THE COMMUTATOR SUBGROUP AND SCHUR MULTIPLIER OF A PAIR OF FINITE \boldsymbol{p}-GROUPS

ALI REZA SALEMKAR, MOHAMMAD REZA R. MOGHADDAM ${ }^{\sim}$ and FARSHID SAEEDI

(Received 1 August 2004; revised 5 February 2005)

Communicated by E. A. O'Brien

Abstract

Let (M, G) be a pair of groups, in which M is a normal subgroup of G such that G / M and $M / Z(M, G)$ are of orders p^{m} and p^{n}, respectively. In 1998, Ellis proved that the commutator subgroup $[M, G]$ has order at most $p^{n(n+2 m-1) / 2}$.

In the present paper by assuming $\|M, G\|=p^{n(n+2 m-1) / 2}$, we determine the pair (M, G). An upper bound is obtained for the Schur multiplier of the pair (M, G), which generalizes the work of Green (1956).

2000 Mathematics subject classification: primary 20E10, 20E34, 20 E 36.
Keywords and phrases: pair of groups, Schur multiplier, relative central extension, covering pair, extraspecial pair.

1. Introduction

Let (M, G) be a pair of groups such that M is a normal subgroup of G and N any other group. We recall from [5] that a relative central extension of the pair (M, G) is a group homomorphism $\sigma: N \rightarrow G$, together with an action of G on N (denoted by n^{g}, for all $n \in N$ and $g \in G$), such that the following conditions are satisfied:
(i) $\sigma(N)=M$;
(ii) $\sigma\left(n^{g}\right)=g^{-1} \sigma(n) g$, for all $g \in G$ and $n \in N$;
(iii) $n^{\sigma\left(n_{1}\right)}=n_{1}^{-1} n n_{1}$, for all $n, n_{1} \in N$;
(iv) G acts trivially on ker σ.

Taking $N=M$, clearly the inclusion map $i: M \rightarrow G$, acting by conjugation, is a simple example of a relative central extension of the pair (M, G).
(C) 2006 Australian Mathematical Society $1446-7887 / 06 \$$ A $2.00+0.00$

Now for the given relative central extension σ, we define G-commutator and G central subgroups of N, respectively, as follows

$$
\begin{aligned}
{[N, G] } & =\left\langle[n, g]=n^{-1} n^{g} \mid n \in N, g \in G\right\rangle, \\
Z(N, G) & =\left\{n \in N \mid n^{g}=n, \text { for all } g \in G\right\} .
\end{aligned}
$$

In special case $\sigma=i,[M, G]$ and $Z(M, G)$ are the commutator subgroup and the centralizer of G in M, respectively. In this case, we define $Z_{2}(M, G)$ to be the preimage in M of $Z(M / Z(M, G), G / Z(M, G))$, or

$$
\frac{Z_{2}(M, G)}{Z(M, G)}=Z\left(\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right),
$$

and inductively obtain the upper central series of the pair (M, G).
The pair (M, G) is said to be capable if it admits a relative central extension σ such that $\operatorname{ker} \sigma=Z(N, G)$ (see also [2]). One can easily see that this gives the usual notion of a capable group G [2], when the pair (G, G) is capable in the above sense.

We call a pair of finite p-groups (M, G) an extra-special, when $Z(M, G)$ and [M, G] are the same subgroups of order p.

Ellis [3] defined the Schur multiplier of the pair (M, G) to be the abelian group $\mathscr{M}(M, G)$ appearing in the following natural exact sequence

$$
\begin{aligned}
H_{3}(G) & \rightarrow H_{3}(G / M) \rightarrow \mathscr{M}(M, G) \rightarrow \mathscr{M}(G) \xrightarrow{\mu} \mathscr{M}(G / M) \\
& \rightarrow M /[M, G] \rightarrow(G)^{a b} \rightarrow(G / M)^{a b} \rightarrow 0,
\end{aligned}
$$

in which $\mathscr{M}(\cdot, \cdot)$ and $H_{3}(\cdot)$ are the Schur multiplier and the third homology of a group with integer coefficients, respectively. He also proved that if the factor groups G / M and $M / Z(M, G)$ are both finite of orders p^{m} and p^{n}, respectively, then the commutator subgroup $[M, G]$ is of order at most $p^{n(n+2 m-1) / 2}$. In this situation, the result of Wiegold in [8] is obtained, when $m=0$. Now by the above discussion we state our first result, which generalizes the work of Berkovich [1].

Theorem A. Let (M, G) be a pair of finite p-groups with G / M and $M / Z(M, G)$ of orders p^{m} and p^{n}, respectively. If $|[M, G]|=p^{n(n+2 m-1) / 2}$, then either $M / Z(M, G)$ is an elementary abelian p-group or the pair $(M / Z(M, G), G / Z(M, G))$ is an extraspecial pair of finite p-groups.

Green, in [4], shows that if G is a group of order p^{n}, then its Schur multiplier is of order at most $p^{n(n-1) / 2}$. The following theorem gives a similar result for the Schur multiplier of a pair of finite p-groups. Also, under some conditions we characterize the groups G, when the order of $\mathscr{M}(M, G)$ is either $p^{n(n+2 m-1) / 2}$ or $p^{n(n+2 m-1) / 2-1}$.

THEOREM B. Let (M, G) be a pair of finite p-groups and N be the complement of M in G. Assume M and N are of orders p^{n} and p^{m}, respectively, then the following statements hold:
(i) $|\mathscr{M}(M, G)| \leq p^{n(n+2 m-1) / 2}$;
(ii) if G is abelian, N is elementary abelian, and $|\mathscr{M}(M, G)|=p^{n(n+2 m-1) / 2}$, then G is elementary abelian;
(iii) if the pair (M, G) is non-capable, and $|\mathscr{M}(M, G)|=p^{n(n+2 m-1) / 2-1}$, then $G \cong \mathbb{Z}_{p^{2}}$.

2. Proof of theorems

Let (M, G) be a pair of finite p-groups with $|G / M|=p^{m}$ and $|M / Z(M, G)|=p^{n}$. It is easily seen that for any element $z \in Z_{2}(M, G) \backslash Z(M, G)$, the commutator $\operatorname{map} \varphi: G \rightarrow[G, z]$ given by $\varphi(x)=[x, z]$ is an epimorphism. We note that $\operatorname{Im} \varphi \leq[M, G] \cap Z(M, G)$ and $Z(M, G) \leq \operatorname{ker} \varphi=C_{G}(z)$. Clearly $[M, G] \leq C_{G}(z)$, as $[G, z] \cong G / C_{G}(z)$. Consider two non-negative integers $\mu(z)$ and $v(z)$ such that

$$
p^{\mu(z)}=|[G, z]|, \quad p^{\nu(z)}=\left|\frac{G /[G, z]}{Z(M /[G, z], G /[G, z])}\right|
$$

Since $\operatorname{ker} \varphi=C_{G}(z) \supseteq\langle z, Z(M, G)\rangle \supset Z(M, G)$ and

$$
z[G, z] \in Z(M /[G, z], G /[G, z])
$$

it follows that

$$
\begin{equation*}
\mu(z) \leq m+n-1 \quad \text { and } \quad v(z) \leq m+n-1 . \tag{1}
\end{equation*}
$$

The following lemma shortens the proof of Theorem A.
LEMMA 2.1. (a) Under the above assumptions and notation,

$$
|[M, G]| \leq p^{\{V(z)(v(z)-1)-m(m-1) \mid / 2+\mu(z)} \leq p^{n(n+2 m-1) / 2},
$$

for all $z \in Z_{2}(M, G) \backslash Z(M, G)$.
(b) Suppose for some non-negative integer $s,|[M, G]|=p^{n(n+2 m-1) / 2-s}$, then the following hold:
(i) $|[M / Z(M, G), G / Z(M, G)]| \leq p^{s+1}$. If $|[M / Z(M, G), G / Z(M, G)]|=$ p^{s+1-k}, for some $0 \leq k \leq s+1$, then $\exp \left(Z_{2}(M, G) / Z(M, G)\right) \leq p^{k+1}$ and $\mu(z) \leq$ $m+n-1-s+k$.
(ii) If $\exp \left(Z_{2}(M, G) / Z(M, G)\right) \geq p^{k}$, then $m+n \leq s /(k-1)+k / 2$.

Proof. (a) Clearly $|G / Z(M, G)|=p^{n+m}$. By [9, Lemma 1], the inequality holds for $m=0$ and $n \geq 1$. The case $m=1$ and $n=0$ is impossible, and hence one may assume that $n+m>1$ and $m \neq 0$. Clearly for each $z \in Z_{2}(M, G) \backslash Z(M, G)$, it implies that $1<|[G, z]| \leq|[M, G]|$, so using induction on $m+n$, we obtain

$$
\left|\left[\frac{M}{[G, z]}, \frac{G}{[G, z]}\right]\right|=\left|\frac{[M, G]}{[G, z]}\right| \leq p^{(\nu(())(\nu(z)-1)-m(m-1) / 2} .
$$

Thus

$$
\begin{aligned}
|[M, G]|=\left|\frac{[M, G]}{[G, z]}\right||[G, z]| & \leq p^{\mid v(z)(\nu(z)-1)-m(m-1\} / 2+\mu(z)} \\
& \leq p^{\{(m+n-1)(m+n-2)-m(m-1) \mid / 2+(m+n-1)} \\
& =p^{n(n+2 m-1) / 2}
\end{aligned}
$$

(b) By the assumptions and part (a), we have

$$
\begin{aligned}
p^{n(n+2 m-1) / 2-s} & \leq p^{|\nu(z)(\nu(z)-1)-m(m-1)| / 2+\mu(z)} \\
& \leq p^{\{(m+n-1)(m+n-2)-m(m-1) \mid / 2+\mu(z)},
\end{aligned}
$$

and so $\mu(z) \geq m+n-1-s$. Now, since $[M, G] Z(M, G)$ is a subgroup of $C_{G}(z)$, it implies that

$$
[G:[M, G] Z(M, G)] \geq\left[G: C_{G}(z)\right]=p^{\mu(z)} \geq p^{m+n-1-s}
$$

The last inequality implies that

$$
\left|\left[\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right]\right| \leq \frac{|G / Z(M, G)|}{p^{m+n-1-s}}=p^{s+1}
$$

Now, assuming that $\mid\left[M / Z(M, G), G / Z(M, G) \mid=p^{s+1-k}\right.$, for some non-negative integer k, then

$$
\begin{aligned}
p^{\mu(z)} & \leq[G:[M, G] Z(M, G)] \\
& =\left[\frac{G}{Z(M, G)}:\left[\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right]\right]=p^{m+n-1-s+k},
\end{aligned}
$$

and hence $\mu(z) \leq m+n-1-s+k$.
If $\exp \left(Z_{2}(M, G) / Z(M, G)\right)>p^{k+1}$, then there exists some $z \in Z_{2}(M, G)$ such that $z^{p^{k+1}} \notin Z(M, G)$. Thus

$$
z[G, z] \in Z\left(\frac{M}{[G, z]}, \frac{G}{[G, z]}\right) \backslash \frac{Z(M, G)}{[G, z]}
$$

which implies that

$$
\left[Z\left(\frac{M}{[G, z]}, \frac{G}{[G, z]}\right): \frac{Z(M, G)}{[G, z]}\right] \geq p^{k+2}
$$

Hence

$$
p^{\mathrm{v}(z)}=\frac{[G /[G, z]: Z(M, G) /[G, z]]}{[Z(M /[G, z], G /[G, z]): Z(M, G) /[G, z]]} \leq \frac{p^{m+n}}{p^{k+2}}=p^{m+n-k-2}
$$

and so $v(z) \leq m+n-k-2$. Hence using the hypothesis and part (a) we must have

$$
\begin{aligned}
n(n+2 m-1) / 2-s \leq & {[(m+n-k-2)(m+n-k-3)-m(m-1)] / 2 } \\
& +m+n-s-1+k
\end{aligned}
$$

or

$$
2(k+1)(m+n) \leq k^{2}+7 k+4
$$

Therefore we have $m+n \leq k+2$ and so

$$
p^{k+2} \leq \exp \left(\frac{Z_{2}(M, G)}{Z(M, G)}\right) \leq\left|\frac{M}{Z(M, G)}\right| \leq\left|\frac{G}{Z(M, G)}\right| \leq p^{m+n} \leq p^{k+2}
$$

This gives $M=G$, which is a contradiction and proves (i).
Now, to prove (ii) we use the assumption that there exists $z \in Z_{2}(M, G) \backslash Z(M, G)$ such that $|z Z(M, G)| \geq p^{k}$. Then $\left|C_{G}(z)\right| \geq|\langle z, Z(M, G)\rangle| \geq p^{k}|Z(M, G)|$, and hence $|\{G, z]| \leq p^{m+n-k}$ which implies $\mu(z) \leq m+n-k$. With a similar argument to (i), we obtain $v(z) \leq m+n-k$. By part (a) we have

$$
\begin{aligned}
n(n+2 m-1) / 2-s \leq & {[(m+n-k)(m+n-k-1)-m(m-1)] / 2 } \\
& +m+n-k,
\end{aligned}
$$

and so $m+n \leq s /(k-1)+k / 2$.
Now we are ready to prove Theorem A.
Proof of Theorem A. By applying Lemma 2.1 (b) in the case $s=0$, we have

$$
\left|\left[\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right]\right| \leq p
$$

Now consider two cases:
First assume $M / Z(M, G)=Z(M / Z(M, G), G / Z(M, G))$. Then $M / Z(M, G)$ is abelian and by Lemma 2.1 (a), $\exp (M / Z(M, G)) \leq p^{2}$. If the latter exponent is p^{2},
then by Lemma 2.1 (b), $m+n \leq 1$ in which case $M / Z(M, G)$ is of order at most p. When the exponent is p, then the factor group is elementary abelian p-group.

In the second case, assume

$$
Z\left(\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right) \subset \frac{M}{Z(M, G)}
$$

Then by Lemma 2.1 (b),

$$
\exp \left(Z_{2}(M, G) / Z(M, G)\right)=p
$$

Let $Z_{2}(M, G) / Z(M, G)$ have two distinct subgroups of orders p. Then there exist elements $y_{0}, z_{0} \in Z_{2}(M, G) \backslash Z(M, G)$ such that

$$
\left|\left\langle y_{0} Z(M, G)\right\rangle\right|=\left|\left\langle z_{0} Z(M, G)\right\rangle\right|=p
$$

and

$$
\left\langle y_{0} Z(M, G)\right\rangle \cap\left\langle z_{0} Z(M, G)\right\rangle=\langle Z(M, G)\rangle .
$$

By Lemma 2.1 (b), for each $x_{0} \in Z_{2}(M, G) \backslash Z(M, G)$, we have $\mu\left(x_{0}\right)=m+n-1$. Hence $G / C_{G}\left(y_{0}\right)$ and $G / C_{G}\left(z_{0}\right)$ are abelian groups of orders p^{m+n-1}, and so

$$
[M, G] \leq C_{G}\left(y_{0}\right) \cap C_{G}\left(z_{0}\right)=Z(M, G)
$$

which implies that

$$
\left|\left[\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right]\right|=1
$$

This is a contradiction and hence $Z_{2}(M, G) / Z(M, G)$ is an abelain group of order p. On the other hand, $[M / Z(M, G), G / Z(M, G)]$ is a subgroup of $Z_{2}(M, G) / Z(M, G)$ of order p, and so we must have

$$
\frac{Z_{2}(M, G)}{Z(M, G)}=\left[\frac{M}{Z(M, G)}, \frac{G}{Z(M, G)}\right]
$$

Thus $(M / Z(M, G), G / Z(M, G))$ is an extra-special pair of p-groups.
Using Theorem A, we obtain the following corollary which is of interest in its own right.

COROLLARY 2.2. Let (M, G) be a pair of finite p-groups with $|G / M|=p^{m}$, $|M / Z(M, G)|=p^{n}$, and $|[M, G]|=p^{n(n+2 m-1) / 2-s}$ for some $s \geq 0$. If there is a $z_{0} \in Z_{2}(M, G) \backslash Z(M, G)$ such that $\mu\left(z_{0}\right)=m+n-1-s$, then $v\left(z_{0}\right)=m+n-1$ and

$$
\frac{M /\left[G, z_{0}\right]}{Z\left(M /\left[G, z_{0}\right], G /\left[G, z_{0}\right]\right)}
$$

is elementary abelian p-group of order p^{m+n-1}, or

$$
\left(\frac{M /\left[G, z_{0}\right]}{Z\left(M /\left[G, z_{0}\right], G /\left[G, z_{0}\right]\right)}, \frac{G /\left[G, z_{0}\right]}{Z\left(M /\left[G, z_{0}\right], G /\left[G, z_{0}\right]\right)}\right)
$$

is an extra-special pair of p-groups.
Proof. Using equation (1) and Lemma 2.1 (a), we have

$$
\begin{aligned}
n(n+2 m-1) / 2-s \leq & {\left[v\left(z_{0}\right)\left(v\left(z_{0}\right)-1\right)-m(m-1)\right] / 2+\mu\left(z_{0}\right) } \\
\leq & {[(m+n-1)(m+n-2)-m(m-1)] / 2 } \\
& +m+n-1-s
\end{aligned}
$$

which implies that $v\left(z_{0}\right)=m+n-1$.
Hence

$$
\left|\frac{M /\left[G, z_{0}\right]}{Z\left(M /\left[G, z_{0}\right], G /\left[G, z_{0}\right]\right)}\right|=p^{n-1}
$$

and also

$$
\left|\left[\frac{M}{\left[G, z_{0}\right]}, \frac{G}{\left[G, z_{0}\right]}\right]\right|=\left|\frac{[M, G]}{\left[G, z_{0}\right]}\right|=p^{n(n+2 m-1) / 2-s-m-n+s+1}=p^{(n-1)(n+2 m-2) / 2}
$$

Then the result follows from Theorem A .
To prove Theorem B, we recall the concept of covering pair from [3].
The relative central extension $\sigma: M^{*} \rightarrow G$ is called a covering pair of the pair of finite groups (M, G) when the following conditions are satisfied:
(i) $\operatorname{ker} \sigma \subseteq Z\left(M^{*}, G\right) \cap\left[M^{*}, G\right]$;
(ii) $\operatorname{ker} \sigma \cong \mathscr{M}(M, G)$;
(iii) $M \cong M^{*} / \operatorname{ker} \sigma$.

If $\sigma: G^{*} \rightarrow G$ is a covering pair of the pair (G, G), then G^{*} is the usual covering group of G, which was introduced by Schur [7].

In [3], Ellis proved that any finite pair of groups admits a covering pair. The first two authors, under certain conditions in [6], showed the existence of a covering pair for an arbitrary pair of groups.

PROOF OF THEOREM B. Let $\sigma: M^{*} \rightarrow G$ together with an action of G on M^{*} be a covering pair of (M, G). We define a homomorphism $\psi: N \rightarrow \operatorname{Aut}\left(M^{*}\right)$ given by $\psi(n)=\psi_{n}$, for all $n \in N$, where $\psi_{n}: M^{*} \rightarrow M^{*}, m \mapsto m^{n}$ is an automorphism, in which m^{n} is induced by the action of G on M^{*}. We form the semidirect product of M^{*} by N and denote it by $H=M^{*} N$. Then one may easily check that the subgroup $\left[M^{*}, G\right]$ and $Z\left(M^{*}, G\right)$ are contained in $\left[M^{*}, H\right]$ and $Z\left(M^{*}, H\right)$, respectively. If
$\delta: H \rightarrow G$ is the mapping given by $\delta(m n)=\sigma(m) n$, for all $m \in M^{*}$ and $n \in N$, then it is easily seen that δ is an epimorphism with $\operatorname{ker} \delta=\operatorname{ker} \sigma$.
(i) Since $\left|H / M^{*}\right|=p^{m}$ and $\left|M^{*} / Z\left(M^{*}, H\right)\right| \leq p^{n}$, then by Lemma 2.1 (a),

$$
|\mathscr{M}(M, G)| \leq\left|\left[M^{*}, H\right]\right| \leq p^{n(n+2 m-1) / 2} .
$$

(ii) By [1, Theorem 2.1], $|\mathscr{M}(N)|=p^{m(m-1) / 2}$. Since the exact sequence

$$
1 \rightarrow M \rightarrow G \rightarrow N \rightarrow 1
$$

splits, it follows easily that $\mathscr{M}(G)=\mathscr{M}(M, G) \oplus \mathscr{M}(N)$. Hence $|\mathscr{M}(G)|=$ $p^{(n+m)(n+m-1) / 2}$ and so again by [1, Theorem 2.1], G is an elementary abelian p-group.
(iii) By assumption, $\operatorname{ker} \sigma$ is a proper subgroup of $Z\left(M^{*}, H\right)$, so

$$
\left|M^{*} / Z\left(M^{*}, H\right)\right| \leq p^{n-1} .
$$

Hence by Lemma 2.1 (a), $\left|\left[M^{*}, H\right]\right| \leq p^{(n-1)(2 m+n-2) / 2}$. On the other hand, we have $\mathscr{M}(M, G) \cong \operatorname{ker} \sigma \leq\left[M^{*}, H\right]$. Therefore

$$
n(2 m+n-1) / 2-1 \leq(n-1)(2 m+n-2) / 2
$$

and so $m+n \leq 2$. But since the case $m+n=1$ is impossible, it implies $m+n=2$. In the latter case, we must have $n=2$ and $m=0$. Now, if $G \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$, then $|\mathscr{M}(M, G)|=|\mathscr{M}(G)|=p$, which is a contradiction. Hence $G \cong \mathbb{Z}_{p^{2}}$, which completes the proof.

Acknowledgement

The authors would like to thank the referee for his/her interesting suggestions.

References

[1] Ya. G. Berkovich, 'On the order of the commutator subgroups and the Schur multiplier of a finite p-group', J. Algebra 144 (1991), 269-272.
[2] G. Ellis, 'Capability, homology and a central series of a pair of groups', J. Algebra 179 (1995). 31-46.
[3] -, 'The Schur multiplier of a pair of groups', Appl. Categ. Structures 6 (1998), 355-371.
[4] J. A. Green, 'On the number of automorphisms of a finite group', Proc. Roy. Soc. London Ser. A 237 (1956), 574-581.
[5] J. L. Loday, 'Cohomologie et group de Steinberg relatif', J. Algebra 54 (1978), 178-202.
[6] M. R. R. Moghaddam, A. R. Salemkar and K. Chiti, 'Some properties on the Schur multiplier of a pair of groups', submitted.
[7] I. Schur, ‘Uber die Darstellung der endlichen Gruppen durch gebrochene linear Substitutionen’, J. Reine Angew. Math. 127 (1904), 20-50.
[8] J. Wiegold, 'Multiplicators and groups with finite central factor-groups', Math. Z. 89 (1965), 345347.
[9] X. Zhou, 'On the order of Schur multipliers of finite p-groups', Comm. Algebra 22 (1994), 1-8.

Faculty of Mathematical Sciences
Shahid Beheshti University
Tehran
Iran
e-mail: salemkar@usb.ac.ir

Department of Mathematics
Azad University of Mashhad Iran
e-mail: saeedi@mshdiau.ac.ir

Centre of Excelence in Analysis on Algebraic Structures
(President) and
Faculty of Mathematical Sciences Ferdowsi University of Mashhad Iran
e-mail: moghadam@math.um.ac.ir

