target locations. Another case would be
that since we have a gap of 60 days between the prediction and target dates, and assuming the absence of
extreme phenomena, the weather is more loosely connected to the NRR prediction than other factors like
soil type and fertilization practices.

Amore apparent reason for the effect of adding more weather variability is that we potentially observe
the effect of increasingly higher sample sizes. In Figure A3, we see the number of samples in each setup.
Adding more weather data (s1–s2, or s3–s4) doubles the samples included in the pretraining data.
However, with the current experimental setup, adding soil types and fertilization treatments (s1–s3, or
s2–s4) increases the number of samples by a much higher degree. Therefore, adding more weather
variability to the pretraining sets has little (but positive) effect on the model test sets, which seems small
compared to adding more soil types and fertilization treatments because with the latter we have many
more samples. The increase of R2 of the target models on the pretraining test sets seems to support this
argument. Addingmoreweather data to amodel from a target location could help explain the variability in
that location. However, herewe see that it also helps to explain variance in the original location, prompting
that this increase is not due to the so different conditions supposedly existing on the new data but just an
increased sample size. For this reason, this phenomenon is more evidently expressed at s1 and s2 where
sample sizes are lower.

5. Limitations

There are cases where it is unclear if the improvement in R2 on the tuning location test set comes from
adding sampleswith information about local conditions or from just the continuation of trainingwith extra
samples. To be able to better deduct those cases the set sizes should be equal between the different setups
s1–s4. The challenge there would be to create representative sets for all setups, sliding years, and target
locations.

Another limitation is that we used the same neural network architecture for all the setups. This
architecture has many weights that need to be calibrated and in setups with fewer samples, it may not be
appropriate to use. A simpler architecture might have given different results.

With the provided experimental setup, we created two types of models, the “pretrained” (origin) and
“fine-tuned” (target). The origin models contained an increasing number of samples from the origin
location based on the setup, and the fine-tuned a fixed number of samples from the target location.
However, we did not include in the study the results of models trained only on the data from the target
location. Preliminary tests with the chosen architecture showed that such models had negative R2 in all
setups and high standard deviations, so they were omitted. A more thorough investigation would include
such models with simpler architectures, or different algorithms with features aggregated on a weekly/
biweekly basis to decrease the number of parameters that have to be calibrated.

In regards to the data splits, in a more practical application the test set years would be closer to the
training set years. With the current setup, the training and test sets are 2 or 3 years apart. With such gaps,
the weather may change substantially leading to nonrepresentative sets. An alternative setup would be to
have these years closer and maybe remove the validation set and perform a k-fold cross validation for
hyperparameter tuning instead.

6. Conclusion

In this work, we examined the application of transfer learning as a way to make field-level pasture digital
twins adapt to local conditions. We employed a case study of pasture NRR prediction, and investigated
factors that affect the efficiency of the adaptation procedure. Different setups had varying outcomes but
generally transfer learning seems to provide a promising way for digital twins to learn the idiosyncrasies
of different locations.
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Revisiting q1, based on our experiments variability in soil type and fertilization treatment seemed to
help the models explain a large fraction of variance in the target locations. Therefore, for field-deployed
applications, practitioners could try to gather as much data as possible with this kind of variability or
generate them. On the other hand, for q2we found that the addition of extra weather variability had a small
impact on model performance. Thus, adding more variability in soil and agricultural management
practices should be of higher priority. In both cases, more work is needed to verify the degree to which
large sample sizes start to affect the results. Regarding q3, transfer learning appears to work for diverse
climates with performance differences depending on the prevailing local conditions. Again, more work is
needed to test its efficiency in climates that are even more diverse and characterized by more extreme
phenomena.

Finally, to answer ourmain question, the above are evidence that we can transfer field-level knowledge
to a degree that models can explain an adequate portion of variance in the target locations. In this respect,
transfer learning has the potential for making digital twins adapt to different conditions by working in
different climates, and with different types of variability. Practitioners could create blueprints of digital
twins with origin models and then adapt to different locations by instantiating them there preferably with
samples that contain varied soil types and fertilization treatments.
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A. Appendix

A.1. Climate similarity

A.2. Experimental setup simulation parameters and amount of samples

Figure A1.CCAFS similarity index across New Zealand. The weather parameters for the similarity were
precipitation and average temperature. Location 1 (Marton) is colored in brown, and locations
2 (Kokatahi) and 3 (Lincoln) in blue. The darker the color on the map, the more similar the climate is
to location 1. Location 2 had index value 0.354, and location 3 0.523.

FigureA2.Weather parameters known to affect pasture growth for the climates included in this study. The
parameters are presented across the months and are aggregated over the years.
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A.3. Model hyperparameters

Figure A3. Number of parameters and total samples used in each training/validation/test set of each
setup.

Table A1. The fixed hyperparameters of the origin models

Hyperparameter Value

Learning rate 4 × 10�5

Batch size 64
Epochs 60

Table A2. The search space for the hyperparameters of the target models

Hyperparameter Values

Learning rate [4 × 10�5, 10�4]
Batch size [2, 74]
Epochs [7, 15, 30]

Environmental Data Science e8-13

https://doi.org/10.1017/eds.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.6


A.4. Results—standard deviations

Cite this article: Pylianidis C, Kallenberg MGJ and Athanasiadis IN (2024). Domain adaptation with transfer learning for
pasture digital twins. Environmental Data Science, 3: e8. doi:10.1017/eds.2024.6

(a) Setup s1: Low weather and
agromanagement variabilities

(b) Setup s2: High weather variability,
low agromanagement variability

(c) Setup s3: Low weather variability,
high agromanagement variability

(d) Setup s4: High weather and
agromanagement variabilities

Figure A4. Standard deviations of the various setups for origin models (climate 1), and target models in
climate 2.

(a) Setup s1: Low weather and
agromanagement variabilities

(b) Setup s2: High weather variability,
low agromanagement variability

(c) Setup s3: Low weather variability,
high agromanagement variability

(d) Setup s4: High weather and
agromanagement variabilities

Figure A5. Standard deviations of the various setups for the origin models climate 1, and target models in
climate 2.
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