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Abstract

We consider sequential selection of an alternating subsequence from a sequence of
independent, identically distributed, continuous random variables, and we determine the
exact asymptotic behavior of an optimal sequentially selected subsequence. Moreover,
we find (in a sense we make precise) that a person who is constrained to make sequential
selections does only about 12 percent worse than a person who can make selections with
full knowledge of the random sequence.
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1. Introduction

Given a finite (or infinite) sequence x = {x1, x2, . . . , xn, . . .} of real numbers, we say that
a subsequence xi1 , xi2 , . . . , xik , . . . with 1 ≤ i1 < i2 < · · · < ik < · · · is alternating if we
have xi1 < xi2 > xi3 < xi4 > · · · . When x is an element of the set of permutations Sn of
the integers {1, 2, . . . , n}, the study of the set of alternating permutations goes back to Euler
(cf. Stanley (2010)).

Here we are mainly concerned with the length a(x) of the longest alternating subsequence
of x. This function has recently been studied in Widom (2006), Pemantle (cf. Stanley (2007,
p. 568)), and Stanley (2008). In particular, they considered the situation in which x is chosen
at random from Sn. By exploiting explicit formulae for generating functions and delicate
applications of the saddle point method, they were able to obtain exact formulae for the first
two moments and to prove a central limit theorem. Specifically, if x is chosen according to the
uniform distribution on the set of permutations Sn and if An := a(x) denotes the length of the
longest alternating subsequence of x, then, for n ≥ 4, we have

E[An] = 2n

3
+ 1

6
and var[An] = 8n

45
− 13

180
.
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Online alternating subsequences 1115

More recently, Houdré and Restrepo (2010) used purely probabilistic means to obtain a
simpler proof of this result and the corresponding central limit theorem. Moreover, the methods
of Houdré and Restrepo also apply to models of random words that are more refined than simple
random selection from a set of permutations.

Here, we study the problem of making online selection of an alternating subsequence. That
is, we now regard the sequence x1, x2, . . . as being presented to us sequentially, and, at the time
i when xi is presented, we must choose to include xi as a term of our subsequence—or we must
reject xi as a member of the subsequence.

We will consider the sequence to be given by independent random variables X1, X2, . . .

that have a common continuous distribution F , and, since we are only concerned with order
properties, we can without loss of generality take the distribution to be uniform on [0, 1]. We
now need to be more explicit about the set � of feasible strategies for online selection. At time i,
when presented with Xi , we must decide to select Xi based on its value, the value of earlier
members of the sequence, and the actions we have taken in the past. All of this information
can be captured by saying that τk , the index of the kth selection, must be a stopping time
with respect to the increasing sequence of σ -fields, Fi = σ {X1, X2, . . . , Xi}, i = 1, 2, . . . .
Given any feasible policy π ∈ �, the random variable of interest here is Ao

n(π), the number
of selections made by the policy π up to and including time n. In other words, Ao

n(π) is equal
to the largest k for which there are stopping times 1 ≤ τ1 < τ2 < · · · < τk ≤ n such that
{Xτ1 , Xτ2 , . . . , Xτk

} is an alternating sequence.

Theorem 1. (Asymptotic selection rate for large samples.) For each n = 1, 2, . . . , there is a
policy π∗

n ∈ � such that
E[Ao

n(π
∗
n )] = sup

π∈�

E[Ao
n(π)],

and, for such an optimal policy, we have, for all n ≥ 1,

(2 − √
2)n ≤ E[Ao

n(π
∗
n )] ≤ (2 − √

2)n + C,

where C is a constant with C < 11 − 4
√

2 ∼ 5.343. In particular, we have

E[Ao
n(π

∗
n )] ∼ (2 − √

2)n as n → ∞.

The proof of this result exploits the analysis of a closely related selection problem in which
one considers a sample of size N , where N is geometrically distributed with parameter 0 <

ρ < 1 (so we have P(N = k) = ρk−1(1 − ρ), k = 1, 2, 3, . . .). Here we also assume that N

is independent of the sequence X1, X2, . . . .
Parallel to our first theorem, we consider the number Ao

N(π) of selections made by a feasible
policy π up to and including the random time N . The geometric smoothing provided by N

gives us a useful ‘shift symmetry’ that is missing in the fixed n problem, and the analysis of a
geometric sample turns out to be far more tractable. In particular, we can determine the exact
expected length of the sequence selected by an optimal policy.

Theorem 2. (Expected selection size in geometric samples.) For each 0 < ρ < 1, there is a
π∗ ∈ � such that

E[Ao
N(π∗)] = sup

π∈�

E[Ao
N(π)],

and, for such an optimal policy, we have

E[Ao
N(π∗)] = 3 − 2

√
2 − ρ + ρ

√
2

ρ(1 − ρ)
∼ (2 − √

2)(1 − ρ)−1 as ρ → 1.
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1116 A. ARLOTTO ET AL.

These theorems respectively tell us that optimal online selection yields subsequences that
grow at a linear rate (2 − √

2)n ∼ 0.585n or (2 − √
2) E N ∼ 0.585 E N . This is about a 12%

discount off the rate 2
3n ∼ 0.667n that we would obtain with a priori knowledge of the full finite

sample {X1, X2, . . . , Xn}, and this discount seems quite modest given the great difference in
the knowledge that we have.

To build some intuition about these rates, we should also consider the ‘maximally timid
strategy’ where we choose the first observation that falls in [0, 0.5], then the next observation
that falls in [0.5, 1], then the next that falls in [0, 0.5], and so on. This strategy obviously
leads to an asymptotic selection rate of 0.5n. Finally, we should also consider the ‘purely
greedy strategy’ where we accept any new arrival that is feasible given the previous selections.
Curiously enough, by a reasonably quick Markov chain calculation we can show that the greedy
strategy leads to the same selection rate 0.5n as that for the ‘maximally timid strategy’.

We begin by proving Theorem 2, which will give us an exact formula for the expected
number of selections made under the optimal policy for geometric samples. This result will
then be used to prove the upper and lower bounds of Theorem 1.

2. Proof of Theorem 2

Let Si denote the value of the last member of the subsequence selected up to and including
time i. To keep track of the up–down nature of our selections, we then set Ri = 0 if Si is a local
minimum of {S0, S1, . . . , Si} and Ri = 1 if Si is a local maximum. To initialize our process,
we set S0 = 1 and R0 = 1.

Next, we make the class � of feasible policies more explicit. For each 1 ≤ i < ∞ and each
pair (Si−1, Ri−1), a feasible strategy π specifies a set �i(Si−1, Ri−1) such that

�i(Si−1, 0) ⊆ [Si−1, 1] and �i(Si−1, 1) ⊆ [0, Si−1],
and Xi is selected for our subsequence if and only if Xi ∈ �i(Si−1, Ri−1). For each π ∈ �,
we have the basic relation

Ao
N(π) =

N∑
i=1

1(Xi ∈ �i(Si−1, Ri−1)) =
∞∑
i=1

1(Xi ∈ �i(Si−1, Ri−1)) 1(i ≤ N),

and by taking expectations on both sides we have

E[Ao
N(π)] = E

[ ∞∑
i=1

ρi−1 1(Xi ∈ �i(Si−1, Ri−1))

]
.

We came to this relation by considering random sample sizes with the geometric distribution,
but the right-hand side of this identity can also be interpreted as the infinite-horizon discounted
expected length of the alternating subsequence selected by π . We are interested in the policy
π∗ ∈ � such that

E[Ao
N(π∗)] = sup

π∈�

E

[ ∞∑
i=1

ρi−1 1(Xi ∈ �i(Si−1, Ri−1))

]
,

and from the general theory of Markov decision problems we know that an optimal policy can
be characterized as the solution of an associated Bellman equation.
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2.1. First Bellman equation

For any i such that Si = s and Ri = r , we let v(s, r) denote the expected number of
selections made after time i by an optimal policy. By the lack-of-memory property of the
geometric distribution and the usual considerations of dynamic programming, we can now
check that v(s, r) satisfies the Bellman equation:

v(s, r) =

⎧⎪⎪⎨
⎪⎪⎩

ρsv(s, 0) +
∫ 1

s

max{ρv(s, 0), 1 + ρv(x, 1)} dx if r = 0,

ρ(1 − s)v(s, 1) +
∫ s

0
max{ρv(s, 1), 1 + ρv(x, 0)} dx if r = 1.

(1)

To see why this equation holds, first consider the case when r = 0 (so the next selection is to
be a local maximum). With probability ρ we get to see another observation Xi+1, and, with
probability s, the value we observe is less than the previously selected value. In this case,
we do not have the opportunity to make a selection, and this observation contributes the term
ρsv(s, 0) to our equation.

Next, consider the case when s < Xi+1 ≤ 1. Now we can choose to select Xi+1 = x or
not. If we do not select Xi+1 = x, the expected number of subsequent selections is ρv(s, 0),
and if we do select Xi+1 = x, we increment the sequence by 1 and the expected number of
subsequence selections that are made by an optimal policy in the future is given by ρv(x, 1).
Since Xi+1 is uniformly distributed in [s, 1], the expected optimal contribution is given by the
second term of our Bellman equation (first line). The proof of the second line of the Bellman
equation is completely analogous.

Finally, given a solution v(s, r) to the Bellman equation (1), we have

v(1, 1) = E[Ao
N(π∗)],

so, now our goal is to determine v(1, 1). To do this, it will be useful to reorganize the Bellman
equation (1) in a tidier form. This is possible since the solution v(s, r) of the Bellman equation
has a useful symmetry property.

Lemma 1. (Reflection identity.) For all s ∈ [0, 1], the solution v(s, r) of the Bellman equation
(1) satisfies

v(s, 0) = v(1 − s, 1). (2)

Proof. The Bellman equation (1) is a fixed-point equation, and by the classical theory of
dynamic programming, it can be solved by iteration (cf. Bertsekas and Shreve (1978,
Section 9.5)). We will prove identity (2) by showing that it holds for the sequence of
approximations; so it also holds for the limit.

We first set v0(s, r) = 0 for all (s, r) ∈ [0, 1] × {0, 1}, and we note that v0 trivially
satisfies the reflection identity (2). Next, for our induction hypothesis, we assume that we have
vn−1(s, 0) = vn−1(1 − s, 1) for all s ∈ [0, 1]. The next iterate in the sequence is then given by

vn(s, 0) = ρsvn−1(s, 0) +
∫ 1

s

max{ρvn−1(s, 0), 1 + ρvn−1(x, 1)} dx.

By applying our induction hypothesis on vn−1 we then obtain

vn(s, 0) = ρsvn−1(1 − s, 1) +
∫ 1

s

max{ρvn−1(1 − s, 1), 1 + ρvn−1(1 − x, 0)} dx.
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Now, after changing variables in the integral on the right-hand side, we find that

vn(s, 0) = ρsvn−1(1 − s, 1) +
∫ 1−s

0
max{ρvn−1(1 − s, 1), 1 + ρvn−1(x, 0)} dx

= vn(1 − s, 1),

and this completes the induction step. Now, for all (s, r) ∈ [0, 1]× {0, 1}, we have vn(s, r) →
v(s, r) as n → ∞, so taking limits in the last identity completes the proof of the reflection
identity.

2.2. A simpler equation

Using the reflection identity (2), we can put the Bellman equation (1) into a more graceful
form. Specifically, if we introduce a single variable function v(y) defined by setting

v(y) ≡ v(y, 0) = v(1 − y, 1),

then substitution into our original equation (1) gives

v(y) = ρyv(y) +
∫ 1

y

max{ρv(y), 1 + ρv(1 − x)} dx. (3)

Here we should note that, by the definition of v(y) = v(y, 0), v(·) is continuous, v(1) = 0,
and v is nonincreasing on [0, 1]. We will show shortly that v is actually piecewise linear and it
is constant on an initial segment of [0, 1].
2.3. An alternative interpretation

The symmetrized equation (3) can be used to obtain a new probabilistic interpretation of v(y).
To set this up, we first put

f ∗(y) = inf{x ∈ [y, 1] : ρv(y) ≤ 1 + ρv(1 − x)}. (4)

With this definition, we can rewrite (3) as

v(y) = ρf ∗(y)v(y) +
∫ 1

f ∗(y)

{1 + ρv(1 − x)} dx. (5)

Thus, we remove the maximum from the integrand (3) at the price of introducing a threshold
function f ∗ that depends on v.

We now recursively define random variables {Yi : i = 1, 2, . . .} by setting Y0 = 0 and taking

Yi =
{

Yi−1 if Xi < f ∗(Yi−1),

1 − Xi if Xi ≥ f ∗(Yi−1),

and finally introduce a new value function

v0(y) ≡ E

[ ∞∑
i=1

ρi−1 1(Xi ≥ f ∗(Yi−1))

∣∣∣∣ Y0 = y

]
. (6)

The next proposition shows that v0(y) is actually equal to v(y). Furthermore, we obtain a
concrete characterization of the threshold function f ∗.
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Proposition 1. (Structure of the solution of the Bellman equation.) We have the following
characterizations of f ∗ and v0.

(i) There is a unique ξ0 ∈ [0, 1] such that

f ∗(y) = max{ξ0, y} for all 0 ≤ y ≤ 1,

and, moreover, 0 ≤ ξ0 < 1
2 .

(ii) The function v0(·) is a solution of the Bellman equation (3), so, by uniqueness, we have
v0(y) = v(y) for all 0 ≤ y ≤ 1.

Proof. From the definition of f ∗ we see that

ρv(y) ≤ 1 + ρv(1 − y) �⇒ f ∗(y) = y. (7)

Now, for 1
2 ≤ y, we have 1 − y ≤ y, so the monotonicity of v gives us the bound ρv(y) ≤

1 + ρv(1 − y); consequently, we have f ∗(y) = y for y ∈ [ 1
2 , 1].

If condition (7) holds for all y ∈ [0, 1
2 ) then f ∗(y) = y for all y ∈ [0, 1] and we can take

ξ0 = 0. Otherwise, there is a y0 ∈ [0, 1
2 ) for which we have

1 + ρv(1 − y0) < ρv(y0).

For �(y) = 1 + ρv(1 − y) − ρv(y), we then have �(y0) < 0 and �(1) = 1 + ρv(0) > 0,
so by continuity we have S = {y : �(y) = 0} = ∅. If we now take ξ0 to be the infimum of S

then ξ0 ∈ [y0,
1
2 ) ⊂ [0, 1

2 ) and ρv(ξ0) = 1 +ρv(1 − ξ0). The definition of f ∗ now tells us that
f ∗(y) = ξ0 for y ≤ ξ0 and f ∗(y) = y for ξ0 ≤ y. This completes the proof of the first part of
the proposition.

Finally, to check that v0 solves (6), we just condition on the value of X1 and calculate the
expectation of the sum. When we take the total expectation, we obtain the right-hand side
of (5).

2.4. Characterization of the critical value

Now that we know that the threshold function f ∗ for the solution of the Bellman equation
(3) has the form f ∗(y) = max{ξ0, y} for some ξ0 ∈ [0, 1

2 ), the main problem is to find ξ0.
The natural plan is to fix ξ ∈ [0, 1

2 ] and to consider a general selection function of the form
f (y) = max{ξ, y} ≡ (ξ ∨ y). We then want to calculate the associated value function and to
optimize over ξ .

The associated value function is given by

V (y, ξ, ρ) = E

[ ∞∑
i=1

ρi−1 1(Xi ≥ max{ξ, Yi−1})
∣∣∣∣ Y0 = y

]
, (8)

and Proposition 1 then tells us that

max
ξ∈[0,1/2] V (y, ξ, ρ) = v(y) for all y ∈ [0, 1].

If we use the abbreviated notation V (y) ≡ V (y, ξ, ρ) then by conditioning on X1 in (8) we see
that V (y) satisfies the integral equation

V (y) = (ξ ∨ y)ρV (y) +
∫ 1

ξ∨y

{1 + ρV (1 − x)} dx

= (ξ ∨ y)ρV (y) +
∫ 1−(ξ∨y)

0
{1 + ρV (x)} dx. (9)
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This equation has several attractive features. In particular, if we set y = 1 then from 0 < ρ < 1
we see that V (1) = 0. Also, by writing

V (y) = 1

1 − ρ(ξ ∨ y)

∫ 1−(ξ∨y)

0
{1 + ρV (x)} dx,

we see that the right-hand side does not change when y ∈ [0, ξ ], so we have

V (y) = V (y′) for all 0 ≤ y, y′ ≤ ξ . (10)

From now on, we will let V ′(ξ) denote the right derivative of the integral equation (9)
evaluated at ξ , and V ′(1 − ξ) denote the left derivative of (9) evaluated at 1 − ξ . Elsewhere,
V ′(y) simply denotes the derivative of (9) evaluated at y.

Lemma 2. The solution of (9) satisfies the following four conditions:

(i) V (1 − ξ)(1 − ρ + ρξ) = ξ + ρξV (ξ);

(ii) V ′(ξ)(1 − ρξ) = ρ[V (ξ) − V (1 − ξ)] − 1;

(iii) V ′(1 − ξ)(1 − ρ + ρξ) = ρ[V (1 − ξ) − V (ξ)] − 1;

(iv) V ′(1−ξ)(1−ρ+ρξ)2(1−ρξ) = V ′(ξ)(1−ρξ)2(1−ρ+ρξ)+(1−ρ+ρξ)2−(1−ρξ)2.

Proof. Conditions (i)–(iii) are easy to check. Condition (i) is just (9) evaluated at 1 − ξ

together with (10). Conditions (ii) and (iii) simply follow by evaluating (9) at ξ and 1 − ξ ,
respectively, and by differentiating both sides with respect to ξ .

The proof of condition (iv) requires more work. Consider y ∈ (ξ, 1 − ξ) so that the integral
equation (9) becomes

V (y) = yρV (y) +
∫ 1−y

0
{1 + ρV (x)} dx.

Differentiating once we have

V ′(y)(1 − ρy) = ρ[V (y) − V (1 − y)] − 1, (11)

and differentiating again gives

V ′′(y)(1 − ρy) − ρV ′(y) = ρV ′(y) + ρV ′(1 − y). (12)

To estimate the value of V ′(1−y), we note that 1−y ∈ (ξ, 1− ξ), and we evaluate the integral
equation (9) at 1 − y. We then differentiate with respect to y to obtain

V ′(1 − y)(1 − ρ + ρy) = ρ[V (1 − y) − V (y)] − 1. (13)

By combining (11) and (13), we then have

V ′(1 − y) = (1 − ρ + ρy)−1(−V ′(y)(1 − ρy) − 2),

which we can substitute into the last addend of (12) to obtain

V ′′(y)(1 − ρy)(1 − ρ + ρy) = V ′(y)ρ(1 − 2ρ + 3ρy) − 2ρ. (14)
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By multiplying both sides of (14) by (1 − ρy) we obtain the critical identity

V ′′(y)(1 − ρy)2(1 − ρ + ρy) = V ′(y)ρ(1 − ρy)(1 − 2ρ + 3ρy) − 2ρ(1 − ρy). (15)

For h(y) = (1 − ρy)2(1 − ρ + ρy), note that h′(y) = −ρ(1 − ρy)(1 − 2ρ + 3ρy), so that we
can rewrite identity (15) as

V ′′(y)h(y) + V ′(y)h′(y) − [(1 − ρy)2]′ = 0.

An immediate integration then gives

V ′(y)h(y) − (1 − ρy)2 = C,

where C is a constant, and if we take C = V ′(ξ)h(ξ) − (1 − ρξ)2, we find that

V ′(y) = V ′(ξ)
h(ξ)

h(y)
+ (1 − ρy)2 − (1 − ρξ)2

h(y)
for all ξ < y < 1 − ξ . (16)

Finally, on setting y = 1 − ξ we recover the desired condition (iv).

2.5. Calculation of the critical value

Conditions (i)–(iv) of Lemma 2 generate a system of four equations in four unknowns,
V (ξ), V (1 − ξ), V ′(ξ), and V ′(1 − ξ). By solving this system we find that

V (ξ) = 2 − 2ξ − ρ + 2ρξ − 2ρξ2

2(1 − ρ)(1 − ρξ)
, (17)

V (1 − ξ) = ρ(2 − 4ρξ − ρ2 + 4ρ2ξ − 2ρ2ξ2)

2(1 − ρ)(1 − ρξ)2(1 − ρ + ρξ)
,

V ′(ξ) = −2 + 4ρ − 4ρξ − ρ2 + 2ρ2ξ2

2(1 − ρξ)2(1 − ρ + ρξ)
, (18)

V ′(1 − ξ) = −2 + 4ρξ + ρ2 − 4ρ2ξ + 2ρ2ξ2

2(1 − ρξ)(1 − ρ + ρξ)2 .

Finally, by substituting (18) into (16) we obtain

V ′(y) = −(2 − ρ)2 + 2(1 − ρy)2

2(1 − ρ + ρy)(1 − ρy)2 for all ξ < y < 1 − ξ .

Now, given any ξ , we want to compute V (0, ξ, ρ). We first recall that we have V (1, ξ, ρ) = 0
and V (y, ξ, ρ) = V (ξ, ξ, ρ) for all 0 ≤ y ≤ ξ . We therefore find that ∂V (y, ξ, ρ)/∂y = 0 on
0 ≤ y ≤ ξ , so on integrating we have

V (1, ξ, ρ) − V (0, ξ, ρ) =
∫ 1

0
V ′(y) dy =

∫ 1

ξ

V ′(y) dy,

and, hence,

V (0, ξ, ρ) = −
∫ 1

ξ

V ′(y) dy.
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We now optimize this last quantity with respect to ξ . By differentiating both sides with respect
to ξ we obtain

∂

∂ξ
V (0, ξ, ρ) = V ′(ξ),

and we are interested in the value ξ0 such that

V ′(ξ0) = 0.

Formula (18) for V ′(ξ0) tells us that V ′(ξ0) = 0 if and only if

2(1 − ρξ0)
2 = (2 − ρ)2.

We therefore find that the unique choice for ξ0 is given by

ξ0 = 1√
2

+ 1 − √
2

ρ
. (19)

A routine calculation verifies that V ′′(ξ0) < 0, so we have found our maximum.
When we evaluate V (ξ0, ξ0, ρ) using (17), we find that

V (ξ0, ξ0, ρ) = 3 − 2
√

2 − ρ + ρ
√

2

ρ(1 − ρ)
,

and this gives us the main formula, of Theorem 2. From this formula, it is immediate that

lim
ρ↑1

(1 − ρ)V (ξ0, ξ0, ρ) = 2 − √
2,

completing the proof of Theorem 2.

3. Proof of Theorem 1 from Theorem 2

We will use our results for geometric sample sizes to obtain both lower and upper bounds for
the finite-sample size selection problem. The lower bound is the easiest. For fixed n, we can
use the (now suboptimal) policy from an appropriately chosen geometric sample size problem.
The proof of the upper bound is considerably harder, and the method will be described later in
this section. Before making these arguments, we need to organize a few structural observations.

3.1. Selection policies and a Bellman equation for finite samples

When the sample size n is deterministic and known, the feasible policies need to take this
information into account. In particular, the selection thresholds will no longer be stationary;
they will depend on the number of sample elements that remain to be seen.

As in Section 2, we consider the pairs (Si−1, Ri−1), 1 ≤ i ≤ n, where Si−1 is the size
of the last selection made before time i and Ri−1 is 0 or 1 according to whether the last
selection was a local minimum or a local maximum. A feasible policy π ∈ � again specifies
a set �i,n(Si−1, Ri−1) that depends only on past actions, but now we have dependence on the
decision time i and on the sample size n. For any policy π ∈ �, the expected size of the
selected sample can then be written as

E[Ao
n(π)] = E

[ n∑
i=1

1(Xi ∈ �i,n(Si−1, Ri−1))

]
,
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and there is an optimal policy π∗
n for which we have

E[Ao
n(π

∗
n )] = sup

π∈�

E[Ao
n(π)].

In this case, an optimal policy can be characterized as the solution to a finite-sample Bellman
equation. Specifically, for 1 ≤ i ≤ n, we have

vi,n(s, r) =

⎧⎪⎪⎨
⎪⎪⎩

svi+1,n(s, 0) +
∫ 1

s

max{vi+1,n(s, 0), 1 + vi+1,n(x, 1)} dx if r = 0,

(1 − s)vi+1,n(s, 1) +
∫ s

0
max{vi+1,n(s, 1), 1 + vi+1,n(x, 0)} dx if r = 1,

and the backward induction begins by setting vn+1,n(s, r) ≡ 0 for all (s, r) in [0, 1] × {0, 1}.
This equation is justified by the same considerations that were used in the derivation of (1).

3.2. Symmetry and simplification

For the finite-sample size problem, we lose much of the nice symmetry of the geometric
sample size problem. Nevertheless, the solution of the finite-sample Bellman equation still has
a reflection identity analogous to that given by Lemma 1.

Lemma 3. The solution of the finite-sample Bellman equation satisfies

vi,n(s, 0) = vi,n(1 − s, 1) for all 1 ≤ i ≤ n and all s ∈ [0, 1]. (20)

Proof. Again, we use an induction argument, but this time we do not need to take limits of
an infinite sequence of approximate solutions. Instead, we simply use backward induction and
always work with exact solutions.

Since we have vn,n(s, 0) = 1 − s and vn,n(1 − s, 1) = 1 − s, we see that (20) holds for
i = n, so we suppose by induction that vi+1,n(s, 0) = vi+1,n(1 − s, 1). We then have

vi,n(s, 0) = svi+1,n(s, 0) +
∫ 1

s

max{vi+1,n(s, 0), 1 + vi+1,n(x, 1)} dx,

so by applying the induction hypothesis on the right-hand side we obtain

vi,n(s, 0) = svi+1,n(1 − s, 1) +
∫ 1

s

max{vi+1,n(1 − s, 1), 1 + vi+1,n(1 − x, 0)} dx.

If we now change the variable in this last integral, we obtain

vi,n(s, 0) = svi+1,n(1 − s, 1) +
∫ 1−s

0
max{vi+1,n(1 − s, 1), 1 + vi+1,n(x, 0)} dx

= vi,n(1 − s, 1),

and this completes the induction step.

We can now define a new single variable function vi,n(y) by setting

vi,n(y) = vi,n(y, 0) = vi,n(1 − y, 1), (21)

and by substitution into the original finite-sample Bellman equation we have

vi,n(y) = yvi+1,n(y) +
∫ 1

y

max{vi+1,n(y), 1 + vi+1,n(1 − x)} dx. (22)

Here we should also note that vi,n(·) is continuous and nonincreasing on [0, 1] for all 1 ≤ i ≤ n.
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3.3. The threshold functions

We now define the finite-sample equivalent of the threshold function (4) by setting

f ∗
i,n(y) = inf{x ∈ [y, 1] : vi+1,n(y) ≤ 1 + vi+1,n(1 − x)}. (23)

If we then set Y0 = 0 and define Yi recursively by setting

Yi =
{

Yi−1 if Xi < f ∗
i,n(Yi−1),

1 − Xi if Xi ≥ f ∗
i,n(Yi−1),

(24)

then, in complete parallel to the geometric case, we see that the solution of the finite-sample
Bellman equation (22) can be written more probabilistically as

v1,n(y) = E

[ n∑
i=1

1(Xi ≥ f ∗
i,n(Yi−1))

∣∣∣∣ Y0 = y

]
. (25)

Finally, from (21) we have

v1,n(0) = v1,n(0, 0) = v1,n(1, 1) = E[Ao
n(π

∗
n )],

and this gives us the last piece of structural information that we need.

3.4. Proof of the lower bound

To prove that
(2 − √

2)n ≤ E[Ao
n(π

∗
n )] for all n ≥ 1,

we only need to choose a good suboptimal policy. We now fix ξ ∈ [0, 1
2 ], and we consider the

policy in which Xi is selected if and only if Xi ≥ max{ξ, Yi−1}. Here, Y0 = y is in the interval
[0, 1 − ξ ] and the Yis are defined recursively by setting

Yi =
{

Yi−1 if Xi < max{ξ, Yi−1},
1 − Xi if Xi ≥ max{ξ, Yi−1}.

The sequence {Yi : i = 0, 1, . . .} is a discrete-time Markov chain on the state space [0, 1 − ξ ].
For a measurable A ⊆ [0, 1 − ξ ], we let |A| denote the Lebesgue measure of A, and, for a
measurable set B ⊆ [0, 1− ξ ], we write 1−B as shorthand for the set {u ∈ [0, 1] : 1−u ∈ B}.
Given these abbreviations, the transition kernel of the process {Yi : i = 0, 1, . . .} can be written
as

K(x, C) = 1(x ∈ C)(ξ ∨ x) + |1 − C ∩ [ξ ∨ x, 1]|.
It is now easy to check that the process {Yi} has a unique stationary distribution γ , and, in fact,
γ is just the uniform distribution on [0, 1 − ξ ], (i.e. γ (C) = (1 − ξ)−1|C| for all measurable
C ⊆ [0, 1 − ξ ]).

For any starting value Y0 = y ∈ [0, 1 − ξ ], the suboptimality of the selection functions
max{ξ, Yi−1} gives

E

[ n∑
i=1

1(Xi ≥ max{ξ, Yi−1})
∣∣∣∣ Y0 = y

]
≤ v1,n(y).
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Since v1,n(y) is nonincreasing in y, we see that, for any starting distribution µ supported on
[0, 1 − ξ ], we have

Eµ

[ n∑
i=1

1(Xi ≥ max{ξ, Yi−1})
]

≤ Eµ[v1,n(Y0)] ≤ v1,n(0) = E[Ao
n(π

∗
n )].

If we choose the starting distribution µ to be the stationary distribution γ then

Eγ

[ n∑
i=1

1(Xi ≥ max{ξ, Yi−1})
]

= n Eγ [1 − max{ξ, Y0}] ≤ E[Ao
n(π

∗
n )], (26)

and we can compute the first expression explicitly. So, we have

Eγ [1 − max{ξ, Y0}] = 1

1 − ξ

∫ 1−ξ

0
1 − max{ξ, y} dy = 1 − 2ξ2

2(1 − ξ)
.

We can maximize this by taking ξ = 1 − 2−1/2 (as in (19) when ρ = 1), and we then obtain

Eγ [1 − max{ξ, Y0}] = 2 − √
2.

Together with inequality (26), this completes the proof of our lower bound.

3.5. Proof of the upper bound

The proof of the upper bound in Theorem 1 requires a more sustained argument. Unlike
the problem for geometric samples, the value function vi,n(·) is no longer constant on an initial
segment of [0, 1]. Nevertheless, the next proposition tells us that the value function does have
a useful uniform boundedness on an initial segment. This is the first of several structural
observations that we will need to obtain our upper bound for E[Ao

n(π
∗
n )].

Proposition 2. (Value function initial segment bounds.) For all 0 ≤ u < 1
6 and n ≥ 2, the

functions vi,n(·) defined by the Bellman recursion (22) satisfy

(i) 1 < vi,n(u) − vi,n(
5
6 ) for all 1 ≤ i ≤ n − 1;

(ii) vi,n(u) − vi,n(
1
6 ) < 1 for all 1 ≤ i ≤ n.

Moreover, for n ≥ 3, the threshold functions f ∗
i,n(y) defined in (23) are guaranteed to satisfy

1
6 ≤ f ∗

i,n(y) for y ∈ [0, 1] and 1 ≤ i ≤ n − 2.

Naturally enough, the proof of this proposition depends on inductive arguments that exploit
the defining Bellman equation. The first of these arguments gives us some control over the
changes of vi,n(u) when we change both i and u.

Lemma 4. (Restricted supermodularity.) For y ∈ [0, 1
2 ] and u ∈ [y, 1 − y], the functions

{vi,n(·)} defined by the Bellman recursion (22) satisfy

vi+1,n(u) − vi+1,n(1 − y) ≤ vi,n(u) − vi,n(1 − y) for all 1 ≤ i ≤ n.

Proof. We use backward induction on i, and, since n is fixed, we abbreviate vi,n(·) by vi(·).
For i = n, we have vn+1(u) = 0 for all u ∈ [0, 1]. Moreover, vn(u) = 1−u and vn(1−y) = y,
so we have

vn+1(u) − vn+1(1 − y) ≤ vn(u) − vn(1 − y) for all u ∈ [y, 1 − y].
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Now, for our backward induction, we can assume more generally that

vi+1(u) − vi+1(1 − y) ≤ vi(u) − vi(1 − y) for all u ∈ [y, 1 − y].
The Bellman equation (22) then gives

vi−1(u) − vi−1(1 − y) = uvi(u) +
∫ 1

u

max{vi(u), 1 + vi(1 − x)} dx

− (1 − y)vi(1 − y) −
∫ 1

1−y

max{vi(1 − y), 1 + vi(1 − x)} dx,

and, since u ≤ 1 − y, we can break up the first integral to obtain

vi−1(u) − vi−1(1 − y)

= uvi(u) − (1 − y)vi(1 − y) +
∫ 1−y

u

max{vi(u), 1 + vi(1 − x)} dx

+
∫ 1

1−y

(max{vi(u), 1 + vi(1 − x)} − max{vi(1 − y), 1 + vi(1 − x)}) dx. (27)

For x ∈ [1−y, 1], we have vi(y) ≤ vi(1−x) since vi(·) is nonincreasing on [0, 1]. Therefore,
since y ≤ u ≤ 1 − y, we have vi(1 − y) ≤ vi(u) ≤ vi(y), so that, for x ∈ [1 − y, 1], we have

max{vi(u), 1 + vi(1 − x)} = max{vi(1 − y), 1 + vi(1 − x)} = 1 + vi(1 − x),

and we see that integral (27) equals 0. We now have just the identity

vi−1(u) − vi−1(1 − y) = uvi(u) − (1 − y)vi(1 − y) +
∫ 1−y

u

max{vi(u), 1 + vi(1 − x)} dx,

or, equivalently,

vi−1(u) − vi−1(1 − y) = u(vi(u) − vi(1 − y))

+
∫ 1−y

u

max{vi(u) − vi(1 − y), 1 + vi(1 − x) − vi(1 − y)} dx.

Changing variables in this last integral then gives the convenient identity

vi−1(u) − vi−1(1 − y) = u(vi(u) − vi(1 − y))

+
∫ 1−u

y

max{vi(u) − vi(1 − y), 1 + vi(x) − vi(1 − y)} dx. (28)

Since y ≤ u and 1 − u ≤ 1 − y, we can now use our induction assumption to obtain

vi−1(u) − vi−1(1 − y)

≥ u(vi+1(u) − vi+1(1 − y))

+
∫ 1−u

y

max{vi+1(u) − vi+1(1 − y), 1 + vi+1(x) − vi+1(1 − y)} dx

= vi(u) − vi(1 − y),

where the last equality follows from recursion (28).
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We can now complete the proof of the value function bounds in Proposition 2.

Proof of Proposition 2. We begin by proving (i) by backwards induction on i. As before,
since n ≥ 2 is fixed, we abbreviate vi,n(·) by vi(·). For i = n− 1, one iteration of the recursive
definition of the Bellman equation (22) gives vn−1(x) = 3

2 (1 − x2), so vn−1(u) − vn−1(
5
6 ) =

3
2 ( 25

36 − u2) > 1 since by hypothesis we have u < 1
6 . We now make the induction assumption

1 < vi+1(u) − vi+1
( 5

6

)
for 0 ≤ u < 1

6 ,

and observe from the Bellman equation (22) that

vi(u) − vi

( 5
6

) = uvi+1(u) +
∫ 1

u

max{vi+1(u), 1 + vi+1(1 − x)} dx

− 5
6vi+1

( 5
6

) −
∫ 1

5/6
max

{
vi+1

( 5
6

)
, 1 + vi+1(1 − x)

}
dx.

Since u < 1
6 , the monotonicity of vi(·) implies that vi+1(

5
6 ) ≤ vi+1(u). So, for x ∈ [ 5

6 , 1], we
have max{vi+1(

5
6 ), 1+vi+1(1−x)} ≤ max{vi+1(u), 1+vi+1(1−x)}. This gives us the lower

bound

u
(
vi+1(u) − vi+1

( 5
6

)) +
∫ 5/6

u

max
{
vi+1(u) − vi+1

( 5
6

)
, 1 + vi+1(1 − x) − vi+1

( 5
6

)}
dx

≤ vi(u) − vi

( 5
6

)
.

To get a lower bound for the integral of the maximum, we replace the integrand by vi+1(u) −
vi+1(

5
6 ) on [u, 1

6 ) and replace it by 1 + vi+1(1 − x) − vi+1(
5
6 ) on [ 1

6 , 5
6 ]. Changing variables

then gives

1
6

(
vi+1(u) − vi+1

( 5
6

)) +
∫ 5/6

1/6

{
1 + vi+1(x) − vi+1

( 5
6

)}
dx ≤ vi(u) − vi

( 5
6

)
. (29)

By our induction hypothesis, the first addend satisfies the bound

1
6 < 1

6

(
vi+1(u) − vi+1

( 5
6

))
, (30)

and, by Lemma 4, the second integral satisfies the bound∫ 5/6

1/6

{
1 + vn(x) − vn

( 5
6

)}
dx ≤

∫ 5/6

1/6

{
1 + vi+1(x) − vi+1

( 5
6

)}
dx.

If we now recall that vn(x) = 1 − x and compute the integral on the left-hand side, we then
obtain

32
36 ≤

∫ 5/6

1/6

{
1 + vi+1(x) − vi+1

( 5
6

)}
dx. (31)

Finally, adding (30) and (31) and recalling (29) gives us our target bound

1 < 38
36 ≤ vi(u) − vi

( 5
6

)
.

To prove condition (ii), we again use backwards induction. For i = n, we have vn(u) = 1−u,
so vn(u) − vn(

1
6 ) = 1

6 − u < 1. Suppose now that

vi+1(u) − vi+1
( 1

6

)
< 1 for 0 ≤ u < 1

6 .
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The Bellman recursion (22) then gives

vi(u) − vi

( 1
6

)
≤

∫ 1/6

0
max

{
vi+1(u) − vi+1

( 1
6

)
, 1 + vi+1(1 − x) − vi+1

( 1
6

)}
dx

+
∫ 5/6

1/6

(
max{vi+1(u), 1 + vi+1(x)} − max

{
vi+1

( 1
6

)
, 1 + vi+1(x)

})
dx

+
∫ 1

5/6

(
max{vi+1(u), 1 + vi+1(1 − x)} − max

{
vi+1

( 1
6

)
, 1 + vi+1(1 − x)

})
dx.

For x ∈ [0, 1
6 ], we can check that the first integrand is bounded by 1. To see this, we first

note that the left maximand is bounded by 1 by the induction assumption. Next, we note that
vi+1(1 − x) ≤ vi+1(

5
6 ) so, for the second maximand, we have the bound 1 + vi+1(1 − x) −

vi+1(
1
6 ) ≤ 1 + vi+1(

5
6 ) − vi+1(

1
6 ) and this last term is nonpositive by inequality (i).

For x ∈ [ 1
6 , 5

6 ], the second integrand is bounded by

max
{
vi+1(u) − vi+1

( 1
6

)
, 1 + vi+1(x) − vi+1

( 1
6

)} ≤ 1,

since both maximands are bounded by 1; the first because of the induction assumption, and the
second because it is nonincreasing in x and attains its maximum for x = 1

6 .
Finally, for x ∈ [ 5

6 , 1], the third integrand is bounded by

max{vi+1(u) − 1 − vi+1(1 − x), 0} ≤ 0,

since −vi+1(1 − x) ≤ −vi+1(
1
6 ), and by the induction assumption we see that the left maxi-

mand vi+1(u) − 1 − vi+1(
1
6 ) is also nonpositive. So, at last we have

vi(u) − vi

( 1
6

) ≤ 5
6 < 1,

and this completes the proof of condition (ii).
The last claim of Proposition 2 is that 1

6 ≤ f ∗
i,n(y) for all y ∈ [0, 1] and all 1 ≤ i ≤ n − 2,

n ≥ 3. If y ∈ [ 1
6 , 1], this bound is trivial since y ≤ f ∗

i,n(y) for all 1 ≤ i ≤ n. If y ∈ [0, 1
6 ) then

inequality (i) gives 1 < vi+1,n(y) − vi+1,n(
5
6 ) for all 1 ≤ i ≤ n − 2, so that the definition of

f ∗
i,n(y) in (23) gives the required lower bound. This completes the proof of Proposition 2.

3.6. Proof of the upper bound—the last step

We now have all the tools that we need to prove that there is a constant C < 11−4
√

2 ∼ 5.343
such that

E[Ao
n(π

∗
n )] ≤ (2 − √

2)n + C for all n ≥ 1.

We first note that the bound is trivial for n = 1 and n = 2. For n ≥ 3, let {f ∗
1,n, . . . , f

∗
n,n} denote

the optimal threshold functions determined by the recursive solution of the Bellman equation
(22) for the finite-horizon problem with sample size n. We will use the first n − 2 of these
functions to construct a suboptimal selection policy for the geometric sample size problem.
From the suboptimality of this policy, we will obtain an inequality that will lead to our upper
bound.
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3.7. Construction of a suboptimal policy for the infinite-horizon problem

We now consider the infinite-horizon problem, and, as before, we let {X1, X2, . . .} denote
the sequence of observations. Our selection process is as follows.

(a) We let T0 denote the index of the first observation in the sequence that falls in the interval
[ 5

6 , 1]. We select that observation as the first element of our subsequence, and we set
YT0 = 1 − XT0 . We note that YT0 is uniformly distributed on [0, 1

6 ].
(b) Next we use the functions {f ∗

1,n, . . . , f
∗
n−2,n} to decide which of the nextn−2 observations

are to be selected. Specifically, we make our ith selection in the series if XT0+i ≥
f ∗

i,n(YT0+i−1), where, as usual, the YT0+i are defined by the recursion

YT0+i =
{

YT0+i−1 if XT0+i < f ∗
i,n(YT0+i−1),

1 − XT0+i if XT0+i ≥ f ∗
i,n(YT0+i−1).

Here one should recall that by Proposition 2 we have 1
6 ≤ f ∗

i,n(YT0+i−1) for 1 ≤ i ≤ n−2,
so we have 0 ≤ YT0+i ≤ 5

6 for 1 ≤ i ≤ n − 2.

(c) We will now show how our selection process can be repeated in a stationary way. For
k = 0, 1, 2, . . . , we proceed as follows.

1. If YTk+n−2 ∈ ( 1
6 , 5

6 ] then we let

τk = inf
{
i ≥ 1 : XTk+n−2+i ≥ 5

6

}
,

and we select the observation XTk+n−2+τk
. We note that the random variable

YTk+n−2+τk
= 1 − XTk+n−2+τk

is uniformly distributed on [0, 1
6 ].

2. If YTk+n−2 ≤ 1
6 then we simply let τk = 0, and we again note that YTk+n−2+τk

is
uniformly distributed on [0, 1

6 ].
3. We set Tk+1 = Tk + n − 2 + τk and k = k + 1.

4. Just as in (b), we use the functions {f ∗
1,n, . . . , f

∗
n−2,n} to decide which observations

to select from {XTk+1, XTk+2, . . . , XTk+n−2}. At time Tk + n − 2 we are left with
some value YTk+n−2, and we return to step 1.

3.8. Analysis of the policy

The suboptimal policy we constructed provides us with an increasing sequence of stopping
times 0 < T0 < T1 < T2 < · · · such that the times {Tk : k ≥ 1} are regeneration times for
the process {Yi : i ≥ T0}. Moreover, we also have an independent and identically distributed
(i.i.d.) sequence of stopping times {τk : k ≥ 1} with distribution

τk
d=

{
0 if YT0+n−2 ≤ 1

6 ,

inf
{
i ≥ 1 : Xi > 5

6

}
if YT0+n−2 > 1

6 .

The regeneration times {Tk : k ≥ 1} can be written as a function of the stopping times {τk : k ≥
1}; specifically, we have

Tk = T0 + (n − 2)k +
k∑

j=1

τj . (32)
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For any pair (Tk, YTk
), 1 ≤ k < ∞, the number r(Tk, YTk

) of selections made from
{XTk+1, . . . , XTk+n−2} is then given by the sum

r(Tk, YTk
) :=

n−2∑
i=1

1(XTk+i ≥ f ∗
i,n(YTk+i−1)).

For each 0 < ρ < 1, the described selection process gives a feasible policy that lower
bounds the expected length, E[Ao

N(π∗)], of the alternating subsequence selected by an optimal
policy from a sample of geometric size.

Moreover, if, for discounting purposes, we view the number of selections r(Tk, YTk
) as being

counted all at time Tk + n − 2, then we obtain a lower bound for the expected value achieved
by our suboptimal policy. We therefore have the bound

E

[ ∞∑
k=0

ρTk+n−2r(Tk, YTk
)

]
≤ E[Ao

N(π∗)]. (33)

We now note that T0 and YT0 are independent, and we also note that, for each k ≥ 1, the
post-Tk process {YTk+i : i ≥ 0} is independent of Tk . Consequently, we have the factorization

E[ρTk+n−2r(Tk, YTk
)] = E[ρTk+n−2] E[r(Tk, YTk

)] for all k ≥ 0, (34)

and, since Tk is a regeneration epoch, we also have

E[r(Tk, YTk
)] = E[r(T0, YT0)] for all k ≥ 0.

For YT0 = y ∈ [0, 1
6 ], we recall identity (25) and observe that

v1,n(y) − 2 ≤ E[r(T0, YT0) | YT0 = y],
since the policy on the right-hand side agrees with the policy on the left-hand side for the first
n−2 observations, and the policy on the right-hand side never selects the last two observations.

The monotonicity of v1,n(·) and Proposition 2(ii) then give the lower bound

E[Ao
n(π

∗
n )] − 3 = v1,n(0) − 3 ≤ E[r(T0, YT0) | YT0 = y] for all 0 ≤ y ≤ 1

6 ,

so, by recalling that 0 ≤ YT0 ≤ 1
6 and taking total expectations, we see that

E[Ao
n(π

∗
n )] − 3 ≤ E[r(T0, YT0)].

Factorization (34) then gives the bound

E[ρTk+n−2](E[Ao
n(π

∗
n )] − 3) ≤ E[ρTk+n−2r(Tk, YTk

)] for all k ≥ 0.

If we now sum over k, and use representation (32) and the suboptimality condition (33), we
have

(E[Ao
n(π

∗
n )] − 3) E

[ ∞∑
k=0

ρ
T0+(n−2)(k+1)+∑k

j=1 τj

]
≤ E[Ao

N(π∗)]. (35)

We now note that T0 is also independent from the random variables {τk : k ≥ 1}, and we
recall that the τks are i.i.d., so

E

[ ∞∑
k=0

ρ
T0+(n−2)(k+1)+∑k

j=1 τj

]
= E[ρT0 ]

∞∑
k=0

ρ(n−2)(k+1) E[ρτ1 ]k.
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Sincex �→ ρx is convex, Jensen’s inequality tells us thatρE T0 ≤ E[ρT0 ] and thatρE τ1 ≤ E[ρτ1 ],
so we have

ρE T0+n−2
∞∑

k=0

(ρn−2+E τ1)k ≤ E[ρT0 ]
∞∑

k=0

ρ(n−2)(k+1) E[ρτ1 ]k.

The left-hand side is an easy geometric series, and by substitution in (35) we obtain the crucial
bound

E[Ao
n(π

∗
n )] ≤ 3 + 1 − ρn−2+E τ1

ρE T0+n−2 E[Ao
N(π∗)].

From the explicit formula for E[Ao
N(π∗)] in Theorem 2 we then have

E[Ao
n(π

∗
n )] ≤ 3 + (1 − ρn−2+E τ1)(3 − 2

√
2 − ρ + ρ

√
2)

ρE T0+n−1(1 − ρ)
.

The bound above holds for all 0 < ρ < 1, so by letting ρ ↑ 1 we obtain

E[Ao
n(π

∗
n )] ≤ 3 + (2 − √

2)(n − 2 + E τ1) < (2 − √
2)n + 11 − 4

√
2,

since E[τ1] < 6. This completes the proof of the upper bound.

4. Observations on methods and connections

Our principal goal has been to provide a reasonably definitive solution of a concrete problem
of sequential optimization. Still, the natural expectation is that the solution of such a problem
should also offer some novel methodological perspective. Here we began by exploiting the
well-known idea of passing to the infinite-horizon problem, but less commonly (and somewhat
doggedly) we made the trek back from the infinite-horizon problem to the finite-horizon
problem. In retrospect, that trek had elements of inevitability to it, but it also had surprises.

In a natural and easy way the policy for the infinite-horizon problem gave us a lower bound
for the finite-horizon problem, but our first surprise was the discovery (at first numerically) that
the lower bound was so close to optimal. There was also something natural about the upper
bound for the finite-horizon problem, though at first we argued it by contradiction. The idea
was that if we had a policy for the finite horizon that was ‘too good’ then we should be able to
concatenate that policy to give a policy for the infinite-horizon problem that would do better
than our known optimal policy. The resulting contradiction would then provide an upper bound.

This three-step process would seem to be applicable to many problems of optimal selection,
though, from the details of our proof, it is clear that special features must be exploited. For
example, without obtaining four relations in Lemma 2, we would not have been able to solve
the infinite-horizon problem. Three of these relations were straightforward, but the critical
fourth relation still seems ‘lucky’. We are also fortunate that symmetry relations simplified our
Bellman equations. These simplifications have an intuitive basis from the alternating nature of
the problem, but it seems fortuitous that these relations could be made rigorous by inductions
(of several kinds) on the Bellman equation.

There are many problems where we would like to go from the infinite-horizon problem to
the finite-horizon problem, in particular that of the optimal online selection of a monotone
subsequence from a sample of independent observations. Here one knows the asymptotic
behavior of the means for both finite samples (see Samuels and Steele (1981)) and random
samples—including geometric-sized samples (see Gnedin (1999), (2000)). Most notably, in
the infinite-horizon case we have a precise understanding of the variance and even a central
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limit theorem (see Bruss and Delbaen (2001), (2004)). It would be quite interesting to know if
such an analogous central limit theorem can be obtained under the finite-horizon formulation.
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